Online Insurance Consumer Targeting and Lifetime Value Evaluation - A Mathematics and Data Mining Approach



Similar documents
REVISTA INVESTIGACIÓN OPERACIONAL VOL., 32, NO. 2, , 2011

DEVELOPMENT OF MODEL FOR RUNNING DIESEL ENGINE ON RAPESEED OIL FUEL AND ITS BLENDS WITH FOSSIL DIESEL FUEL

Initial inventory levels for a book publishing firm

REFINED CALCULATION AND SIMULATION SYSTEM OF LOCAL LARGE DEFORMATION FOR ACCIDENT VEHICLE

Finite Dimensional Vector Spaces.

Evaluating Direct Marketing Practices On the Internet via the Fuzzy Cognitive Mapping Method

GROUP MEDICAL INSURANCE PROPOSAL FORM GROUP MEDICAL INSURANCE PROPOSAL FORM

West Virginia. Instructions. Income/Business Franchise Tax for S Corps & Partnerships (Pass-Through Entities) Guyandotte River, Mingo County

QUANTITATIVE METHODS CLASSES WEEK SEVEN

Credibility Premium Calculation in Motor Third-Party Liability Insurance

Learning & Development

10.5 Future Value and Present Value of a General Annuity Due

Term Structure of Interest Rates: The Theories

Adverse Selection and Moral Hazard in a Model With 2 States of the World

Problem Set 6 Solutions

Evaluating Microsoft Hyper-V Live Migration Performance Using IBM System x3650 M3 and IBM N series N5600

How To Value An Annuity

The influence of advertising on the purchase of pharmaceutical products

Maintenance Scheduling of Distribution System with Optimal Economy and Reliability

INFLUENCE OF DEBT FINANCING ON THE EFFECTIVENESS OF THE INVESTMENT PROJECT WITHIN THE MODIGLIANIMILLER THEORY

AP Calculus AB 2008 Scoring Guidelines

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

DYNAMIC PROGRAMMING APPROACH TO TESTING RESOURCE ALLOCATION PROBLEM FOR MODULAR SOFTWARE

TIME VALUE OF MONEY: APPLICATION AND RATIONALITY- AN APPROACH USING DIFFERENTIAL EQUATIONS AND DEFINITE INTEGRALS

CHAPTER 2. Time Value of Money 6-1

Econ 371: Answer Key for Problem Set 1 (Chapter 12-13)

Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract

Modern Portfolio Theory (MPT) Statistics

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data

Category 7: Employee Commuting

IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki

Logo Design/Development 1-on-1

ANALYSIS OF ORDER-UP-TO-LEVEL INVENTORY SYSTEMS WITH COMPOUND POISSON DEMAND

Average Price Ratios

The Digital Signature Scheme MQQ-SIG

FINANCIAL MATHEMATICS 12 MARCH 2014

The example is taken from Sect. 1.2 of Vol. 1 of the CPN book.

Chapter Eight. f : R R

A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree

ERLANG C FORMULA AND ITS USE IN THE CALL CENTERS

Security Analysis of RAPP: An RFID Authentication Protocol based on Permutation

Applications of Support Vector Machine Based on Boolean Kernel to Spam Filtering

Rural and Remote Broadband Access: Issues and Solutions in Australia

Free ACA SOLUTION (IRS 1094&1095 Reporting)

CPS 220 Theory of Computation REGULAR LANGUAGES. Regular expressions

The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev

Section 3: Logistic Regression

ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil

6.7 Network analysis Introduction. References - Network analysis. Topological analysis

Remember you can apply online. It s quick and easy. Go to Title. Forename(s) Surname. Sex. Male Date of birth D

10/19/2011. Financial Mathematics. Lecture 24 Annuities. Ana NoraEvans 403 Kerchof

Repulsive Force

The Time Value of Money

Keywords Cloud Computing, Service level agreement, cloud provider, business level policies, performance objectives.

An IG-RS-SVM classifier for analyzing reviews of E-commerce product

Personalized Web Search by User Interest Hierarchy

1. Online Event Registration 2. Event Marketing 3. Automated Event Progress Reports 4. Web based Point of Sale Terminal 5. Marketing System

Use a high-level conceptual data model (ER Model). Identify objects of interest (entities) and relationships between these objects

Traffic Flow Analysis (2)

Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R =

Magic Message Maker Amaze your customers with this Gift of Caring communication piece

Simple Linear Regression

is knowing the car market inside out.

