Forecasting Oil Prices and Quantifying Oil Price Risks

Similar documents
Forecasting the Price of Oil

Potential research topics for joint research: Forecasting oil prices with forecast combination methods. Dean Fantazzini.

Real-Time Analysis of Oil Price Risks Using Forecast Scenarios

Causes and Consequences of the Decline in the Price of Oil since June 2014

Physical Market Conditions, Paper Market Activity and the WTI-Brent Spread. Discussion by: Lutz Kilian University of Michigan

Real-Time Forecasts of the Real Price of Oil

The Impact of Oil Demand and Oil Supply Shocks on the Real Price of Oil and on the Economy. Lutz Kilian University of Michigan CEPR

WORKING PAPER SERIES FORECASTING THE BRENT OIL PRICE ADDRESSING TIME-VARIATION IN FORECAST PERFORMANCE NO 1735 / SEPTEMBER 2014

No. 2013/22 Do High-Frequency Financial Data Help Forecast Oil Prices? The MIDAS Touch at Work. Christiane Baumeister, Pierre Guérin, Lutz Kilian

The Role of Inventories and Speculative Trading in the Global Market for Crude Oil

Are Product Spreads Useful for Forecasting? An Empirical Evaluation of the Verleger Hypothesis

The Role of Inventories and Speculative Trading in the Global Market for Crude Oil

A General Approach to Recovering Market Expectations from Futures Prices (with an Application to Crude Oil)

Nominal GDP now-casting

THE ROLE OF INVENTORIES AND SPECULATIVE TRADING IN THE GLOBAL MARKET FOR CRUDE OIL

What Drives Natural Gas Prices?

Chapter 1. Vector autoregressions. 1.1 VARs and the identi cation problem

85 Quantifying the Impact of Oil Prices on Inflation

Predicting U.S. Industrial Production with Oil and Natural Gas Prices

WHAT DO WE LEARN FROM THE PRICE OF CRUDE OIL FUTURES?

Import Prices and Inflation

Chapter 4: Vector Autoregressive Models

40 Years of Oil Price Fluctuations: Why the Price of Oil May Still Surprise Us

Measuring downside risk of stock returns with time-dependent volatility (Downside-Risikomessung für Aktien mit zeitabhängigen Volatilitäten)

The Impact of Oil Price Shocks on the U.S. Stock Market

How To Predict Oil Futures Price

Strategy Document 1/03

Nowcasting world GDP and trade using global indicators

Table of Contents: DIW Lecture Series on Oil Markets and the Macro Economy May 29-30, Lutz Kilian 2012

US Natural Gas Price Determination: Fundamentals and the Development of Shale. Seth Wiggins. Division of Resource Management. West Virginia University

How To Determine The Cause Of A Price Increase In Crude Oil

THE UNIVERSITY OF CHICAGO, Booth School of Business Business 41202, Spring Quarter 2014, Mr. Ruey S. Tsay. Solutions to Homework Assignment #2

Estimates of the Price Elasticities of Natural Gas Supply and Demand in the United States

What drives crude oil prices?

How To Know How The Falling Oil Price Affects The Global Economy And Inflation

Some useful concepts in univariate time series analysis

Relationship among crude oil prices, share prices and exchange rates

Journal of Business Valuation and Economic Loss Analysis

The Impact of Interest Rate Shocks on the Performance of the Banking Sector

The Global Economic Impacts of Oil Price Shocks

KEY ISSUES IN OIL INVENTORIES

Oil Price Shocks: Causes and Consequences

The impact of the euro introduction on the banking sector

Working Papers. Cointegration Based Trading Strategy For Soft Commodities Market. Piotr Arendarski Łukasz Postek. No. 2/2012 (68)

Lars Nyberg: The Riksbank's monetary policy strategy

MACROECONOMIC IMPLICATIONS OF FINANCIAL FRICTIONS IN THE EURO ZONE: LESSONS FROM CANADA

Price Expectations and the U.S. Housing Boom. by Pascal Towbin and Sebastian Weber

ORSA and Economic Modeling Choices. Bert Kramer, André van Vliet, Wendy Montulet

The use of projections and forecasts in the ECB s monetary policy

Monetary policy vs. Economic Growth

The Future of Oil: Geology versus Technology

Reserve Bank of New Zealand Analytical Notes

Box 6 International Oil Prices:

The Goldman Sachs Group, Inc. and Goldman Sachs Bank USA Annual Dodd-Frank Act Stress Test Disclosure

Do Commodity Price Spikes Cause Long-Term Inflation?

