Wireless Communications

Similar documents
EPL 657 Wireless Networks

communication over wireless link handling mobile user who changes point of attachment to network

Guide to Wireless Communications. Digital Cellular Telephony. Learning Objectives. Digital Cellular Telephony. Chapter 8

CS263: Wireless Communications and Sensor Networks

Wireless LANs vs. Wireless WANs

The GSM and GPRS network T /301

Advanced Security and Mobile Networks

Hello viewers, welcome to today s lecture on cellular telephone systems.

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction

Wireless LAN advantages. Wireless LAN. Wireless LAN disadvantages. Wireless LAN disadvantages WLAN:

Professur Technische Informatik Prof. Dr. Wolfram Hardt. Network Standards. and Technologies for Wireless Sensor Networks. Karsten Knuth

Wireless Cellular Networks: 3G

Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur

Wireless Local Area Network

Mobile Wireless Overview

Physical Layer. Communication Satellites. ECE 453 Introduction to Computer Networks. Lecture 3 Physical Layer II

Foreword... 2 Introduction to VoIP... 3 SIP:... 3 H.323:... 4 SER:... 4 Cellular network... 4 GSM... 5 GPRS G... 6 Wimax... 7 Introduction...

What is DECT? DECT stands for Digital Enhanced Cordless Telecommunications.

Imre Földes THE EVOLUTION OF MODERN CELLULAR NETWORKS

The Future of Mobile Wireless Internet Access. Nelson Sollenberger AT&T

Communications COMMS (CE )

Positioning in GSM. Date: 14th March 2003

Bluetooth voice and data performance in DS WLAN environment

GSM Network and Services

Chapter 6 Telecommunications, Networks, and Wireless. Computing

CHAPTER 1 1 INTRODUCTION

Mobile Communications

Cellular Networks: Background and Classical Vulnerabilities

ECE/CS 372 introduction to computer networks. Lecture 13

Wireless Personal Area Networks (WPANs)

Location management Need Frequency Location updating

CS Cellular and Mobile Network Security: Cellular Networking

Multiple Access Techniques

Version Date Author Changes - 6/24/2005 D. Liff Initial draft and release /18/2005 K. Adkins Minor spelling and format changes 1.

Wi-Fi and Bluetooth - Interference Issues

Environmental Monitoring: Guide to Selecting Wireless Communication Solutions

Mobility and cellular networks

Wireless Networks. Reading: Sec5on 2.8. COS 461: Computer Networks Spring Mike Freedman

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA

Revision of Lecture Eighteen

Chapters 1-21 Introduction to Wireless Communication Systems

How To Know If You Are Safe To Use An Antenna (Wired) Or Wireless (Wireless)

Lecture 1. Introduction to Wireless Communications 1

Chapter 1 Introduction to Wireless Communication Systems. School of Information Science and Engineering, SDU

Analysis of Immunity by RF Wireless Communication Signals

Bluetooth Wireless Technology

How To Understand The History Of The United States

How To Make A Multi-User Communication Efficient

Wireless Cellular Networks: 1G and 2G

TDM & FDM Overlays on Bluetooth

Radio Frequency Operations and Technology

LTE, WLAN, BLUETOOTHB

3GPP Wireless Standard

GSM and Similar Architectures Lesson 07 GSM Radio Interface, Data bursts and Interleaving

Mobile Communications TCS 455

Introduction to Wireless Communications and Networks

Tecnologías Inalámbricas.

Modern Wireless Communication

Mobile Broadband of Deutsche Telekom AG LTE to cover White Spaces. Karl-Heinz Laudan Deutsche Telekom AG 16 June 2011

INTRODUCTION... 3 FREQUENCY HOPPING SPREAD SPECTRUM... 4 SECURED WIRELESS COMMUNICATION WITH AES ENCRYPTION... 6

Wireless Ethernet LAN (WLAN) General a/802.11b/802.11g FAQ

2G/3G Mobile Communication Systems

International Journal of Advanced Research in Computer Science and Software Engineering

Mobile Phone Terminology Simplifying telecoms management

Performance Issues of TCP and MPEG-4 4 over UMTS

Computer Networks. Wireless and Mobile Networks. László Böszörményi Computer Networks Mobile - 1

Chapter 3 Cellular Networks. Wireless Network and Mobile Computing Professor: Dr. Patrick D. Cerna

Cellular Network Organization. Cellular Wireless Networks. Approaches to Cope with Increasing Capacity. Frequency Reuse

About Me" List of Lectures" In This Course" Mobile and Sensor Systems. Lecture 1: Introduction to Wireless Systems" " Dr. Cecilia Mascolo" "

Network Cost Cutting Rural Cellular Association October 22, 2009

Packet Synchronization in Cellular Backhaul Networks By Patrick Diamond, PhD, Semtech Corporation

How To Understand Cellular Communications

What s so smart about Smart-hopping?