1. The Time Value of Money

union scholars program APPLICATION DEADLINE: FEBRUARY 28 YOU CAN CHANGE THE WORLD... AND EARN MONEY FOR COLLEGE AT THE SAME TIME!

Part 2 - Notes on how to complete your application form

Online Load Balancing and Correlated Randomness

Entity-Relationship Model

ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN

DECISION MAKING WITH THE OWA OPERATOR IN SPORT MANAGEMENT

11 Multiple Linear Regression

Analysis of one-dimensional consolidation of soft soils with non-darcian flow caused by non-newtonian liquid

Who uses our services? We have a growing customer base. with institutions all around the globe.

Contents. Presentation contents: Basic EDI dataflow in Russia. eaccounting for HR and Payroll. eaccounting in a Cloud

SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN

Coordination, Cooperation, Contagion and Currency Crises 1

Protecting E-Commerce Systems From Online Fraud

Advantageous Selection versus Adverse Selection in Life Insurance Market

by John Donald, Lecturer, School of Accounting, Economics and Finance, Deakin University, Australia

Question 3: How do you find the relative extrema of a function?

June Enprise Rent. Enprise Author: Document Version: Product: Product Version: SAP Version:

Medicaid Eligibility in Michigan: 40 Ways

Study on prediction of network security situation based on fuzzy neutral network

Control of Perceived Quality of Service in Multimedia Retrieval Services: Prediction-based mechanism vs. compensation buffers

Logistic Regression for Insured Mortality Experience Studies. Zhiwei Zhu, 1 Zhi Li 2

Game of Platforms: Strategic Expansion into Rival (Online) Territory

Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology

T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are :

An Approach to Evaluating the Computer Network Security with Hesitant Fuzzy Information

Natural Gas & Electricity Prices

Forecasting Trend and Stock Price with Adaptive Extended Kalman Filter Data Fusion

Transcription:

Ol Isurac Cosumr Targtg ad Lftm Valu Evaluato - A Mathmatcs ad Data Mg Approach Yuaya L,2, Gal Cook 3 ad Olvr Wrford 3 Rvr ad Harbor Dpartmt, Najg Hydraulc Rsarch Isttut, Najg, 224, 2 Ky Laboratory of Port, watrway & sdmt grg, Mstry of Commucatos, 3 IsWb Corp, 29 Pyrts Way, Sut 2, Gold Rvr, CA9567,,2 Cha 3 USA 5. Itroducto IsWb Corporato provds a ol surac marktplac for cosumr ad surac compas. Th provdd surac products for shoppg clud automobl, trm lf ad homowrs surac, as wll as auts. Th compay busss ca b classfd as two catgors: lad purchas ad polcy purchas. I lad purchas cosumr coms to IsWb surac ol marktplac, compars quots basd o hs/hr prsoal formato ad products provdd by surac carrrs, ad submts lad to carrrs. Aftr that as a marktplac provdr IsWb dos t volv followg purchas procss. It s th ssu btw cosumr ad surac carrrs. I ths cas IsWb volvg th purchas procss tm s muts. I polcy purchas catgory, aftr cosumr submttg lad, th agt of IsWb wll cotact th cosumr ad mak th ffort to sll th polcy to th cosumr. Aftr th cosumr purchas th polcy, IsWb has th opportuts to rw th polcy aual or half yar prod ach tm. For polcy purchas cosumr, IsWb has th chac to volv th purchas procss from yar to dcads. Thrfor IsWb trs to mprov srvc for cosumr polcy purchas ad covrt mor surac lad to polcy to grat mor rvu. Sc th rvu gratg from a polcy purchas s much hghr tha lad purchas from a lad shoppg ssso, IsWb has to fd out th spac to mprov th lad clos rat ad rtto rat. For th quartr dd March 3, 2, IsWb rcords mor tha 3.5 mllo uqu usr sssos ad approxmatly 66, compltd shoppg sssos durg th frst quartr []. Ad IsWb s surac agcy sold arly 3, w polcs durg th quartr []. Now th Compay s agcy wll xpad to fv addtoal havly populatd stats wth xstg ad w surac compas. Furthr xpasos ar plad for th rmadr of th yar []. To covrt mor shoppg ssso to th polcs sold by IsWb surac agcy, adopt th xpaso of IsWb Corporato busss, satsfy th mmdat auto polcy surac purchas rqurmt of th trt cosumrs, provd hgh qualty srvc to cosumrs ad cras th polcy sold umbr of Th IsWb s agcy, th data warhous group try to fd out th trt cosumr bhavor ad drct IsWb agcy to targtd cosumrs at propr tm ad propr way.

