NJM358C. Low power dual operational amplifier

Similar documents
LM833 LOW NOISE DUAL OPERATIONAL AMPLIFIER

TL074 TL074A - TL074B

MUSES8920. High Quality Audio J-FET Input Dual Operational Amplifier - 1 -

LM2902. Low-power quad operational amplifier. Features. Description

TL084 TL084A - TL084B

TS321 Low Power Single Operational Amplifier

PIN CONFIGURATION FEATURES ORDERING INFORMATION ABSOLUTE MAXIMUM RATINGS. D, F, N Packages

MC Low noise quad operational amplifier. Features. Description

UA741. General-purpose single operational amplifier. Features. Applications. Description. N DIP8 (plastic package)

AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2)

NJM2068 LOW-NOISE DUAL OPERATIONAL AMPLIFIER


TSV6290, TSV6290A, TSV6291, TSV6291A

CA723, CA723C. Voltage Regulators Adjustable from 2V to 37V at Output Currents Up to 150mA without External Pass Transistors. Features.

LM2901. Low-power quad voltage comparator. Features. Description

LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators

Description. 5k (10k) - + 5k (10k)

LF412 Low Offset Low Drift Dual JFET Input Operational Amplifier

High Common-Mode Rejection. Differential Line Receiver SSM2141. Fax: 781/ FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection

LM741. Single Operational Amplifier. Features. Description. Internal Block Diagram.

HA-5104/883. Low Noise, High Performance, Quad Operational Amplifier. Features. Description. Applications. Ordering Information. Pinout.

NTE923 & NTE923D Integrated Circuit Precision Voltage Regulator

LF442 Dual Low Power JFET Input Operational Amplifier

High Speed, Low Power Monolithic Op Amp AD847

LM118/LM218/LM318 Operational Amplifiers

PowerAmp Design. PowerAmp Design PAD135 COMPACT HIGH VOLATGE OP AMP

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

DUAL/QUAD LOW NOISE OPERATIONAL AMPLIFIERS

TS34119 Low Power Audio Amplifier

LM381 LM381A Low Noise Dual Preamplifier

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

TDA2822 DUAL POWER AMPLIFIER SUPPLY VOLTAGE DOWN TO 3 V LOW CROSSOVER DISTORSION LOW QUIESCENT CURRENT BRIDGE OR STEREO CONFIGURATION

Rail-to-Rail, High Output Current Amplifier AD8397

28V, 2A Buck Constant Current Switching Regulator for White LED

Features. Ordering Information. * Underbar marking may not be to scale. Part Identification

Description. Output Stage. 5k (10k) - + 5k (10k)

LM386 Low Voltage Audio Power Amplifier

TDA W Hi-Fi AUDIO POWER AMPLIFIER

DATA SHEET. TDA8560Q 2 40 W/2 Ω stereo BTL car radio power amplifier with diagnostic facility INTEGRATED CIRCUITS Jan 08

NCS7101, NCV Volt Rail-to-Rail Operational Amplifier LOW VOLTAGE RAIL TO RAIL OPERATIONAL AMPLIFIER

Precision, Unity-Gain Differential Amplifier AMP03

High Speed, Low Cost, Triple Op Amp ADA4861-3

MC Low Noise Dual Operational Amplifier

High Speed, Low Power Dual Op Amp AD827

CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS

High-Speed, Low-Power, 3V/5V, Rail-to-Rail, Single-Supply Comparators MAX941/MAX942/ MAX944. General Description. Features. Ordering Information

DATA SHEET. TDA1518BQ 24 W BTL or 2 x 12 watt stereo car radio power amplifier INTEGRATED CIRCUITS

Balanced Line Receiver ICs

Wide Bandwidth, Fast Settling Difet OPERATIONAL AMPLIFIER

TSV321, TSV358, TSV324, TSV321A, TSV358A, TSV324A,

Low Noise, Matched Dual PNP Transistor MAT03

TSX561, TSX562, TSX564, TSX561A, TSX562A, TSX564A

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

unit : mm With heat sink (see Pd Ta characteristics)