The Oil Shocks and Speculation

Examining Oil Price Dynamics

TIME SERIES ANALYSIS

The Role of Speculation in Oil Markets: What Have We Learned So Far?

Board of Governors of the Federal Reserve System. International Finance Discussion Papers. Number 957. November 2008

Commodities not finding much traction despite USD weakness

Oil Price Elasticities and Oil Price Fluctuations

The Bank of Canada s Analytic Framework for Assessing the Vulnerability of the Household Sector

In 2012, the Federal Open Market Committee (FOMC) added the

9 Hedging the Risk of an Energy Futures Portfolio UNCORRECTED PROOFS. Carol Alexander 9.1 MAPPING PORTFOLIOS TO CONSTANT MATURITY FUTURES 12 T 1)

The Role of Speculation in Oil Markets: What Have We Learned So Far?

HSBC North America Holdings Inc Comprehensive Capital Analysis and Review and Annual Company-Run Dodd-Frank Act Stress Test Results

Real-Time Density Forecasts from VARs with Stochastic Volatility

Over the last 14 months, the average price of oil has fallen by

E 4101/5101 Lecture 8: Exogeneity

y t by left multiplication with 1 (L) as y t = 1 (L) t =ª(L) t 2.5 Variance decomposition and innovation accounting Consider the VAR(p) model where

The Response of Business Fixed Investment to Changes in Energy Prices: A Test of Some Hypotheses About the Transmission of Energy Price Shocks

Evaluating the Forecasting Performance of Commodity Futures Prices

Elucidating the Relationship among Volatility Index, US Dollar Index and Oil Price

A macroeconomic credit risk model for stress testing the Romanian corporate credit portfolio

Banking System Stress Testing

Finance and Economics Discussion Series Divisions of Research & Statistics and Monetary Affairs Federal Reserve Board, Washington, D.C.

Working Paper. Monthly recession predictions in real time: A density forecast approach for German industrial production. May 2012

The Macroeconomics of Oil Shocks

Analysis of algorithms of time series analysis for forecasting sales

Causes of Inflation in the Iranian Economy

// Benchmarking Project Schedules

Section A. Index. Section A. Planning, Budgeting and Forecasting Section A.2 Forecasting techniques Page 1 of 11. EduPristine CMA - Part I

Monte Carlo Simulation

PETROLEUM WATCH September 16, 2011 Fossil Fuels Office Fuels and Transportation Division California Energy Commission

The Predictive Content of Commodity Futures

ANNEX 1 - MACROECONOMIC IMPLICATIONS FOR ITALY OF ACHIEVING COMPLIANCE WITH THE DEBT RULE UNDER TWO DIFFERENT SCENARIOS

Yangon, Myanmar February 16 27, Jan Gottschalk. IMF-TAOLAM training activities are supported by funding of the Government of Japan

China's Impact on World Commodity Markets

Unspanned Macroeconomic Risks in Oil Futures

What Drives Natural Gas Prices? A Structural VAR Approach

The Strategic Petroleum Reserve and Crude Oil Prices

Producer Hedging the Production of Heavy Crude Oil

State Unemployment Rate Nowcasts * Elif Sen October 2010

2.2 Elimination of Trend and Seasonality

A Structural Analysis of Oil Price Shocks on the Jamaican Macroeconomy

How To Model A Series With Sas

Measurement Errors and Monetary Policy: Then and Now

The Simple Economics of Commodity Price Speculation

Centre for Central Banking Studies

Transcription:

Forecasting Oil Prices and Quantifying Oil Price Risks Christiane Baumeister Lutz Kilian Bank of Canada University of Michigan CEPR

Motivation When discussing an economy's energy security, the first and foremost question is what oil price risks this economy faces. These risks arise from unpredictable fluctuations in the real price of oil. Implications: 1. We can reduce these risks by using improved forecasting methods. 2. We can quantify the remaining risks based on density forecasts of the real price of oil.