74 Kowldg-Ortd Applcatos Data Mg Fg.. Th start trt pag of ol Auto surac 2. Th cosumr formato ad ts trt bhavor collcto As a xampl, Fgur shows a lal shoppg ssso flow chart cosstd wth dffrt wb pags amd as Start, Drvrs, Vhcls, Covrags, Profl ad Compas. Th work flow s that ol cosumrs put formato of start, drvrs, cars, covrag. Th thrty party databass wll provd cosumr crdt hstory ad auto surac hstory rcord through trt smultaously wth cosumr prsoal formato put. Wth th data, th auto surac valuato agts of surac compas wll provd th quots for th cosumr. All th quots from dffrt surac compas wll lstd o profl pag. Wh cosumr ca choc a quot, a lad s gratd. Th lads has two way to go: a surac agt of Iswb or a surac compay. If th lad s st to a surac compay, a lad shoppg ssso s compltd. If th lad s st to a surac agt of Iswb, th agt wll cotact th cosumr wth pho propr tm, cofrm som formato ad purchas purpos, th a auto surac shoppg ssso s compltd. All th formato cosumr put ad thrd parts provd wll b stord Iswb Data Warhous. To rcord cosumr bhavor, IsWb Data Warhous vtd th vt log tchology ad got patt 999, by whch cosumr bhavor o wbst lk turg back pag, jumpg from o pag to othr pag ad tmstamp for ach stp wll b rcordd Data Warhous. Each yar mor tha t mllos of trt cosumr formato hav b accumulatd to Iswb Data Warhous. Thos data cluds th

Ol Isurac Cosumr Targtg ad Lftm Valu Evaluato - A Mathmatcs ad Data Mg Approach 75 dtal of cosumr prsoal formato, such as ag, gdr, marrag, marrag hstory, job typ, umbr of chldr, owr of hous, hous typ, car owr, ad car formato lk makr, car modl so o.. All th statc data of cosumrs ad cars wth dyamc data of cosumr wb bhavor provd th bas for th statstcs aalyss data mg. 3. Tabls, colums ad radom varabls Th tabls usd ths aalyss ar Agcy_lads, Agcy_polcy, Auto_Cosumrs, Auto_Drvrs, Auto_quots ad othr tabls wth Auto prfx data warhous. I th tabls, Agcy_lads tabl rcods daly th formato of cosumrs who submttd th lads ad th lads slct th quots from carrrs whch IsWb E_agcy covs. All th cosumrs Agcy_Lads ar th pottal IsWb E_agcy polcy buyr. IsWb agcy wll cotact th cosumr th tabl ad hop to sll th auto surac polcy to thm. Agcy_polcy tabl rcords th formato of cosumrs who purchasd th auto surac polcy from IsWb agcy. Of cours oly part of cosumrs rcord Agcy_Lads would buy auto polcy from IsWb agcy, othrws ths aalyss s t cssary. Thrfor, th umbr of cosumr Agcy_Polcy s always lss tha th umbr of cosumr Agcy_Lads. Auto_Cosumrs, Auto_Drvrs, Auto_Quots ad othr tabls wth auto as prfx cota all th formato of cosumr who got to IsWb wb pag ad put som prsoal formato such as ag, gdr, brthday, old auto surac polcy xprato day, w auto surac ffctv day, so o By jog Agcy_polcy tabl wth Auto_Cosumrs, Auto_Drvrs, Auto_Quots, ad othr tabls wth Auto as prfx, w ca gt th backgroud formato of cosumrs who purchasd Auto polcy from IsWb agcy. All th backgroud formato wll b usd to dtrm th cosumr motvato to purchas auto polcy. As th comparso, th Agcy_Lads tabl wll b usd to jo wth th sam tabls as Agcy_Polcy dos to gt th sam formato. Th rlatv formato wll b usd as comparso stadum. I IsWb data warhous, all formato s savd to tabls. Each tabl has colums whch umbr vars from two to mor tha o hudrd. Each colum rcords o attrbut of cosumr. From aalyss ad mathmatcs vw, ach colum s a radom varabl. As a radom varabl, ach colum has ts valu rgo. Du to th data typs of colums ar dffrt, from tgr, varchar, umrcal,., to dat, th valu rgos of radom varabls ar complcat, from smpl (YES,NO), a lst lk Carrr (Travlrs, Hartfor Agcy, Atata Casualty, CSE, Explorr, FIC, GMAC, Grat Amrca, Ifty, ), ag (6, 7, 8, 9,,65) ad som thortcal cotuous dstrbut valu rgo lk old_polcy_xprato_days (-,+ ) (Nots: huma bg lf s vry lmtd, but th data cosumr put would b arbtrarly dstrbutd, ot always b rasoabl). 4. How to valuat th pottal auto polcy purchas cosumrs Som facts to dtrmg lad closur rat ar prstd blow th curv fgur. Psychologcally, th huma bhavor vary wth ag, gdr, hous owr, ad so o, thrfor, th corrlato coffcts ar th fuctos of ths facts. For th comparso purpos, th Agcy_Lad ad Agcy_Polcy tabls wll jo wth othr auto tabls. Th all

