Molarity and Serial Dilutions Student Handout

Similar documents
Element of same atomic number, but different atomic mass o Example: Hydrogen

2 The Structure of Atoms

Chemical Calculations: Formula Masses, Moles, and Chemical Equations

What s in a Mole? Molar Mass

Chapter 4. Chemical Composition. Chapter 4 Topics H 2 S. 4.1 Mole Quantities. The Mole Scale. Molar Mass The Mass of 1 Mole

Unit 2: Quantities in Chemistry

MOLAR MASS AND MOLECULAR WEIGHT Themolar mass of a molecule is the sum of the atomic weights of all atoms in the molecule. Molar Mass.

Essential Maths for Medics and Vets Reference Materials Module 2. Amount and Concentration.

Formulas, Equations and Moles

Performing Calculatons

Organic Chemistry Calculations

Solutions: Molarity. A. Introduction

The Mole x 10 23

Calculating Atoms, Ions, or Molecules Using Moles

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages )

Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages )

Chemical Calculations: The Mole Concept and Chemical Formulas. AW Atomic weight (mass of the atom of an element) was determined by relative weights.

STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14

Tuesday, November 27, 2012 Expectations:

We know from the information given that we have an equal mass of each compound, but no real numbers to plug in and find moles. So what can we do?

Calculation of Molar Masses. Molar Mass. Solutions. Solutions

Part One: Mass and Moles of Substance. Molecular Mass = sum of the Atomic Masses in a molecule

The Mole Concept and Atoms

EXPERIMENT 12: Empirical Formula of a Compound

CHAPTER 3 Calculations with Chemical Formulas and Equations. atoms in a FORMULA UNIT

How much does a single atom weigh? Different elements weigh different amounts related to what makes them unique.

Matter. Atomic weight, Molecular weight and Mole

Experiment 8: Chemical Moles: Converting Baking Soda to Table Salt

Return to Lab Menu. Stoichiometry Exploring the Reaction between Baking Soda and Vinegar

Moles Lab mole. 1 mole = 6.02 x This is also known as Avagadro's number Demo amu amu amu

Laboratory Math II: Solutions and Dilutions

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND

= amu. = amu

Unit 3 Notepack Chapter 7 Chemical Quantities Qualifier for Test

Stoichiometry. What is the atomic mass for carbon? For zinc?

The Empirical Formula of a Compound

Simple vs. True. Simple vs. True. Calculating Empirical and Molecular Formulas

U3-LM2B-WS Molar Mass and Conversions

General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction

Stoichiometry Exploring a Student-Friendly Method of Problem Solving

There is a simple equation for calculating dilutions. It is also easy to present the logic of the equation.

Stoichiometry. Lecture Examples Answer Key

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)

The Mole Notes. There are many ways to or measure things. In Chemistry we also have special ways to count and measure things, one of which is the.

Balance the following equation: KClO 3 + C 12 H 22 O 11 KCl + CO 2 + H 2 O

HOW TO MAKE STANDARD SOLUTIONS FOR CHEMISTRY

Chemical Changes. Measuring a Chemical Reaction. Name(s)

Chemical formulae are used as shorthand to indicate how many atoms of one element combine with another element to form a compound.

Chapter 3: Stoichiometry

Getting the most from this book...4 About this book...5

PERCENT ACETIC ACID IN VINEGAR EXPERIMENT 15

Name: Section: Calculating Dozens

Determination of a Chemical Formula

The Mole Concept. The Mole. Masses of molecules

Chapter 5, Lesson 3 Why Does Water Dissolve Salt?

Chapter 3 Student Reading

The Properties of Water (Instruction Sheet)

Chapter 6 Notes. Chemical Composition

Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

Atomic mass is the mass of an atom in atomic mass units (amu)

Chemistry 65 Chapter 6 THE MOLE CONCEPT

Other Stoich Calculations A. mole mass (mass mole) calculations. GIVEN mol A x CE mol B. PT g A CE mol A MOLE MASS :

Chapter 5 Student Reading

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

Lecture Topics Atomic weight, Mole, Molecular Mass, Derivation of Formulas, Percent Composition

Ch. 6 Chemical Composition and Stoichiometry

PART I: PREPARATION OF SOLUTIONS AND STANDARDIZATION OF A BASE

Chemical Proportions in Compounds

10 The Mole. Section 10.1 Measuring Matter

A dozen. Molar Mass. Mass of atoms

Chapter 3. Chemical Reactions and Reaction Stoichiometry. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT

Tutorial 4 SOLUTION STOICHIOMETRY. Solution stoichiometry calculations involve chemical reactions taking place in solution.