Background The real price of oil is one of the key variables in the modelbased macroeconomic projections generated by central banks, private sector forecasters, and international organizations. Few studies to date on how to forecast the real price of oil. Alquist, Kilian, Vigfusson (2011, Hdbk chapter) Until now none that are conducted in real time. Baumeister and Kilian (2012, forthcoming: JBES)

Why Real-Time Data Matter 1. Even preliminary data may become available only with a lag. 2. Past data are continuously revised for several years. Unlike in many other contexts, these features affect both the no-change forecast and alternative forecasting models.

The Baumeister-Kilian Real-Time Data Set Comprehensive monthly real-time data set consisting of vintages for 1991.1 through 2010.12, each covering data extending back to 1973.1. Real-time data constructed from a variety of sources, many of which are not available in electronic form. Both backcasting and nowcasting techniques are used to fill gaps in the real-time data.

Stylized Facts about the Revisions The average number of revisions ranges from 1 for the U.S. refiners acquisition cost for crude oil imports to 9 in the global crude oil production data. Most revisions occur one month after the first release, but revisions may continue for several years. For U.S. oil market data, revisions are complete within two years. Revisions are unforecastable. No benchmark revisions (unlike in NIPA data).

Delays in Data Availability Require Nowcasting Extrapolate based on the average rate of change up to that point in time: World oil production U.S. CPI U.S. crude oil inventories Extrapolate at rate of growth of WTI: U.S. RAC for crude oil imports Extrapolate using no-change forecast: Ratio of OECD over U.S. petroleum inventories

Key Parameters for Forecasting Horserace Evaluation window: 1992.1-2010.6. Data for 1992.1-2010.6 in the 2010.12 vintage are treated as ex-post revised data when evaluating the forecast accuracy Forecasts horizons h 1,3,6,9,12 EOS Approach Variables to be forecast: Real refiners acquisition cost for crude oil imports Real West Texas Intermediate price of crude oil Remark: Brent oil price only starts in May 1987

Real-Time Forecast Accuracy: Candidate Models 1. No-change forecast (random walk forecast) 2. Recursive AR and ARMA forecasts 3. Recursive VAR forecasts motivated by global oil market model of Kilian and Murphy (2011) VAR variables: 1. Percent change in global crude oil production 2. Index of global real activity (in deviations from trend) 3. Real price of oil 4. Change in above-ground global crude oil inventories

4. Forecasts extrapolating the real price of oil based on the oil futures spread adjusted for expected inflation. R R f s h h t ht t1 t t t 5. Forecasts extrapolating the real price of oil based on recent changes in non-oil industrial commodity prices adjusted for expected inflation. R R h, industrial raw materials h t ht t1 t t

Real U.S. Refiners Acquisition Cost of Imports: Real-Time Recursive MSPE Ratio Relative to No-Change Forecast Horizon VAR(12) BVAR(24) Oil Futures Price of Raw Materials 1 0.750 0.806 0.997 0.824 3 0.808 0.874 0.981 0.763 ** 6 0.993 1.004 0.987 1.046 9 1.022 1.045 0.966 1.101 12 0.974 1.081 0.912 1.107

Real U.S. Refiners Acquisition Cost of Imports: Real-Time Recursive Directional Accuracy of VAR Forecast Horizon VAR(12) BVAR(24) Oil Futures Price of Raw Materials 1 0.568 * 0.613 * 0.441 0.568 * 3 0.596 * 0.650 * 0.491 0.632 * 6 0.530 0.581 0.502 0.608 * 9 0.542 0.551 0.551 * 0.551 12 0.597 * 0.578 0.569 * 0.555 **