INTEGRATED CIRCUITS DATA SHEET. TDA W BTL mono audio amplifier. Product specification File under Integrated Circuits, IC01

Quad Low Offset, Low Power Operational Amplifier OP400

LM108 LM208 LM308 Operational Amplifiers

TDA2004R W stereo amplifier for car radio. Features. Description

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter

Application of Rail-to-Rail Operational Amplifiers

How To Power A Power Generator With A Power Supply From A Powerstation

TS555. Low-power single CMOS timer. Description. Features. The TS555 is a single CMOS timer with very low consumption:

LM1596 LM1496 Balanced Modulator-Demodulator

LM138 LM338 5-Amp Adjustable Regulators

Low-Cost, Micropower, SC70/SOT23-8, Microphone Preamplifiers with Complete Shutdown

Linear Optocoupler, High Gain Stability, Wide Bandwidth

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

DESCRIPTIO. LT1226 Low Noise Very High Speed Operational Amplifier

Equivalent Circuit. Operating Characteristics at Ta = 25 C, V CC = ±34V, R L = 8Ω, VG = 40dB, Rg = 600Ω, R L : non-inductive load STK4181V

INTEGRATED CIRCUITS. 74LVC08A Quad 2-input AND gate. Product specification IC24 Data Handbook Jun 30

Chapter 12: The Operational Amplifier

100V - 100W DMOS AUDIO AMPLIFIER WITH MUTE/ST-BY THERMAL SHUTDOWN STBY-GND

TDA W Hi-Fi AUDIO POWER AMPLIFIER

ADJUSTABLE VOLTAGE AND CURRENT REGULATOR

Low Noise, Precision, High Speed Operational Amplifier (A VCL > 5) OP37

LM101A LM201A LM301A Operational Amplifiers

Obsolete Product(s) - Obsolete Product(s)

LM380 Audio Power Amplifier

DATA SHEET. TDA1543 Dual 16-bit DAC (economy version) (I 2 S input format) INTEGRATED CIRCUITS

UNISONIC TECHNOLOGIES CO.,LTD

Kit 27. 1W TDA7052 POWER AMPLIFIER

LM1084 5A Low Dropout Positive Regulators

LM741 Operational Amplifier

TDA4605 CONTROL CIRCUIT FOR SWITCH MODE POWER SUPPLIES USING MOS TRANSISTORS

HCF4056B BCD TO 7 SEGMENT DECODER /DRIVER WITH STROBED LATCH FUNCTION

Description. Table 1. Device summary

Baseband delay line QUICK REFERENCE DATA

Dual 20W Audio Power Amplifier with Mute and Standby Modes

LM mW Stereo Cell Phone Audio Amplifier

Cold-Junction-Compensated K-Thermocoupleto-Digital Converter (0 C to C)

Advanced Monolithic Systems

LM380 Audio Power Amplifier

INDUSTRIAL VOLTAGE AMPLIFIER IC AM401 PRINCIPLE FUNCTION

unit:mm 3022A-DIP12F

Filters. Description. 7 Vcc. Ec+ Ec- Vbe MULTI- PLIER. 8 Output 4 Sym. Iadj V- 5 Iset

High Voltage Current Shunt Monitor AD8212

74F257A Quad 2-line to 1-line selector/multiplexer, non-inverting (3-State)

LMC6482 CMOS Dual Rail-To-Rail Input and Output Operational Amplifier

TSH70, TSH71, TSH72, TSH73, TSH74, TSH75

74HCU General description. 2. Features and benefits. 3. Ordering information. Hex unbuffered inverter

Transcription:

Low power dual operational amplifier Features Internally frequencycompensated Large DC voltage gain : db typ. Wide bandwidth (unity gain ) :.MHz typ. Low Operating Current : 5 ua/ch typ. Low input bias current: : na typ. Low input offset voltage :.5mV typ. Input commonmode voltage range includes negative rails Differential input voltage range equal to the power supply voltage Large output voltage swing : V to (V CC +.5V) Internal ESD protection Human body model (HBM) ±V typ. Wide power supply range: Single supply: +V to +V Dual supplies: ±.5V to ±5V Description The NJM58C consist of two independent, highgain, internally frequencycompensated opamps, specifically designed to operate from a single power supply over a wide range of voltages. The lowpower supply drain is independent of the magnitude of the power supply voltage. Application areas include transducer amplifiers, DC gain blocks and all the conventional opamp circuits, which can now be more easily implemented in single power supply systems. For example, these circuits can be directly supplied with the standard +5V, which is used in logic systems and will easily provide the required interface electronics with no additional power supply. In linear mode, the input commonmode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage. NJM58CG Output Inverting Input NonInverting Input (SOP8) Vcc Pin connections 4 (Top View) 8 7 6 5 NJM58CV ( SSOP8 ) Vcc + Output Inverting Input NonInverting Input. Schematic diagram Figure. Schematic diagram (/ NJM58C) Vcc + V CC 6μA C C 4μA μa Q5 Q6 Inverting inverting Input Input NonInverting noninverting Input Input Q Q Q Q4 Q Q Q7 Q R SC Output Output Q Q8 Q9 5μA GND Vcc ver.9

. Absolute maximum ratings and operating conditions Table. Absolute maximum ratings (Tamb=5ºC) Symbol Parameter RATINGS Unit V CC Supply voltage (V CC + V CC ) V V IN Input voltage () Vcc. to Vcc + V V o Output Terminal Input Voltage Vcc. to Vcc + +. V V ID Differential input voltage ± V I IN Input current () 5mA in DC or 5mA in AC (duty cycle = %, T=s) ma T stg Storage temperature range 65 to +5 ºC T j Maximum junction temperature 5 ºC P D Power Dissipation SOP8 :69 (4) (5) SSOP8 :4 (4) 54 (5) mw θja Thermal resistance junction to ambient () SOP8 :8 (4) (5) SSOP8 :9 (4) (5) ºC /W ψjt Thermal resistance junction to top surface of IC package () SOP8 : 49 (4) 4 (5) SSOP8 : 46 (4) 45 (5) ºC /W +. Input voltage is the voltage should be allowed to apply to the input terminal independent of the magnitude of V CC The normal amplifier operation input voltage is within Common Mode Input Voltage Range specified in the Electrical characteristics.. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collectorvase junction of the input PNP transistor becoming forwardbiased and thereby acting as input diode clamp. In addition to this diode action, there is NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the Opamps to go to the V CC voltage level (or to ground for a large overdrive) for the time during which an input is driven negative.. Shortcircuit can cause excessive heating and destructive dissipation. Values are typical. 4. EIA/JEDEC STANDARD Test board (76. x 4. x.6mm, layers, FR4) mounting 5. EIA/JEDEC STANDARD Test board (76. x 4. x.6mm, 4layers, FR4) mounting. Operating conditions Table. Operating conditions (Tamb=5 C) Symbol Parameter Value Unit V CC Supply voltage (V + CC V CC ) to V T oper Operating freeair temperature range 4 to +85 ºC ver.9

4. Electrical characteristics Table. V CC + = +5V, V CC = V, T amb = +5 C, (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit Input offset voltage () V io T amb = 5 ºC T amb 7 ºC (5).5 7 9 mv DV io Input offset voltage drift (5) ºC T amb 7 ºC 7 µv/ºc I io DI io I ib A vd Input offset current T amb = 5 ºC T amb 7 ºC (5) Input offset current drift (5) ºC T amb 7 ºC pa/ºc Input bias current () T amb = 5 5 na ºC T amb 7 ºC (5) Large signal voltage gain (V CC + = +5V, RL=kΩ, Vo=.4V to.4v) T amb = 5 5 4 na V/mV SVR I CC V icm ºC T amb 7 ºC (5) 5 Supply voltage rejection ratio(v + CC = 5V to V, Rs<kΩ) T amb = 5 65 ºC T amb 7 ºC (5) 65 Supply current, all amp, no load ºC T amb 7 ºC (5), V + CC = 5V.7. ºC T amb 7 ºC (5), V + CC = V Input common mode voltage range(v + CC = +V () ) T amb = 5 ºC V + CC.5 ºC T amb 7 ºC (5) V + CC db ma V ver.9

