CALTECH/MIT VOTING TECHNOLOGY PROJECT A

Similar documents
Residual Votes Attributable to Technology

The passage of the Help America Vote Act provided us with these additional reforms:

California Association of Clerks and Elections Officials Canvass Subcommittee

Random Auditing of E-Voting Systems: How Much is Enough?

Data Normalization in Electronic Voting Systems: A County Perspective

SENATE BILL State of Washington 64th Legislature nd Special Session

CALTECH MIT VOTING TECHNOLOGY PROJECT VOTING. What Is What Could Be

Election Dates Calendar

Recounts and Contests Study

2016 General Election Timeline

Testimony of Edward W. Felten Professor of Computer Science and Public Affairs, Princeton University

THE M100 OPTICAL SCAN PRECINCT TABULATOR Idaho Procedures OVERVIEW

Guide for Florida Voters

Online Appendix for The Letter After Your Name : Party Labels on Virginia Ballots published in State Politics and Policy Quarterly

Teachers guide kids voting for the Local Government Elections

Position Statement on Electronic Voting

NATIONAL TALLY CENTER (NTC) OPERATIONS PROCEDURES Presidential and Provincial Council Elections

Pre-Election Audit of Memory Cards for the August 2008 Connecticut Primary Elections

Research Division Federal Reserve Bank of St. Louis Working Paper Series

Election Activity Watchers Colorado law & regulations

ELECTIONS CALENDAR

Volume I, Section 4 Table of Contents

Presidential Nominations

The Electoral Process STEP BY STEP. the worksheet activity to the class. the answers with the class. (The PowerPoint works well for this.

Bureau of Voting Systems Test Report

OCERS BOARD OF RETIREMENT 2015 GENERAL MEMBER ELECTION TIME-SENSITIVE NOTICE AUGUST 5, 2015

CALTECH/MIT VOTING TECHNOLOGY PROJECT A

Board of Elections and Ethics BBOE (DL0)

NC General Statutes - Chapter 163 Article 14A 1

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF STATE Harrisburg, PA BASIC GUIDE TO STUDENT VOTING IN PENNSYLVANIA

Pariahs or Pals: Understanding peer in uences on the bankruptcy decision

PUBLIC REPORT. Red Team Testing of the ES&S Unity Voting System. Freeman Craft McGregor Group (FCMG) Red Team

Veri cation and Validation of Simulation Models

CHAPTER 3 MEMBERSHIP VOTES, ELECTION AND REFERENDA

THE IMPORTANCE OF USABILITY TESTING OF VOTING SYSTEMS

UNITED STATES OF AMERICA

ORANGE COUNTY ELECTION ACADEMY INTERESTED IN ELECTIONS? GET READY TO BE INSPIRED.

Colorado Secretary of State Election Rules [8 CCR ]

Don t just stand there...

Orange County Registrar of Voters. Voter Registration Accuracy and Voter List Maintenance

Voting Systems Checklist

The Binomial Distribution

UNITED STATES OF AMERICA

FOR TEACHERS ONLY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION. ENGLISH LANGUAGE ARTS (Common Core)

2014 ASIAN AMERICAN ELECTION EVE POLL

FLORIDA: TRUMP WIDENS LEAD OVER RUBIO

A Survey of Current Secret-Ballot Systems David Chaum

AARP Position Against Preserving the Care of Seniors

Empirical Methods in Applied Economics

Risk Aversion. Expected value as a criterion for making decisions makes sense provided that C H A P T E R Risk Attitude

DELEGATE SELECTION: A BRIEF EXPLANATION GLOSSARY

INTERIM REPORT ON VOTING EQUIPMENT PERFORMANCE, USAGE & CERTIFICATION

IN THE UNITED STATES DISTRICT COURT FOR THE NORTHERN DISTRICT OF NEW YORK

Jones letter 1 1/15/07

ARE STOCK PRICES PREDICTABLE? by Peter Tryfos York University

The Next Big Election Challenge: Developing Electronic Data Transaction Standards for Election Administration. E-Government Series

FLORIDA VOTING SYSTEM CERTIFICATION PROCESS

CITIZEN ADVOCACY CENTER

I Promised a Girl Scout I d Vote Patch Program

POLL WATCHER S GUIDE

The Youth Vote in 2012 CIRCLE Staff May 10, 2013

POLICY BRIEF. Citizens Guide to Initiative 1366, the Taxpayer Protection Act. Jason Mercier Director, Center for Government Reform.