Cellular Network. Outline. Chapter 8. Conventional Radio

Bluetooth wireless technology basics

Development of Wireless Networks

GO Software Inc. Wireless Credit Card Processing with PCCharge

Course Duration: Course Content Course Description Course Objectives Course Requirements

Chapter 1: Introduction

Appendix A: Basic network architecture

Wireless Mobile Telephony

Recent technological innovations and declining prices for personal computers (PCs) and

Antenna Diversity in Wireless Local Area Network Devices

Modern Wireless Communication Systems

Mobile Communications Chapter 2: Wireless Transmission

WPAN. Contents. S Wireless Personal, Local, Metropolitan, and Wide Area Networks 1

EETS 8316 Wireless Networks Fall 2013

1 Lecture Notes 1 Interference Limited System, Cellular. Systems Introduction, Power and Path Loss

CS Cellular and Mobile Network Security: CDMA/UMTS Air Interface

Unit of Learning # 2 The Physical Layer. Redes de Datos Sergio Guíñez Molinos sguinez@utalca.cl

NTRC Dominica April 28 to May 2, 2014 Fort Young Hotel

How To Understand And Understand The Power Of A Cdma/Ds System

Solution. (Chapters ) Dr. Hasan Qunoo. The Islamic University of Gaza. Faculty of Engineering. Computer Engineering Department

DT3: RF On/Off Remote Control Technology. Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch

Wireless Broadband Access

18-759: Wireless Networks Lecture 18: Cellular. Overview

EECC694 - Shaaban. Transmission Channel

Emerging Wireless Technologies

LoRaWAN. What is it? A technical overview of LoRa and LoRaWAN. Technical Marketing Workgroup 1.0

Evolution of Mobile Communications: from 1G to 4G

Transcription:

Wireless Communications Wireless telephony Wireless LANs Location-based services 1 The Technology: Radio Spectrum Radio Spectrum: from 30 KHz to 3 GHz AM radio: 540KHz 1800 KHz FM radio: 88 MHz 108 MHz Cellular (e.g. AMPS): 824 849, 869 894 MHz Cellular (e.g. GSM): 890 915, 935 960 MHz PCS frequencies: 1800 2200 MHz Microwaves: from 3 GHz to 300 GHz Infrared Spectrum: from 300 GHz to 300 THz 2 Chrysanthos Dellarocas Page 1

The electromagnetic spectrum 3 Issue: Spectrum is a scarce resource! Possible Solutions: Frequency reuse (cells) Multiplexing 4 Chrysanthos Dellarocas Page 2

How a cell phone works 5 Cellular Phone Networks Frequency reuse Handoff 6 Chrysanthos Dellarocas Page 3

Cellular Phone Networks Frequency reuse Handoff 7 Cellular Phone Networks Frequency reuse Handoff 8 Chrysanthos Dellarocas Page 4

Problem: Reuse not good enough! Radio waves attenuate at a rate proportional to the square of distance (1/r 2 ) This means that faraway cells are irrelevant but we still can have interference from adjacent cells Therefore, a cell cannot reuse the same channels as its 6 immediate neighbors This means that each cell can only use 1/7 th of the spectrum allocation Example: AMPS system Each operator was given 416 2-way channels but could only use about 416/7 ~ 60 channels at any given cell 9 Multiple Access Technologies FDMA: Frequency Division Multiple Access Each call occupies a different frequency and has an exclusive use of that frequency during the call TDMA: Time Division Multiple Access Several calls can share the same frequency by alternating in time CDMA: Code Division Multiple Access Multiple calls mixed together; each call spread over the entire available spectrum; calls can be reconstructed by using call-specific keys. 10 Chrysanthos Dellarocas Page 5

TDMA: Time Division Multiple Access TDMA - Time Division Multiple Access Cellular phone 1 Cellular phone 1 e 3 Message 1 Message 2 Message 3 M Cellular phone 3 Time Slot 1 Time Slot 2 Time Slot 3 Cellular phone 2 Cellular phone 2 Cellular phone 3 11 TDMA Dual-Mode Capability 3x the capacity of analog networks 30 khz Channel Spacing 832 Channels 8 kbps (Full Rate Mobiles) 30 khz Channel 6 time slots per channel 2 time slots per mobile uplink Tx downlink Rx 3 calls per channel Time Slot 1 Time Slot 2 Time Slot 3 Time Slot 4 Time Slot 5 Time Slot 6 lot 2 Time Slot 1 Time Slot 2 Time Slot 4 Time Slot 3 Time Slot 5 Time Slot 6 12 Chrysanthos Dellarocas Page 6

