CK-12 Geometry: Medians and Altitudes in Triangles

Similar documents
Lesson 5-3: Concurrent Lines, Medians and Altitudes

Duplicating Segments and Angles

Unit 2 - Triangles. Equilateral Triangles

Visualizing Triangle Centers Using Geogebra

Chapter 6 Notes: Circles

DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

CAIU Geometry - Relationships with Triangles Cifarelli Jordan Shatto

Chapters 6 and 7 Notes: Circles, Locus and Concurrence

Lesson 3.1 Duplicating Segments and Angles

Name Period 10/22 11/1 10/31 11/1. Chapter 4 Section 1 and 2: Classifying Triangles and Interior and Exterior Angle Theorem

Special Segments in Triangles

Centers of Triangles Learning Task. Unit 3

1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

GEOMETRY CONCEPT MAP. Suggested Sequence:

GEOMETRY. Constructions OBJECTIVE #: G.CO.12

A summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs:

The Geometry of Piles of Salt Thinking Deeply About Simple Things

5.1 Midsegment Theorem and Coordinate Proof

Analytical Geometry (4)

Contents. 2 Lines and Circles Cartesian Coordinates Distance and Midpoint Formulas Lines Circles...

Conjectures for Geometry for Math 70 By I. L. Tse

Geometry Module 4 Unit 2 Practice Exam

CK-12 Geometry: Parts of Circles and Tangent Lines

Geometry Course Summary Department: Math. Semester 1

Heron s Formula. Key Words: Triangle, area, Heron s formula, angle bisectors, incenter

Semester Exam Review. Multiple Choice Identify the choice that best completes the statement or answers the question.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, :30 to 11:30 a.m.

The Euler Line in Hyperbolic Geometry

Incenter Circumcenter

Conjectures. Chapter 2. Chapter 3

Geometry. Relationships in Triangles. Unit 5. Name:

Geometry Enduring Understandings Students will understand 1. that all circles are similar.

Geometry Regents Review

Final Review Geometry A Fall Semester

Advanced Euclidean Geometry

Geometry Chapter Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment

New York State Student Learning Objective: Regents Geometry

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, :30 to 11:30 a.m., only.

Conjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)

56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points.

Algebra Geometry Glossary. 90 angle

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, :15 a.m. to 12:15 p.m.

Lesson 2: Circles, Chords, Diameters, and Their Relationships

Geometry and Measurement

IMO Training 2008 Circles Yufei Zhao. Circles. Yufei Zhao.

Definitions, Postulates and Theorems

Three Lemmas in Geometry

2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE?

/27 Intro to Geometry Review

Intermediate Math Circles October 10, 2012 Geometry I: Angles

Geometry 1. Unit 3: Perpendicular and Parallel Lines

GEOMETRY COMMON CORE STANDARDS

Angles that are between parallel lines, but on opposite sides of a transversal.

MODERN APPLICATIONS OF PYTHAGORAS S THEOREM

Conic Construction of a Triangle from the Feet of Its Angle Bisectors

Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY

The Triangle and its Properties

Geometry of 2D Shapes

39 Symmetry of Plane Figures

Week 1 Chapter 1: Fundamentals of Geometry. Week 2 Chapter 1: Fundamentals of Geometry. Week 3 Chapter 1: Fundamentals of Geometry Chapter 1 Test

Ceva s Theorem. Ceva s Theorem. Ceva s Theorem 9/20/2011. MA 341 Topics in Geometry Lecture 11

Tutorial 1: The Freehand Tools

Geometer s Sketchpad. Discovering the incenter of a triangle

Geometry. Higher Mathematics Courses 69. Geometry

Chapter 5.1 and 5.2 Triangles

Curriculum Map by Block Geometry Mapping for Math Block Testing August 20 to August 24 Review concepts from previous grades.

Solutions to Practice Problems

Area. Area Overview. Define: Area:

The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations

NAME DATE PERIOD. Study Guide and Intervention

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.

Mathematics Georgia Performance Standards

GeoGebra Workshop for the Initial Teacher Training in Primary Education

TIgeometry.com. Geometry. Angle Bisectors in a Triangle


Performance Based Learning and Assessment Task Triangles in Parallelograms I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In this task, students will

Selected practice exam solutions (part 5, item 2) (MAT 360)

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, :15 a.m. to 12:15 p.m.

Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.

Grade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013

Circle Name: Radius: Diameter: Chord: Secant:

Geometry: Classifying, Identifying, and Constructing Triangles

9 Right Triangle Trigonometry

5-1 Perpendicular and Angle Bisectors

11 th Annual Harvard-MIT Mathematics Tournament

Set 4: Special Congruent Triangles Instruction

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 26, :15 a.m. to 12:15 p.m.

PERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures.

Cevians, Symmedians, and Excircles. MA 341 Topics in Geometry Lecture 16

Objectives. Cabri Jr. Tools

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

Discovering Math: Exploring Geometry Teacher s Guide

Sandia High School Geometry Second Semester FINAL EXAM. Mark the letter to the single, correct (or most accurate) answer to each problem.

Geometry Final Exam Review Worksheet

2.1. Inductive Reasoning EXAMPLE A

Postulate 17 The area of a square is the square of the length of a. Postulate 18 If two figures are congruent, then they have the same.

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Situation: Proving Quadrilaterals in the Coordinate Plane

Algebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids

Transcription:

CK-12 Geometry: Medians and Altitudes in Triangles Learning Objectives Define median and find their point of concurrency in a triangle. Apply medians to the coordinate plane. Construct the altitude of a triangle and find their point of concurrency in a triangle. Review Queue a. Find the midpoint between (9, -1) and (1, 15). b. Find the equation of the line between the two points from #1. c. Find the equation of the line that is perpendicular to the line from #2 through (-6, 2). Know What? Triangles are frequently used in art. Your art teacher assigns an art project involving triangles. You decide to make a series of hanging triangles of all different sizes from one long piece of wire. Where should you hang the triangles from so that they balance horizontally? You decide to plot one triangle on the coordinate plane to find the location of this point. The coordinates of the vertices are (0, 0), (6, 12) and (18, 0). What is the coordinate of this point? Medians Median: The line segment that joins a vertex and the midpoint of the opposite side (of a triangle). Example 1: Draw the median for below.

Solution: From the definition, we need to locate the midpoint of. We were told that the median is, which means that it will connect the vertex and the midpoint of, to be labeled. Measure and make a point halfway between and. Then, connect to. Notice that a median is very different from a perpendicular bisector or an angle bisector. A perpendicular bisector also goes through the midpoint, but it does not necessarily go through the vertex of the opposite side. And, unlike an angle bisector, a median does not necessarily bisect the angle. Example 2: Find the other two medians of. Solution: Repeat the process from Example 1 for sides and. Be sure to always include the appropriate tick marks to indicate midpoints. Example 3: Find the equation of the median from to the midpoint of for the triangle in the plane below. Solution: To find the equation of the median, first we need to find the midpoint of, using the Midpoint Formula. Now, we have two points that make a line, intercept. and the midpoint. Find the slope and

The equation of the median is Point of Concurrency for Medians From Example 2, we saw that the three medians of a triangle intersect at one point, just like the perpendicular bisectors and angle bisectors. This point is called the centroid. Centroid: The point of concurrency for the medians of a triangle. Unlike the circumcenter and incenter, the centroid does not have anything to do with circles. It has a different property. Investigation 5-3: Properties of the Centroid Tools Needed: pencil, paper, ruler, compass 1. Construct a scalene triangle with sides of length 6 cm, 10 cm, and 12 cm (Investigation 4-2). Use the ruler to measure each side and mark the midpoint. 2. Draw in the medians and mark the centroid. Measure the length of each median. Then, measure the length from each vertex to the centroid and from the centroid to the midpoint. Do you notice anything? 3. Cut out the triangle. Place the centroid on either the tip of the pencil or the pointer of the compass. What happens?