76 Kowldg-Ortd Applcatos Data Mg backgroud attrbuts of ach auto lad cosumr ad auto polcy cosumr wll b lstd a bg tabl for aalyss purpos. For mor tha,, auto cosumr ssso, th statstc rsults ar lstd bllow: 45 4 35 3 25 % 2 5 5 2 3 4 5 6 7 8 9 ag Fg. 2. Th varato of cosumr lad closur rat wth ag for fmal 6 5 4 % 3 2 2 3 4 5 6 7 8 9 ag Fg. 3. Th varato of cosumr lad closur rat wth ag for mal

Ol Isurac Cosumr Targtg ad Lftm Valu Evaluato - A Mathmatcs ad Data Mg Approach 77 % 5 45 4 35 3 25 2 5 5 2 3 rsdcy umbr Fg. 4. Th varato of cosumr lad closur rat wth rsdc_ow umbr 7 6 5 4 o ys 3 2 Fg. 5. Th varato of cosumr lad closur rat of w_polcy_ffctv wth3day radom varabl % 5 45 4 35 3 25 2 5 5 2 3 4 5 6 marrag umr Fg. 6. Th varato of cosumr lad closur rat of marrd radom varabl

78 Kowldg-Ortd Applcatos Data Mg % 5 45 4 35 3 25 % 2 5 5 o Fg. 7. Th varato of cosumr lad closur rat of old_polcy_xprato_wth_3day radom varabl Fgur 2 to 7 outls th ma fact for lad cosumrs to dtrm purchasg th surac polcy. Fgur 2 ad 3 dcats that th lad closur rat varato wth ag has th sam trd dstrbuto for mal ad fmal, but mal has hghr lad closur rat compard wth fmal. Fgur 4 shows that th lad cosumrs owg rsdcs has mor lad closur rat tha that ot owg rsdcy. Th lad closur rat for marrag status s th prso wth o marrag. Th cosumrs, compltg lads that old auto surac would b xprd ad w hav to b ffctv thr day, hav mor pottal to purchas auto surac polcy. Th aalyss wll hlp auto surac agcy to dtfy th auto surac lad cosumr wth most lk hood to purchas th auto surac polcy from th hug surac lad submttd through trt. ys 25 2 5 % 5 2 3 4 5 6 7 day Fg. 8. Th cosumr trt ssso dstrbuto a wk

Ol Isurac Cosumr Targtg ad Lftm Valu Evaluato - A Mathmatcs ad Data Mg Approach 79 4 2 8 % 6 系 列 4 2 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 2 22 23 24 hour Fg. 9. Th auto surac cosumr lad closur rat vary wth tm wk day 5. Th cosumr bhavor varato o trt wth tm Othr trstg ssu s that cosumr ssso dstrbuto o trt vars wth tm wk prod from Moday to Suday. Wh s th good tm for ffctv cosumr to submt lad, ad th auto surac polcy purchasr to go to th wbst. Fgur 8 s th auto surac trt ssso dstrbuto a wk. From th fgur, th cosumrs trt ssso s hghr wk day ad lowr wkd. Th Moday s lowst wk day ad th Frday s th scod lowst wk day. Th possbl raso for ths kd of dstrbuto s that wkd mor popl dos outdoor actvts ad has lss tm gog to trt, ad Moday th pottal cosumrs hav to pay mor attto for th work ad spd mor tm for wkd pla Frday. Fgur 9 s th lad closur rat dstrbuto wth a day tm whch s accoutd hours. Th fgur shows that thr ar two pak tm for auto surac cosumrs to submt th lad, o s th luch tm ad othr prod s from 2: to 22: th gh. 6. Fuzzy thory for dtrm ol auto surac cosumrs Basd o th aalyss abov, a fuzzy formula s obtad to dtrm th possblty for ol auto surac cosumrs who would buy th auto surac polcy. Th fuzzy fucto for all auto surac lads s: 7 P = w p () I th formula abov, p s th valu for ach radom varabl for fgur 2,3,4,5,6,7,8, ad 9. Its valu s smulatd by y/ y pak, th wghtg valu w s dtrmd by data mg ad auto surac agt flg. I ths way, all th ol auto surac ssso s valuatd automatcally ad th surac agts ca cotact th cosumrs th ordr th fuzzy formula provds. Th xprc shows that th fuzzy formula works wll.