The Future: Fears, Predictions, Hopes, & Plans

SCORE An Overview. State of Colorado Registration and Election Management

Voting and Elections Guide. Alpena County Version 1.0 April 2010

Election Contingency Planning: Resources & Strategies. Minnesota Election Emergency Planning Task Force September 3rd, 2015

1 Hypothesis Testing. H 0 : population parameter = hypothesized value:

Administration. april

Recall Mail Ballot Election Plan Colorado Secretary of State

Governor s Ethics and Campaign Finance Reform Task Force Subcommittee Report on Public Financing of Campaigns

The Long-Term Cost of the Financial Crisis* 1

COUNTY AND DISTRICT INITIATIVE & REFERENDUM PETITIONS

TOWN OF LACOMBE PROVINCE OF ALBERTA BYLAW 358

UNITED STATES DISTRICT COURT DISTRICT OF ALASKA

Panel Data Econometrics

FIRST NOTICE OF ELECTION

Illinois Laws Affecting the School Finance Referendum

KNOW YOUR VOTING RIGHTS

From Voice to Electronic....the Evolution of the Voting Process in Louisiana...

ELECTION LAW VOTING CERTIFICATION OF RESULTS GENERAL ELECTIONS (STATUTES)

Project E V E R E S T Evaluation and Validation of Election Related Equipment, Standards and Testing

Testosterone levels as modi ers of psychometric g

NATIONAL: HOUSE SPEAKERSHIP SHADOWS GOP 2016

Federal Write-in Absentee Ballot (FWAB)

How to Conduct Successful Meetings?

TABLE OF CONTENTS. 1. Who can register to vote? What are the criminal disqualifications? What are the mental disqualifications?...

1S Election Results, Precinct-Level Election Results, Voting History, and Reconciliation Reporting.

Eight Recommendations to Improve Employee Engagement

Official Call Adopted 8 August 2015, Rev B. of the Democratic-Farmer-Labor Party of Minnesota CAUCUS, CONVENTION AND ELECTION DATES

Public Policy Question Petitions

2002 Census of Government Employment Methodology

ELECTIONS. Issues Related to Registering Voters and Administering Elections

2003 Annual Survey of Government Employment Methodology

Clinton Leads Sanders by 28%

2008 Survey of the Performance of American Elections. Final Report

Jon A. Krosnick and LinChiat Chang, Ohio State University. April, Introduction

A Guide to Ireland s PR-STV Voting System

MICHIGAN DELEGATE SELECTION PLAN

MEMORANDUM. THE HONORABLE JAKE McGOLDRICK Member, San Francisco Board of Supervisors. ALIX ROSENTHAL President, San Francisco Elections Commission

Young-Adult Voting: An Analysis of Presidential Elections,

Transcription:

CALTECH/MIT VOTING TECHNOLOGY PROJECT A multi-disciplinary, collaborative project of the California Institute of Technology Pasadena, California 91125 and the Massachusetts Institute of Technology Cambridge, Massachusetts 02139 USING RECOUNTS TO MEASURE THE ACCURACY OF VOTE TABULATIONS: Evidence from New Hampshire Elections 1946-2002 Stephen Ansolabehere MIT Andrew Reeves Harvard University Key words: voting tabulation accuracy, election recount, New Hampshire elections, hand vote count, machine vote count VTP WORKING PAPER #11 January 2004

Using Recounts to Measure the Accuracy of Vote Tabulations: Evidence from New Hampshire Elections 1946-2002 1 Stephen Ansolabehere Department of Political Science, MIT Andrew Reeves Departments of Government, Harvard University January, 2004 1 Correspondence should be directed to Stephen Ansolabehere email: sda@mit.edu. Mailing address: Department of Political Science, MIT, Building E53-457, Cambridge, MA 02139. We wish to thank the Carnegie Foundation and the Knight Foundation for their support of this research.