From this investigation, we have discovered the properties of the centroid. They are summarized below. Concurrency of Medians Theorem: The medians of a triangle intersect in a point that is two-thirds of the distance from the vertices to the midpoint of the opposite side. The centroid is also the balancing point of a triangle. If is the centroid, then we can conclude: And, combining these equations, we can also conclude: In addition to these ratios, is also the balance point of. This means that the triangle will balance when placed on a pencil (#3 in Investigation 5-3) at this point. Example 4:, and are midpoints of the sides of. a) If, find and. b) If, find and. Solution: a) is two-thirds of. So,. is either half of 12, a third of 18 or..

b) is two-thirds of. So, and. is a third of 21, half of 14, or.. Example 5: Algebra Connection is the centroid of and. Find and. Solution: is half of. Use this information to solve for. For, is twothirds of. Set up an equation for both. Altitudes The last line segment within a triangle is an altitude. It is also called the height of a triangle. Altitude: A line segment from a vertex and perpendicular to the opposite side. Here are a few examples. As you can see, an altitude can be a side of a triangle or outside of the triangle. When a triangle is a right triangle, the altitude, or height, is the leg. If the triangle is obtuse, then the altitude will be outside of the triangle. To construct an altitude, use Investigation 3-2 (constructing a perpendicular line through a point not on the given line). Think of the vertex as the point and the given line as the opposite side. Investigation 5-4: Constructing an Altitude for an Obtuse Triangle Tools Needed: pencil, paper, compass, ruler a. Draw an obtuse triangle. Label it, like the picture to the right. Extend side, beyond point.

b. Using Investigation 3-2, construct a perpendicular line to, through. The altitude does not have to extend past side, as it does in the picture. Technically the height is only the vertical distance from the highest vertex to the opposite side. As was true with perpendicular bisectors, angle bisectors, and medians,the altitudes of a triangle are also concurrent. Unlike the other three, the point does not have any special properties. Orthocenter: The point of concurrency for the altitudes of triangle. Here is what the orthocenter looks like for the three triangles. It has three different locations, much like the perpendicular bisectors. Acute Triangle Right Triangle Obtuse Triangle The orthocenter is inside the triangle. The legs of the triangle are two of the altitudes. The orthocenter is the vertex of the right angle. The orthocenter is outside the triangle. Know What? Revisited The point that you should put the wire through is the centroid. That way, each triangle will balance on the wire. The triangle that we wanted to plot on the plane is to the right. Drawing all the medians, it looks like the centroid is (8, 4). To verify this, you could find the equation of two medians and set them equal to each other and solve for. Two equations

are and. Setting them equal to each other, we find that and then. Review Questions Construction Construct the centroid for the following triangles by tracing each triangle onto a piece of paper and using Investigation 5-3. 1. 2. 3. 4. Is the centroid always going to be inside of the triangle? Why? Construction Construct the orthocenter for the following triangles by tracing each triangle onto a piece of paper and using Investigations 3-2 and 5-4. 5. 6. 7. 8. What do you think will happen if the triangle is equilateral? What can we say about the incenter, circumcenter, centroid, and orthocenter? Why do you think this is? 9. How many lines do you actually have to construct to find any point of concurrency? For questions 10-13, find the equation of each median, from vertex side,. 10. 11. to the opposite

12. 13. For questions 14-18,, and are the midpoints of each side and is the centroid. Find the following lengths. 14. If, find and 15. If, find and 16. If, find and 17. If, find and 18. If and, find and. Write a two-column proof. 19. Given: and are altitudes Prove: 20. Given: Isosceles with legs and and Prove: Use with and for questions 21-26. 21. Find the midpoint of and label it. 22. Write the equation of. 23. Find the midpoint of and label it. 24. Write the equation of. 25. Find the intersection of and. 26. What is this point called?

Another way to find the centroid of a triangle in the coordinate plane is to find the midpoint of one side and then find the point two thirds of the way from the third vertex to this point. To find the point two thirds of the way from point to use the formula:. Use this method to find the centroid in the following problems. 27. (-1, 3), (5, -2) and (-1, -4) 28. (1, -2), (-5, 4) and (7, 7) 29. Use the coordinates and and the method used in the last two problems to find a formula for the centroid of a triangle in the coordinate plane. 30. Use your formula from problem 29 to find the centroid of the triangle with vertices (2, -7), (-5, 1) and (6, -9). Review Queue Answers a. b. c.