8 Kowldg-Ortd Applcatos Data Mg 7. Th mathmatc xprsso of customr lftm valu (lad) Each tm a customr coms to IsWb wbst, put ts prsoal formato ad wodrs th wbst, all th prsoal formato ad customr bhavor wll b rcordd IsWb data warhous. Dffrt customrs hav dffrt lftm valu for IsWb. IsWb ds to dtrm ach customr commrcal from customr prsoal formato ad hr/hs bhavor o wbst by data mg. A customr lftm valu for a lad ca b wrtt as S = P V (2) Whr S s th customr lftm valu (Lad); P s th lklhood of a lad bcomg a polcy ad V s th customr lftm valu of th polcy. To mak th mathmatc formula dvlopg procss clarly, ths stuato ca b cosdrd: umbr of M customrs wth th sam prsoal formato ad backgroud com to IsWb wbst ad submt agt lads. Sc th dcso to purchas polcy from IsWb or ot s radom varabl for ach customr, assum M purchasg polcy from IsWb ad ( M M ) customrs do t. Aftr half or o yar, M customrs rw th polcy ad ( M M) customrs do t. Wh th polcs xprato, M2 customrs rw thr polcs ad ( M M2) customrs do t. Assumg th currt ag of thos customrs s T ad th ag thos customrs gv up to purchas auto surac polcy s T 2, th possbl tm prod for thos customrs to purchas auto surac polcy from IsWb s T = T2 T (3) I T yars th cosumrs rw thr polcs N tms. So th procss for cosumrs to mak dcso to rw thr polcs or ot wll cotu N tms. It s a typcal N stps radom walk problm. Thrfor th fal stp, thr M customrs wll rw thr polcs ad ( M M) do t. Th rvu IsWb obtad from thos M customrs thr lftm wll b ( ) S = C M Q + M Q + M Q + + M Q (4) total 2 2 I whch C s th commsso rat, ad Q s th auto surac quot. Sc th com ad spdg would chag for th customrs wth ag, th car typ ad surac quot would also chag wth ag. To ach customr th whol purchas ad rw procss, th rvu IsWb obtad would b Stotal M M M2 M S = = C Q + Q + Q2 + + Q M M M M M (5) To mak quato 4 mor magful, t ca b rwrtt as M M M M M M2 Q + Q + Q2 + M M M M M M S= C M M M2 M + Q M M M M (6)

Ol Isurac Cosumr Targtg ad Lftm Valu Evaluato - A Mathmatcs ad Data Mg Approach 8 lt M P = (7) M M R = M M2 R2 = M R = M M (8) (9) () Obvously P s th probablty that customr purchass th auto surac from IsWb agt; R s th frst yar rtto rat; R2 s th scod yar rtto rat ad R s N yar rtto rat. Thrfor th quato (6) ca b wrtt as Q + RQ + RR2Q2 + S = P C RRRQ 2 3 3 + + RRR 2 3 RQ By usg th mathmatcs otato, quato () ca b wrtt as () S = P C Q R j (2) = j= I whch R s.. Equato (2) s th gral quato to valuat auto surac customr Valu. 8. Th smplfd valuatg fucto for lftm ol surac cosumr polcy valu I quato (2), commsso rat C s costat whch s dtrmd by th dal btw IsWb ad auto surac carrrs ad ca b cosdrd as costat th aalyss procss. Q s th quot from carrr basd o th cosumr prsoal formato. Thrfor, th varabls dd to b dtrmd by aalyss ad data mg aalyss ar PR,, R2,, R, ad Q, Q2,, Q.Du to th short hstory of data rcord IsWb data warhous, o ough data to dtrm R 2, R 3,, R, ad Q2, Q3,, Q currtly. Som assumptos ar tak as blow: ad R = R = R = R = R (3) 2 3 4 ( ) Q = + r Q (4)