The 2000 presidential election exposed a surprisingly high level of inaccuracy in the tabulation of ballots. Di erences between total ballots cast and votes counted were as high as 19 percent in some counties in Florida, and these discrepancies were widely attributed to the ballot formats, the handling of ballots, and machine operations. 1 For those involved in the administration of elections the recount was particularly troubling. Over the last 40 years the United States has introduced new technologies, especially punch card and optically scanned ballots, to improve vote tabulations. The problems revealed in Florida suggested that these newer technologies may not in fact represent an improvement over traditional hand-counted paper ballots. A number of important studies of the performance and accuracy of voting technologies have sought to measure the error rate of vote tabulations. The main metric that emerges from these evaluations uses \residual votes" { the discrepancy between total ballots cast and votes cast for a particular o±ce, such as president or governor. The incidence of residual votes should be unrelated to the type of technology used, and the di erence in residual votes across technologies measures the extent to errors in the casting or tabulation of votes are attributable to speci c the technology. Similar jurisdictions using di erent technologies ought to have the same residual vote rate, on average. By this metric, hand-counted paper ballots and optically scanned paper ballots have shown the better overall performance than punch cards, lever machines, and electronic voting machines. 2 We examine a second measure of accuracy { the agreement between initial counts and recounts of ballots in contested elections. We term this the tabulation validation rate. Likewise, the discrepancy between the initial count and the recount is the tabulation error rate. 1 The NORC coding of the ballots found that the most common problem with optical scanned ballots involved people voting for a candidate, say Bush, and then writing in that candidates name in the columns labeled \Write In." The machine tabulator failed to count these ballots, though voter intention was easily resolved. 2 See Caltech/MIT Voting Technology Projecct Report, no. 1 (2001) and Ansolabehere and Stewart (2002) for further de nition and discussion of residual votes. Studies using similar measures include Knack and Kropf (2001), whose results are consistent with the Caltech/MIT study, and Brady et al (2002), who nd similar problems with punch cards but suggest somewhat better performance for electronic equipment. 1

When there is a legal challenge to an election or a mandated recount, state or local election o±ces conduct an audit of votes cast. For paper ballot systems, election o±cials reexamine the ballots to determine voter intention. Tabulations may change from the initial count to the recount for a variety of reasons: ballots may be mishandled; machines may have di±culty reading markings; people and machines may make tabulation errors. Because recounts are used to certify the vote, greater e ort is taken to arrive at the most accurate accounting of ballots cast. The initial count of ballots, then, is treated as a preliminary count, and the recount as the o±cial count. The recount, then, validates the initial tabulation. Recounts allow us to see more precisely whether the introduction of voting machines has improved the tabulation of votes. Do machines have higher validation rates (and lower invalidation rates) than hand-counts? We examine data on recounts for New Hampshire towns. There are several important reasons for studying New Hampshire. First, New Hampshire uses hand-counted paper ballots extensively as well as optically scanned ballots. This allows us to contrast new and old methods of counting directly. Second, New Hampshire has a large number of elections. Because recounts are rare, the high frequency of elections means that we have a large number of cases to study. Third, New Hampshire has a uniform reporting system for recounts dating back at least to the 1940s. The data on recounts are, then, comparable and the historical record allows us to establish a solid baseline against which to contrast new tabulation methods. Two caveats accompany the use of recounts to measure the validity of tabulations. First, this measure only concerns tabulation. It ignores other factors, such as voter confusion about how to mark a machine-readable ballot, which might lead people to vote accidentally twice for an o±ce or not at all. Such phenomena are captured by residual votes. The metric di ers for paper ballot systems and elections in which votes are cast on lever machines or electronic voting machines (also known as Direct Recording Electronincs, or DREs). Mechanical and electronic voting machines do not retain a separate record of the voters' intention, so it is impossible, at least with current technology, to compare voters' 2