Chemical Composition Review Mole Calculations Percent Composition. Copyright Cengage Learning. All rights reserved. 8 1

ATOMS. Multiple Choice Questions

Unit 6 The Mole Concept

Mole Notes.notebook. October 29, 2014

4.4 Calculations Involving the Mole Concept

Test Bank - Chapter 4 Multiple Choice

Carolina s Solution Preparation Manual

F321 MOLES. Example If 1 atom has a mass of x g 1 mole of atoms will have a mass of x g x 6.02 x = 7.

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version

Chapter 3! Stoichiometry: Calculations with Chemical Formulas and Equations. Stoichiometry

SYMBOLS, FORMULAS AND MOLAR MASSES

Description of the Mole Concept:

602X ,000,000,000, 000,000,000, X Pre- AP Chemistry Chemical Quan44es: The Mole. Diatomic Elements

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.

Chemical Composition. Introductory Chemistry: A Foundation FOURTH EDITION. Atomic Masses. Atomic Masses. Atomic Masses. Chapter 8

The Determination of Acid Content in Vinegar

Volumetric Analysis. Lecture 5 Experiment 9 in Beran page 109 Prelab = Page 115

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB

DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3

POGIL Lesson Plan. Author: Sui Sum Olson. Title: Understanding the Mole and Molar Mass Concepts

Chapter 1: Moles and equations. Learning outcomes. you should be able to:

Moles, Molecules, and Grams Worksheet Answer Key

Test Bank - Chapter 3 Multiple Choice

Ch. 10 The Mole I. Molar Conversions

The Mole. Chapter 2. Solutions for Practice Problems

The Mole. Chapter 10. Dimensional Analysis. The Mole. How much mass is in one atom of carbon-12? Molar Mass of Atoms 3/1/2015

11-1 Stoichiometry. Represents

Transcription:

Molarity and Serial Dilutions Student Handout Background information: Atomic and Molecular Weight Everything in the world is made up of atoms. Think of atoms as the building blocks for larger structures. There are many different types of atoms (oxygen, carbon, hydrogen, etc.) that combine in specific ways to form molecules. A molecule of water is composed of two hydrogen atoms bound to an oxygen atom. Because an atom is composed of a set number of protons and neutrons, each type of atom has a unique weight. On the periodic table, this is listed as the atom s atomic weight. When atoms are combined into molecules, that molecule has a weight that is equal to the sum of its individual atoms. Since an atom is extremely small, scientists are usually concerned with large groups of atoms and molecules. To simplify calculations, the unit of measurement mole was created. One mole is equal to the number of atoms in 12 grams of carbon, which has an atomic weight of 12. The mole was defined so that the mass of one mole of a substance is equal to the substance s molecular weight in grams. So one mole = 6.02214179(30) 10 23 molecules or atoms = molecular weight in grams. Using the mole allows scientists to talk about the number of atoms or molecules in a visible, measureable quantity. Dilutions Once we understand the concept of a mole, we can use this to perform a useful set of calculations to identify not only the amount of a chemical to use in making a solution but also in making dilutions. You may understand the concept of concentration. A concentration is the amount of a molecule in a specific volume. This could be grams of sodium chloride (table salt) in a liter of water. We can also calculate concentration with moles. One mole of sodium chloride in one liter of water is 1 molar NaCl. This is the molarity of the solution and abbreviated as M. A dilution is taking a specific amount of a solution and adding it to a larger volume. As an example, think of making a cup of Kool-Aid. Now take ½ of that cup and put it in a new cup. Then add water to fill up the new cup. You have now diluted the original cup of Kool-Aid by 2! Here are some useful things to remember: molecular weight: how much 1 mole of molecules weighs molarity: the number of moles in a liter (volume), M = mol/l equation for dilutions: M1V1 = M2V2, the concentration (or molarity) x volume of your original solution = the new concentration x new volume o In this case, the number of moles stays the same but the volume changes. 1 L (liter) = 1000 ml (milliliters), 1 kg = 1000 g, 1 g = 1000 mg

Dimensional Analysis How to Solve Calculations A tip for doing these calculations is to use something called dimensional analysis. By lining up values with their units, the units can cancel out making understanding the calculation easier. A concentration would be written as 2 grams 1 liter Since 1 liter = 1000 ml Changing the concentration above to grams/ml: 2 grams * 1 liter 1 liter 1000 ml Since liter appears in the numerator and denominator of our calculation it cancels out and we can then cross out those units. 2 grams * 1 liter 1 liter 1000 ml Remember to save the numerical value next to the unit!! In the end, you must combine all the numerator values and divide by all the denominator values to get the correct answer! Here s an example problem to show how to perform these calculations: I have 20 grams (20 g) of solid with a molecular weight of 2 grams per mole. How many moles do I have? 20 grams * 1 mol = 20 grams * 1 mol = 10 moles 2 grams 1 2 grams