82 Kowldg-Ortd Applcatos Data Mg I whch r s th quot crasg rat aually. Thrfor quato () ca b rwrtt as ( ) S P C Q + RQ + r + = R 2 Q 2 ( + r ) + + R Q ( + r ) (5) Wh R ( r ) + =., obvously Multply both sds of quato (5) wth R ( r ) S = N P C Q (6) + ad obta 2 ( + ) + ( + ) 2 R r R r 3 3 RS ( + r) = P C Q + R ( + r) + + (7) + + R ( + r) Equato (5) muss quato (6), th rsult s Wh R ( r ) + ( ) + ( ) ( ) S R S + r = P C Q R + r (8) +., fally, th smplfd stmatg fucto for surac polcy valu s ( + ( + ) ) R ( + r) P C Q R + r S = Equato combg (6) ad (9) s th smplfd lftm valu valuato fucto for IsWb ol surac polcy cosumr. 9. Data mg rsult for valuatg fucto of auto surac customr valu I quato (9), r s cosdrd as dpdt from cosumr prsoal formato. It s crasd by surac carrrs aually. For xampl. Stat Farm ad All Stat just crasd th quot for auto surac 2.7 last yar 8.3% ths yar[][2]. Basd o that, (9) r =2% (2) s assumd for log tm prod for all quots. For all cosumrs, th lad clos rat P s th fucto of quot Q ad cosumr prsoal formato such as pror polcy xprato day, rsdc yar, rsdc moth, homowrshp, gdr, martal status, sourc, stat ad othrs, P ts ca b wrtt as

Ol Isurac Cosumr Targtg ad Lftm Valu Evaluato - A Mathmatcs ad Data Mg Approach 83 P = f Q, ag, gdr,xp rato _ day, rsdt _ yar, rsdt _ moth, martal _ status, stat, sourc, hom owrshp, ) (2) I th sam way, R s Q2, ag, gdr, martal _ status, R = f stat, sourc,hom owr, P ad R ca b dtrmd by dcso tr tchology of data mg from IsWb data warhous data. (22) Th ag dstrbuto of auto polcy 6 r b5 m u4 y3 lc o2 P 2 4 6 8 Ag Fg.. Th ag dstrbuto of auto polcy Aothr varabl s N,th total tms of rtto for a cosumr. It s th fucto of cosumr ag. To smplfy th aalyss, all ar adjustd to aual basd ad th total polcy rw umbr s th dffrc th cosumr ag to gv up drvg ad currt ag, so th N ca b rasoably wrtt, N = ags ag (23) I whch ags s th ag for cosumr to stop drvg ad purchasg auto surac ag ad ag s th currt ag.

84 Kowldg-Ortd Applcatos Data Mg Th ag dstrbuto of agt lad 7 r b m u d a L 6 5 4 3 2 2 4 6 8 2 Fg.. Th ag dstrbuto of auto agt lads From statstc data of www.csus.gov[3], th xpctato of lf for USA ctz s about 7 for mal ad 78 for fmal. From Fgur ad Fgur 2,thr s dply dcrasg from ag 62 to ag. Thrfor, Ag ag = 63 (24) s For th cosumr who ag s largr tha 63, N s cosdrd as zro. Th avrag ag for all polcs s 34 yar. Th avrag ag for populato U.S.A s 36 yar [2]. It dcats that youg prsos trd to purchas ol polcy. Th N ca b calculatd out as N = 63 34 = 29 (25) It s a bg task to dtrm quatos (2) ad (22). From data mg, th avrag lad clos rat s ad th avrag rtto rat s P = % (26) All s basd o data of 2 yar. R = 75% (27) o

Ol Isurac Cosumr Targtg ad Lftm Valu Evaluato - A Mathmatcs ad Data Mg Approach 85. Th sstvty aalyss of valuatg fucto of ol surac polcy From IsWb Rports Fourth Quartr ad Yar Ed Facal rsults for 2[4], th auto surac agcy rvu for 2 s $634. That mas N P C Q Th total rvu gratd from thos polcs s S 2 2 = $634 (28) total + + ( ( ) ) R ( + r) 3 ( (.75.2) ) P C Q R + r = (29) = $634.75.2 = $634 4.254 = $695942 Equato (28) dcat that wth rwg th polcs, IsWb would gt addtoal 3.254 tms rvu that s obtad from frst polcy purchas from IsWb agt. To aalyss whch drcto s th bst drcto to cras IsWb rvu, th paramtrs sstv aalyss s mad as blow: + + ( ( ) ) ( ) S C Q R + r total = P R + r + ( ( ) ) ( ) S P C Q R + r total = R R + r (3) (3) ( ) ( ) ( ) S total P C Q + R + r = R + r (32) Stotal P = (33) S P total Stotal + R R ( + r) = S + + total R ( + r) Stotal = ( + ) R ( + r) + ( + ) Stotal R r + + (34) (35)