Table. V CC + = +5V, V CC = V, T amb = +5 C, (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit CMR I source I sink V OH V OL SR GBP THD e n V O/V O Common mode rejection ratio(r S < kω) T amb = 5 7 ºC T amb 7 ºC (5) 6 Output current source V CC + = 5V, V O = +V, V id = +V Output sink current db 4 ma V CC + = 5V, V o = +V, V id = V ma V CC + = 5V, V o = +.V, V id = V 5 µa High level output voltage(v CC + = V) T amb = 5,R L = kω 6 7 ºC T amb 7 ºC (5),R L = kω 6 T amb = 5,R L = kω 7 8 ºC T amb 7 ºC (5),R L = kω 7 Low level output voltage T amb = 5,R L = kω 5 ºC T amb 7 ºC (5),R L = kω Slew rate V CC + = 5V, V i=.5 to V, R L = kω, C L = pf, unity gain Gain bandwidth product V CC + = V, f = khz, V in=mv, R L = kω, C L = pf Total harmonic distortion f = khz, A V=dB, R L = kω, V O = V pp, C L = pf Equivalent input noise voltage f = khz, R S=Ω, V CC + = V V mv.6 V/µs. MHz. % nv/ Hz Channel separation (4) db khz < f < khz. V O =.4V, R S=Ω, 5V < V CC + < V, < V ic < V CC +.5V.. The direction of the input current is out of the IC.. The input commonmode voltage of either input signal voltage should not be allowed to go negative by more than.v. The upper end of the commonmode voltage range is V CC +.5V, but either or both inputs can go to +V without damage. 4. Due to the proximity of external components, ensure that stray capacitance between these external parts dose not cause coupling. 5. This parameter is not % test. 4 ver.9

TYPICAL CHARACTERISTICS 5 Gain/Phase vs. Frequency V CC + /V CC =±.5V, Gv=4dB, Ta=5ºC Maximum Output Voltage Swing vs. Frequency V + CC =5V, Ta=5ºC 5 Voltage Gain [db] 4 Gain Phase 6 9 5 Phase [deg] Maximum Output Voltage Swing V OPP [V PP ] 5 4 8 k k k M M Frequency [Hz] k k k M Frequency [Hz] Pulse Response V CC + =5V, R L =kω, C L =pf, Ta=5ºC 5 Small signal Pulse Response V CC + =V, G V =db, C L =5pF, Voltage [.5V/div] INPUT OUTPUT Input/Output Voltage [mv] 45 4 5 Output Input Time [5μs/div] 5 Time [μs/div] Maximum Output Voltage [V] 5 5 5 Maximum Output Voltage vs. Load Resistance V CC + =V, Gv=open, R L to V CC Ta=4 C Ta=4 C, 5ºC, 85ºC k k k Load Resistance [Ω] Maximum Output Voltage [V] 5. 4.5 4..5..5..5..5 Maximum Output Voltage vs. Load Resistance V CC + =5V, Gv=open, R L to V CC Ta=4 C Ta=4 C, 5ºC, 85ºC k k k Load Resistance [Ω] ver.9 5