TDMA 30 khz Channel 4 Kbps (Half Rate Mobiles) 6 time slots per channel 1 time slots per mobile handles both uplink Tx/ downlink Rx 6 calls per channel Time Slot 1 Time Slot 2 Time Slot 3 Time Slot 4 Time Slot 5 Time Slot 6 13 13 CDMA: Code Division Multiple Access CDMA - Code Division Multiple Access Cellular phone 1 Code 1 Message Code 3 Message Cellular phone 3 Code 2 Message Cellular phone 2 Voice Packets Code 3 Message Code 1 Message Code 2 Message 14 Chrysanthos Dellarocas Page 7

Frequency Hopping Spread Spectrum Short duration hops between radio frequencies Sender and receiver know sequence Frequency Slots 80 60 40 20 0 0 1 2 3 4 5 6 7 8 Time 17 Random number generators Simplest approach is to use the following recurrence sequence: x 0 = given, x n+1 = P 1 x + P 2 (mod N) n = 0,1,2,... n For example: P 1 = 16807, P 2 = 0, and N= 2 31-1 = 2147483647 Basic property: If P1, P2 known, then different choices of the initial seed x0 result in completely distinct sequences Therefore, the seed x0 can act as the code, to be exchanged between sender and receiver 18 Chrysanthos Dellarocas Page 9

History of CDMA Co-invented by actress Hedy Lamarr during World War II as a technique against interference of submarine communications She was inspired by the musical notes encoded on the scrolls of a player piano 19 Summary of multiplexing methods 20 Chrysanthos Dellarocas Page 10

Advantages of CDMA Spread Spectrum Analysis 1.23 MHz channel vs. 30 khz Each call is distinguished by a unique digital code different from others users transmitting at the same frequency band >= 10 times the capacity of analog networks Lower Power Terminals/Longer Battery Life 21 21 Generations of mobile phone technologies 1G 2G 2.5G 3G 22 Chrysanthos Dellarocas Page 11

History First Generation: Analog AMPS (USA) NMT (Europe) Second Generation: Digital GSM (1st Europe, then world-wide) Digital AMPS (IS-54) 2.5: PCS DCS-1800 (world-wide except USA) DCS-1900 (USA) CDMA (IS-95, USA) Third Generation: Personal Communication Systems UMTS 23 Migration of Digital Cellular Systems Circuit-Switched Circuit-Switched Voice Packet-Switched Data GSM Circuit-Switched Voice Packet-Switched Packet Data GPRS EDGE IS-136 Circuit-Switched Voice Packet Voice & Data over EDGE IS-136+ EDGE GPRS: General Packet Radio Service (17.6 kbps x 8) EDGE: Enhanced Data for GSM Evolution (59.2 kbps x 8) UMTS: Universal Mobile Telecomm Systems UMTS CDMA2000 Packet Voice & Data over UMTS (WCDMA) 24 Chrysanthos Dellarocas Page 12

General Packet Radio Service (GPRS) Extension to GSM to support packet transmission Transmission rates: 57.6 and 115.2Kbps initial rates will be lower: 20-30 Kbps Good integration with the TCP/IP protocol Cingular Wireless deploys GPRS network in San Francisco/San Jose in March 2001; uses Ericsson s 520 handsets 25 Summary 26 Chrysanthos Dellarocas Page 13

Wireless LANs and PANs Major developments: IEEE 802.11 standard for wireless LANs Home Radio Frequency Spec (HomeRF) Bluetooth Wireless LAN industry will grow from $300M in 1998 to $1.6B in 2005 (Frost & Sullivan) 27 IEEE 802.11 Standard Operates in 2.4-2.4835GHz frequency band unlicensed band for industrial/scientific/medical apps 2 standards: original 802.11: transmission rates 1-2Mbps 802.11b (High Rate): transmission rates up to 11Mbps (actual data transmission rate is about 7Mbps) Transmission distances: top transmission rates achieved within 150 ft; 1Mbps rates can be achieved within 1000 ft; signals can be transmitted through walls 28 Chrysanthos Dellarocas Page 14