86 Kowldg-Ortd Applcatos Data Mg Calculatg quato (33), (34) ad (35), th corrspodg rsults ar show tabls (), (2) ad (3) P..5.2.25.3.35.4.45.5 P 6.7 5 4 3.33 2.86 2.5 2.22 2 Tabl. Th sstvty aalyss for lad clos rat P Th rlatv ga coffc t for lad clos rat 2 t 8 fc o c 6 a g 4 u v 2 R..2.3.4.5.6 Lad clos rat Fg. 2. Th rlatv ga coffct for lad clos rat R.75.8.85.9.95. + ( r) ( r) R + + + R +...... Tabl 2. Th sstvty aalyss for lad clos rat R 29 3 3 32 33 34 35 ( + ) R ( + r) + + R ( r) +.2..79.62.49.39.3 Tabl 3. Th sstvty aalyss for polcy rw umbr N

Ol Isurac Cosumr Targtg ad Lftm Valu Evaluato - A Mathmatcs ad Data Mg Approach 87 Th rvu ga coffct for avrag rwq yars t fc o c a g u v R.4.2..8.6.4.2 28 29 3 3 32 33 34 35 36 Avrag rw yars Fg. 3. Th rvu ga coffct for avrag rw yars Summarzg tabls,2,3 ad fgurs 2,2,3, th coclusos ca b obtad:. Th lad clos rat s th most mportat paramtr to dtrm th IsWb ol polcy rvu. Th rvu ga from lad clos rat crasg wll grat tms rvu obtad from rtto rat crasg th sam prctag basd o currtly clos rat ad rtto rat. 2. Th rlatv rvu ga coffct wll dcrasg wth th clos rat crasg, th thortcal mmum valu s wh lad clos rat rach %. 3. Th rtto rat s th scod mportat paramtr to affct th IsWb ol surac polcy rvu crasg. It almost kps costat,., to th rlatv ol polcy rvu ga coffct. 4. Th paramtr of avrag polcy rw yars s lss mportat for IsWb ol polcy rvu o currt data mg rsults.. Th maxmum rvu crasg drcto ad rvu pottal Th ol polcy rvu for yar ca b wrtt as M2+ N2+ ( ) ( ) (36) T = C Q R + P C Q 2+ j j j j j+ j=

88 Kowldg-Ortd Applcatos Data Mg By troducg th avrag valus, th quato (35) ca b wrtt as T = M C Q 2+ 2+ 2+ R + N P C Q 2+ 2+ 2+ 2+ (37) I quato (36), R 2+ ad P 2+ wll b cosdrd as o-hstory rlatd; M 2 + s strogly hstory rlatd, N 2 + ad Q 2 + ca b cosdrd as chagg hstory rlatd trds (ths rsarch wll b do latr). Thrfor, quato (26) ca b wrtt as j 2+ = 2+ j 2+ j j= M N P R (38) Morovr, quato (39) ca b wrtt as T2+ = N2+ j P2+ j j= j R C Q2+ + N2+ P2+ C Q2+ (39) j 2+ = 2+ j 2+ j 2+ j= T N P R C Q (4) Cosdrg th atur crasg procss of ol surac shoppg cosumr umbr ad auto surac quot prmum wth tm gog, so ad ( ) j N2 j N2 r + = + (4) so quato (4) ca b wrtt as ( ) Q j 2 j Q 2 r 2 + = + (42) 2+ = 2 ( + j ) j j= T N r P 2 ( ) C Q + r Grally, P 2+ j ca b assumd as costat, so 2 (43) Sc T = N P C 2+ 2 2 j j ( 2) ( ) + r + r R j= (44)

Ol Isurac Cosumr Targtg ad Lftm Valu Evaluato - A Mathmatcs ad Data Mg Approach 89 Thrfor, quato (44) ca b wrtt as + ( ) j + r R ( + r) j ( + r ) R = j= R r (45) T2+ = N2 P2 Q2 + ( + r2) ( + r) R ( + r) C R r + + + T2 R ( + r2 ) Sc thr was rlocato v th d of yar 2, w hav to cosdr yar 2 ol auto polcy rvu sparatly. Now w ca prdct th IsWb ol agt polcy rvu basd o aalyss abov: yar 2 22 23 24 25 26 27 28 29 2 T 2+.634 2.354 2.973 3.522 4.24 4.498 4.957 5.42 5.872 6.343 Tabl 4. Th IsWb ol agt polcy rvu prdcto Comparso btw prdcto valu wth ral data Ut: mllo (46) 7 6 u 5 v r y lc 4 o p c 3 ra u s I 2 prdcto valu 2 22 24 26 28 2 22 Yar Fg. 4. Th IsWb ol agt polcy rvu prdcto