intentions with the machines' recordings. Recounts with mechanical and electronic voting machines merely capture whether whether the election o±ce made a recording error or whether the machine is functioning. With mechanical and electronic machines it is impossible to gauge the degree of malfunction or the disparity between voter intentions and machine recordings. Historical Recounts Historical recounts provide an important baseline. Over a long period of time across many o±ces, we can examine the percent di erence between initial counts and recounts. We examine historical recount data in the state of New Hampshire from 1946 to 1962. The rst use of punch card machinery in the United States occurs in 1964. In the general elections in this span, 108 races had recounts. The o±ces involved range from registrar of voters to representative of Congress as well as town questions. The majority of the recounts (69) occurred in races for state representative. All recounts are aggregated to the town level except those for Congressional races and state senate races which were aggregated to district levels. These data provide complete and consistent information about the accuracy of hand counted votes for 9 elections over sixteen years. Since all ballots during this time were hand counted once in the initial count and again in the recount we are able to evaluate accuracy rates of the counts independent of residual votes. Our analysis consists of 415 cases where a case is a reported ballot tabulation of a town or (district) for each candidate running in a race. We compute the invalidation rate for each candidate for each o±ce in each jurisdiction. That is, we compute the percent di erence between the initial count and the recount for the votes recorded in each jurisdiction (i.e., town or ward) for each candidate seeking an o±ce. Two di erent average invalidation rates are of interest. First, the simple average invali- 3

dation re ects what happens in a typical jurisdiction. In a state with many small towns and a handful of larger towns, the typical jurisdiction will be a small one. Second, the weighted average, weighting by total ballots cast, equals the percent of ballots cast that di ered between the counts. This measure guards against the occasional aberrant tabulation in a small community. The weighted average measures the frequency with which one's vote is counted in the initial count with each type of equipment. We will focus on the latter, but will report both. Historically, hand-counted paper tabulations have an invalidation rate just under 1 percent. The weighted average of the discrepancy between the initial count and the recount is approximately 0.83 percentage point with a 95% con dence interval from 0.61 to 1.05. Hand-Counts vs. Machine-Counts Fast forward to 2002. While most counties and towns continue to use hand-counted paper, many of the towns in three counties had shifted to optically scanned paper ballots. Two sorts of scanners were used: Election Systems and Software's Optech and Global's (now Diebold's) Accuvote. 3 Six races were recounted following the 2002 general election. Data on the recount are reported at the town and sometimes ward level. Again, we distinguish between the average percent di erence and the percent of all ballots cast (regardless of size of jurisdiction). Our analysis here considers the changes between the initial counts and recounts for each method of vote tabulation. Again, we compute a weighted mean of the average absolute percent di erence between the initial count and the recount. We present the hand-counted data with and without the town of Bradford, where the initial tabulations di ered from the recount by as much as 20 percent. 3 Voting machinery of New Hampshire towns obtained from http://www.nh.gov/sos/voting%20machines.htm 4

Table 2 Tabulation Error Rates of Hand-Counted and Scan Ballots New Hampshire 2002 General Election N Weighted 95 % Con dence Maximum Average Interval Hand-Counted 92 2.49 (1.44, 3.55) 21.88 Hand-Counted 79 0.87 (0.69, 1.06) 4.08 (without Bradford) Machine Counted 217 0.56 (0.42, 0.70) 8.27 OPTECH 21 0.55 (0.40, 0.70) 1.36 ACCUVOTE 196 0.56 (0.41, 0.71) 8.27 The minimum value is 0 in all cases. The results for hand-counted paper, excluding Bradford, are nearly identical to the historical average. We take this as the baseline. The percentage di erence for optically scanned paper was.56 percent, approximately one half of one percent and signi cantly lower than the hand-counted paper. The di erences in the table may owe to the type of equipment or the size of the community. Smaller communities are more likely to have a large discrepancy in their tabulations and they are more likely to use paper ballots. We can untangle these e ects by controlling for the o±ce at stake and the size of the vote cast. We performed two regression analyses to estimate the e ect of ScanBallot, which equals 1 if the town used optically scanned ballots and 0 if the town used hand-counted paper ballots. We control for total votes cast in a town and the initial count for a candidate. We also control for the o±ce at stake, as some elections spanned several towns. This allows us to hold constant the candidates on the ballot. Table 2 presents two analyses, one of which removes the e ect of o±ce (see column labeled Fixed E ects) and one does not (see column labeled OLS). We present both as a robustness check. 5