Advantages of 802.11b network access freedom for mobile workers cost-effective network setup for hard-to-wire locations (e.g., old buildings) reduced cost of ownership especially when frequent network changes required Total economic benefits can add up to $16K per user ( WLANs : ROI/Cost-Benefit Study, WLANA, Oct 1998) 29 Wireless LAN Applications Earlier applications: mostly vertical manufacturing facilities, warehouses, retail stores, car rentals More recent applications: healthcare facilities (bedside access to patient info by doctors), educational institutions (e.g., Stern - study group meetings, research links) corporate offices (on-site consultants, database access for roving supervisors, customer info) 30 Chrysanthos Dellarocas Page 15

Bluetooth A PAN has a set of wireless protocols; enables devices to communicate within 10m distance. Transmission rates: 432.5Kbps (both ways for symmetric transmission) 721/57.6 Kbps (asymmetric transmission) 1300 companies support Bluetooth (12/1999) Applications: cars, homes, wireless phones 31 Bluetooth Consortium: Ericsson, Intel, IBM, Nokia, Toshiba - many members Scenarios connection of peripheral devices - loudspeaker, joystick, headset support of ad-hoc networking - small devices, low-cost bridging of networks - e.g., GSM via mobile phone - Bluetooth - laptop Simple, cheap (target < $5/device), replacement of cables and IrDA, low range, lower data rates 2.4 GHz, FHSS, TDD, CDMA 32 Chrysanthos Dellarocas Page 16

Piconets and Scatternets Each piconet has one master and up to 7 slaves Master determines hopping sequence, slaves have to synchronize Participation in a piconet = synchronization to hopping sequence Communication between piconets = devices jumping back and forth between the piconets piconets 33 Bluetooth Applications Wireless PDAs always connected to desktop via mobile phone Wireless headphones connected to notebook Office/Home device networks that automatically reconfigure by presence 34 Chrysanthos Dellarocas Page 17

Bluetooth Success Factors Low enough cost Currently $25-50, will reach $5 at 2003-4 Existence of wideband, circuit-switched mobile networks Depends on 3G mobile developments Standardized software protocols still mostly on paper! 35 Summary 36 Chrysanthos Dellarocas Page 18

Location-based Services: Definition Location-based services (LBS) are any activity conducted over a cellular network where the accurate determination of a user s position is fundamental to the enabling of that activity (Yankee Group) 37 Cell-ID old technology cell size varies from 100m radius to 35km radius still: sufficient accuracy for many applications 38 Chrysanthos Dellarocas Page 19

Time Difference of Arrival (TDOA) calculates difference in arrival time at pairs of cell sites requires two pairs, i.e. three different cell sites clocks at cell sites need to be synchronized 39 TDOA Implementation Existing antennas can be used Additional device (clock, measurement unit) installed in each base station 40 Chrysanthos Dellarocas Page 20

Angle of Arrival (AOA) only two base stations required complex antenna array in precise pattern cost and practical issues (zoning regulations) accuracy degrades over distance mainly used to supplement TDOA in areas where only two base stations are available 41 Enhanced Observed Time Difference Cursor EOTD by CPS in UK beta trial with Vodafone Requires 3 Base station and Location Measurement Unit Promises under 50m precision with 3G Location circles by computing time delta between BTS and handset vs BTS and LMU. Intersection of 3 circles gives location 42 Chrysanthos Dellarocas Page 21

Assisted GPS Snaptrack (Qualcomm) Increased sensitivity receiver allows for GPS tracking even when no line of sight Cell location sends request for snapshot from relevant GPS satellite Limitations within buildings Combines precision of GPS with information given by cell ID to achieve rapid location 43 A Classic Example of Standards War Cell Id TDOA/AOA E-OTD A-GPS Precision 100m to 30 km 100 to 250m 50 to 125m 5 to 50m Market stage Proven Beta Beta 2002 Location fix 3 sec 10 sec 5 sec 3-5 sec Network Modifications Handset Modifications None Clock Measurement Units or Antennas Location Measurement Units None None Software installation None Hardware: GPS enabled units E911 complient No Yes Yes Yes Difficult to predict the emerging standard the real winner might be upstream in the value chain 44 Chrysanthos Dellarocas Page 22

Location-Based Service Categories Information Yellow pages Navigation services Traffic information Tracking Fleet Management Asset Tracking People Tracking Location Services Trigger Services Event-Based Advertising/Promotions Location-Sensitive Billing Safety Emergency Services Roadside Assistance Personal Security Entertainment Gaming 45 Chrysanthos Dellarocas Page 23