9 Kowldg-Ortd Applcatos Data Mg Th rsult fgur (4) s basd o th assumptos of 2 yar carrr-stat combato umbr, auto ol auto ol agt covrag ad lad clos rat. Th whol rsarch ad prdcto mtod abov was do 2. Aftr 3 yars som valdato data s avalabl ow. Th valdato data s put o fgur (4) for comparso. Th raso that ral busss data s somhow lowr tha prdcto valu s that carrr-stat combato umbr has som dcras wth tm gog, but th trd s fllow th prdcto ad th comparso s accptabl. 2. Cocluso. Th papr prsts a formula to scor ol surac cosumr to hlp surac agts. 2. Th rport drvd a formula to stmat lftm valu of ol auto surac cosumr basd o probablty aalyss ad data mg of cosumr formato. Th formula ca b wrtt as S = P C Q Rj (47) = j= 3. Aftr assumpto of sam rtto rat, th smplfd formula to valuat lftm valu of ol auto surac cosumr s ( + ( + ) ) R ( + r) P C Q R + r S = 4. Accordg to data aalyss, rtto rat s.75, avrag possbl rw yar s 29 ad th total rvu gratg from a w sold auto ol polcy s 4.25 tm ts frst commsso rvu. 5. Ths rport maks th sstv aalyss to dffrt paramtrs. Th rsult shows that crasg lad clos rat s most prorty. It wll obta 7~ tm ga for th sam rvu ga from th rtto rat crasg. 6. A formula to stmat Iswb auto surac ol polcy rvu s dvlopd ad 22 to 2 rvu prdcto s gv out basd o ths formula. 7. Th comparso btw prdctd busss rvu ad ral data from 22 to 24 s accptabl. Thrfor th modl ad th data mg ar succssful. (48) 3. Ackowldgmt Th publcato of th chaptr s supportd facally by Najg hydraulc Rsarch Isttut, Cha. 4. Rfrc []http://mor.abcws.go.com/sctos/busss/dalyws/auto_surac_rats_6 7.html [2]http://mor.abcws.go.com/sctos/wt/dalyws/halthcarcosts_wt725.html [3] http://www.csus.gov/prod/22pubs/statab/vtstat.pdf [4] http;//bz.yahoo.com/prws/23/sfth63_.html

Kowldg-Ortd Applcatos Data Mg Edtd by Prof. Kmto Fuatsu ISBN 978-953-37-54- Hard covr, 442 pags Publshr ITch Publshd ol 2, Jauary, 2 Publshd prt dto Jauary, 2 Th progrss of data mg tchology ad larg publc popularty stablsh a d for a comprhsv txt o th subjct. Th srs of books ttld by 'Data Mg' addrss th d by prstg -dpth dscrpto of ovl mg algorthms ad may usful applcatos. I addto to udrstadg ach scto dply, th two books prst usful hts ad stratgs to solvg problms th followg chaptrs. Th cotrbutg authors hav hghlghtd may futur rsarch drctos that wll fostr mult-dscplary collaboratos ad hc wll lad to sgfcat dvlopmt th fld of data mg. How to rfrc I ordr to corrctly rfrc ths scholarly work, fl fr to copy ad past th followg: Yuaya L, Gal Cook ad Olvr Wrford (2). Ol Isurac Cosumr Targtg ad Lftm Valu Evaluatg - A Mathmatcs ad Data Mg Approach, Kowldg-Ortd Applcatos Data Mg, Prof. Kmto Fuatsu (Ed.), ISBN: 978-953-37-54-, ITch, Avalabl from: http:///books/kowldg-ortd-applcatos--data-mg/ol-surac-cosumrtargtg-ad-lftm-valu-valuatg-a-mathmatcs-ad-data-mg-appr ITch Europ Uvrsty Campus STP R Slavka Krautzka 83/A 5 Rjka, Croata Pho: +385 (5) 77 447 Fax: +385 (5) 686 66 ITch Cha Ut 45, Offc Block, Hotl Equatoral Shagha No.65, Ya A Road (Wst), Shagha, 24, Cha Pho: +86-2-6248982 Fax: +86-2-6248982