Here s another example problem to show dimensional analysis in action: How many grams NaCl (sodium chloride, table salt!) do you need to make 100 ml of a 2M solution? The molecular weight of NaCl is 58.4. This means there are 58.4 grams of NaCl. Start with 2M written as: 2 mol 1 liter Convert to grams Convert to ml 2 mol * 58.4 grams * 1 liter = 1 liter 1 mol 1000 ml To get the amount for 100 ml, divide by 10 2 mol * 58.4 grams * 1 liter = 116.8 grams = 11.68 grams 1 liter 1 mol 1000 ml 1000 ml 100 ml Exercise overview 1: Kool-Aid concentration and serial dilutions This series of problems is designed to teach the concepts of concentration and dilutions. By using Kool-Aid, watching the color fade in the solution provides a visual way to see what is happening in dilutions. Materials: 1 packet Kool-Aid 5 50 ml conical tubes calculator (optional) Protocol and Questions: 1. Add the contents of one packet of Kool-Aid to a 50 ml conical tube and label it Tube 1. Fill the tube to the 50 ml line with water. Cap the tube and shake until the Kool-Aid goes into solution. Why did you fill the tube to the 50 ml line as opposed to adding 50 ml of water? 2. Look at the Kool-Aid packet. How many grams are in the packet? What is the total volume of your solution? What is the concentration of your Kool-Aid solution? The molecular weight of Kool-Aid is approximately 230.62 grams/mole.

3. Take 5mL of the Kool-Aid solution and put it in a new 50mL tube. Label this Tube 2. Did the concentration in Tube 1 change when you removed the 5mLs? Why or why not? 4. Fill Tube 2 to the 50mL line with deionized water. Compare Tube 1 and Tube 2 and record your observations. Calculate the concentration of the Kool-Aid solution in Tube 2 using the equation M 1 V 1 = M 2 V 2. Concentration in Tube 2 5. Repeat the dilution two more times by transferring 5mL from Tube 2 to Tube 3 and filling it to 50mL, then doing the same thing for Tube 4. Compare the solutions in all 4 tubes. What do you observe about them? Can you tell which solution has the highest concentration? 6. Add 4.5 grams of table salt (NaCl, molecular weight = 58.44 g/mol) to a new conical. Label this tube Tube 5. Fill the tube with water to the 50mL line and shake gently until the salt goes into solution. Visually compare your salt solution to your Kool-Aid solutions. Based solely on your visual comparison, line up your solutions from the most concentrated to least concentration. Write down your order. Highest Lowest Where did you place Tube 5? Why?

7. Calculate the Kool-Aid concentrations in each tube. Concentration in Tube 3 Concentration in Tube 4 Calculate the concentration of the salt solution in Tube 5. Concentration in Tube 5 Based on your calculations, line up your solutions from the most to least concentrated. Highest Lowest Did your prediction based solely on observation match the calculated concentrations? Explain. Exercise overview 2: Nerds molarity and serial dilutions This series of problems is designed to explain the concepts of moles and molarity. Each individual Nerd candy represents a mole of sugar. By transferring Nerds from one beaker to another and adjusting the volume in the beaker, students are simulating dilutions. Materials: Beaker Worksheet 16 moles (pieces) of Nerds candy calculator (optional) Protocol and Questions: 1. Place 16 moles of sugar (1 Nerd = 1mole) onto beaker 1 on your worksheet. Imagine adding 1 Liter of water to beaker 1. Using your pencil, shade beaker 1 to represent this volume. How many moles are in beaker 1? Use the example (on the beaker worksheet) to complete a moles / liter calculation to find the molarity of this solution, and record your answer under beaker 1.

2. Transfer 1/2 of your solution to beaker 2 by moving moles and using an eraser to decrease the volume in beaker 1. In beaker 2, use your pencil to shade the volume transferred from beaker 1. How many moles of nerds are left in beaker 1? What volume is left in beaker 1? What is the molarity (moles / liter) in beaker 1? Did the molarity in beaker 1 change after you transferred 1/2 of your solution to beaker 2? Explain your answer! What is the molarity (moles / liter) of the nerd solution in beaker 2? 3. Shade beaker 2 to represent filling the beaker to 1 Liter with water. Re-calculate the molarity of the nerd solution in beaker 2 and record your answer under beaker 2. 4. Transfer 1/2 of your nerd solution in beaker 2 to beaker 3. Using your pencil, shade beaker 3 to represent filling the beaker to 1 Liter with water. Calculate the Molarity of the nerd solution in beaker 3, and record your answer under beaker 3. 5. Transfer 1/2 of your nerd solution in beaker 3 to beaker 4 and use your pencil to shade beaker 4 accordingly. Oooops! You forgot to put away beaker 4 before going home last night. Evaporation has caused the volume in beaker 4 to go down to 125 ml! Use your eraser to represent the new volume in beaker 4. Did you lose any nerd moles to evaporation? Explain your answer! How many moles are in beaker 4? Calculate the Molarity of the nerd solution in beaker 4, and record your answer under beaker 4.