TYPICAL CHARACTERISTICS. Maximum Output Voltage vs. Load Resistance V CC + =V, Gv=open, R L to V CC 5. Maximum Output Voltage vs. Output Current V CC + =5V Maximum Output Voltage [V].5..5..5 Ta=4 C Ta=4 C, 5ºC, 85ºC Maximum Output Voltage [V]. 9. 6.. Isource Ta=85ºC Ta=85ºC Ta=4ºC Isink Ta=5ºC Ta=4ºC Ta=5ºC k k k Load Resistance [Ω] k Output Current [ma] Output Voltage vs. Output Sink Current V CC + =5V, Ta=5ºC 5 Input Voltage Range vs. Supply Voltage Output Voltage [V]. Input Voltage [V] 5 Negative Positive. k k k Output Sink Current[μA] ±5 ± ±5 Supply VoltageV + /V [V].4 Supply Current vs. Supply Voltage R L =open.4 Supply Current vs. Temperature R L =open. Ta=85ºC. V CC + =+V Supply Current [ma]..8.6.4 Ta=4ºC Ta=5ºC Supply Current [ma]..8.6.4 V CC + =V V CC + =5V.. 4 8 6 4 8 Supply Voltage V CC + [V] 5 5 5 5 75 5 5 Ambient Temperature [ºC] 6 ver.9

TYPICAL CHARACTERISTICS Input Offset Voltage vs. Supply Voltage V CM =V CC + / Input Offset Voltage vs. Temperature V CM =V CC + / Input Offset Voltage [mv] Ta=4 C Input Offset Voltage [mv] V CC + =5V V CC + =V V CC + =V 4 8 6 4 8 Supply Voltage V CC + [V] 5 5 5 5 75 5 5 Ambient Temperature [ C] Input Offset Voltage vs. CommonMode Input Voltage V CC + =V Input Offset Voltage vs. CommonMode Input Voltage V CC + =5V Input Offset Voltage [mv] Ta=4 C Input Offset Voltage [mv] Ta=4 C 5 5 5 5 CommonMode Input Voltage [V] 4 5 CommonMode Input Voltage [V] Input Offset Voltage vs. CommonMode Input Voltage V CC + =V 5 Input Bias Current vs. Temperature V CM =V CC + / Input Offset Voltage [mv] Ta=4 C Input Bias Current [na] 4 V CC + =5V V CC + =V V CC + =V..5.5..5..5. CommonMode Input Voltage [V] 5 5 5 5 75 5 5 Ambient Temperature [ºC] ver.9 7

TYPICAL CHARACTERISTICS 6 Voltage Gain vs. Supply Voltage V CC =V, Ta=5 C 4 Gain vs. Temperature V CC + =5V, R L =kω, V O =V to V 4 R L =kω Voltage Gain [db] 8 6 4 R L =kω Voltage Gain [db] 9 8 7 4 8 6 4 8 Supply Voltage V CC + [V] 6 5 5 5 5 75 5 5 Ambient Temperature [ C] 4 CMR vs. Frequency V CC + /V CC =±7.5V, 4 Large Signal Voltage Gain vs. Frequency V CC + =V CommonMode Rejection Ratio [db] 8 6 4 Large Signal Voltage Gain [db] 8 6 4 k k k M Frequency [Hz]. k k k M Frequency [Hz] 8 ver.9

APPLICATION Improvement of Crossover Distortion Equivalent circuit at the output stage NJM94C,in its static state ( No in and output condition ) when design,q U being biassed by constant current ( break down beam ) yet,q L stays OFF. While using with both power source mode,the crossover distortion might occur instantly when Q L ON. There might be cases when application for amplifier of audio signals,not only distortion but also the apparent frequency bandwidth being narrowed remarkably. It is adjustable especially when using both power source mode,constantly to use with higher current on Q U than the load current ( including feedback current ),and then connect the pulldown resister R P at the part between output and V pins. ver.9 9

PACKAGE DIMENSIONS SOP8 4.9±..9±. 6.±..7.55±..±..4±.7. S.5 M.75±.75 S.85±.45 ~ 7 SSOP8.5 +.. ~ º 8 5 4.65.9MAX..±..5±. 4.4±. 6.4±..5±. +..5.5.±.. M [CAUTION] The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. ver.9