Table 2 Estimated E ect of Machine v. Hand Count on Tabulation Error Rate, 2002 OLS Regression b (S.E.) Fixed E ects For O±ce b (S.E.) Constant.825 (.113).800 (.113) Scan Ballot -.450 (.170) -.523 (.171) Town Vote.014 (.004).012 (.004) (in 1000's) Candidate's Initial -.072 (.095).063 (.106) Vote (in 1000's) R 2.05.08 N 306 306 The key coe±cient of interest is the e ect of ScanBallot: The coe±cient in both speci cations is approximately -.5, which means that the percentage di erence between the initial count and the recount is approximately one half of one-percentage point lower in towns using scanners than in towns using hand-counted paper, holding constant the initial count, the total vote, and the o±ce sought. These coe±cients are slightly larger than the observed di erence between the mean for hand-counted and machine counted (which is.87-.56 =.31). To see the practical e ect of these estimates consider an election with 10,000 votes where the candidate in question received exactly half of the votes. 4 The predicted discrepancy between counts is 1.24 percent if the town tabulates by hand (i.e., :80+:012 10+:063 5 = 1:24) and.71 percent if the town uses an optical scanner (i.e., :80+:012 10+:063 5 = :712). 4 We caution against making out of sample predictions. The largest community in 2002 was Manchester, which recorded approximately 25,000 votes. The e ect of town vote likely tends to an asymptote and the linear speci cation used cannot capture the predicted discrepancy for larger communities. 6

Conclusions Recounts provide informationon the reliability ofvoting tabulation methods. In recounts of paper ballots, election o±cials and judges make the best attempt to resolve voter intentions. The discrepancy between the initial (and preliminary) count and the recount captures the degree to which a tabulation method incorrectly tabulates the votes. Estimated validation rates from recounts supplements other metrics, especially residual votes. Residual votes capture a wide variety of ways that voting systems fail to capture the voters' intentions, including voter confusion and errors in marking ballots, mishaps in handling ballots, machine failures, and tabulator errors. As an example of how this information can be used to re ne our understanding of the sources and causes of errors in voting consider what percent of the residual vote might be tabulationerror. We cancalculate this using dataon the residual vote inpresidential rates in New Hampshire from 1988 to 2000. In the counties and towns using only paper ballots, the residual vote rate was 2.3 percent; in the towns using optical scanning, the residual vote rate was 1.7 percent. Using the data on the validation rate from the historical record and from the 2002 elections, the tabulation invalidation rate was.83 percent for paper and.56 percent for optical scanning. Roughly one third of the residual vote, then, is pure tabulation error. The remainder is either unrecoverable ballots (i.e., people who accidentally voted twice) or blank ballots. Stepping back from the details of the data, New Hampshire's recounts speak directly to two important questions in election administration. Have we made progress? Do machine counts improve on hand counts? At least in the comparison of optical scanning and paper, the answer is yes. Historically, there is about a 1 percent di erence between initial counts and recounts when ballots are tabulated by hand. The discrepancy between initial counts and recounts falls to about.5 percent with the optically scanned ballots. Looking at recounts from 2002, controlling for total vote, initial 7

vote, and o±ce sought, optically scanned paper produced a lower discrepancy between the initial count and the recount compared to hand-counted paper. Considering these tabulation errors, how con dent should we be in vote counts, and when should we have a recount? The tabulation invalidation rate was low, especially for optical scanning. However, it was not trivial. In a US House election with 250,000 votes, the invalidation rate of.005 for scanners amounts to 1250 votes. The tabulation errors may swing toward any of the contestants in a recount. Assuming a uniform distribution of tabulation errors, any race decided by less than.5 percent of the vote will have a non-trivial probability of being reversed in a recount. Most states have no set standard for an automatic recount; the courts or state election o±cer decides whether a recount is appropriate. Some states do have provisions for automatic recounts { typically, if the election is closer than one-half of one percent of ballots cast (National Commission on Federal Election Reform, 2002, pages 343-346). This standard is approximately equal to the average tabulation error rate with optical scanning equipment, but smaller than the rate for hand counted paper. The average, of course, re ects the typical case, so, for both optical scanning and hand counted paper, the discrepancy between initial counts and recounts in many jurisdictions in our data exceeded the.5 percent standard. State election o±cials and courts should treat an automatic recount standard of.5 percent as a minimum threshold, rather than an absolute standard. 8