Real WTI Price: Real-Time Recursive MSPE Ratio Relative to No-Change Forecast Horizon VAR(12) BVAR(24) Oil Futures Price of Raw Materials 1 0.882 0.864 1.004 0.820 3 0.925 0.869 0.999 0.744 ** 6 1.035 0.938 1.002 1.040 9 1.035 0.945 0.981 1.099 12 0.987 0.952 0.932 1.112

Real WTI Price: Real-Time Recursive Directional Accuracy of VAR Forecast Horizon VAR(12) BVAR(24) Oil Futures Price of Raw Materials 1 0.550 * 0.559 ** 0.460 0.550 ** 3 0.605 * 0.605 * 0.477 0.609 * 6 0.525 0.590 0.502 0.590 * 9 0.519 0.564 0.547 * 0.565 ** 12 0.611 * 0.611 * 0.559 * 0.574 **

Punchline Large out-of-sample MSPE reductions relative to no-change forecast up to six months (up to 25% in real time); smaller reductions up to one year. High and statistically significant real-time directional accuracy for horizons up to one year (as high as to 65%). The model works especially well during financial crisis. This VAR model not only beats the random walk, but also is more accurate than forecasts based on oil futures prices.

Limitations of Standard Oil Price Forecasts Standard forecasts based on reduced-form regressions or based on oil futures prices do not allow us to assess the effects of hypothetical events (such as a global recovery, a financial crisis, an unexpected oil supply disruption, or a period of growing political tension in the Middle East) on the baseline oil price forecast. Baumeister and Kilian (mimeo 2012) present new tools designed to address this question.

Real-Time Forecast Scenarios Real-time conditional projections of how the oil price forecast would deviate from the unconditional forecast benchmark under hypothetical scenarios about future demand and supply conditions in the global market for crude oil. Such scenarios can be constructed from the structural movingaverage representation of the same type of VAR model we already showed to have real-time forecasting ability earlier. All we need to do is add the identifying assumptions of Kilian and Murphy (2011).

Four Structural Shocks 1. Shock to the flow of crude oil production ( flow supply shock ) 2. Shock to the demand for crude oil driven by the global business cycle ( flow demand shock ) 3. Shock to the demand for above-ground oil inventories arising from forward-looking behavior ( speculative demand shock ) 4. Residual oil demand shock that captures all structural shocks not otherwise accounted for and has no direct economic interpretation (e.g., weather shocks, shocks to inventory technology or preferences, idiosyncratic changes in SPR).

Identifying Assumptions: Sign restrictions on impact responses of the four observables to each structural shock. Bound on the impact price elasticity of oil supply. Bound on the impact price elasticity of oil demand. Dynamic sign restrictions for response to oil supply shock.

Historical Decompositions Under the maintained assumption of stationarity, the structural moving average representation of the estimated VAR model allows us to decompose historical fluctuations in the data into orthogonal components corresponding to different oil demand and oil supply shocks. Let t 1, y w w t i t i i t i i 0 i 0 where y t refers to the current observation, i denotes the matrix of structural impulse responses at lag i 0,1,2,..., and w t denotes the vector of mutually uncorrelated structural shocks (see Lütkepohl 2005).

Historical Decomposition for Real U.S. RAC for Imports 100 Cumulative Effect of Flow Supply Shock on Real Price of Crude Oil 50 0-50 -100 100 1980 1985 1990 1995 2000 2005 2010 Cumulative Effect of Flow Demand Shock on Real Price of Crude Oil 50 0-50 -100 100 1980 1985 1990 1995 2000 2005 2010 Cumulative Effect of Speculative Demand Shock on Real Price of Crude Oil 50 0-50 -100 1980 1985 1990 1995 2000 2005 2010

Forecast Scenarios h 1 yt h iwt h i iwt h i iwt h i i 0 i 0 i h Future Setting all future structural shocks to zero results in the baseline reduced-form VAR forecast. Feeding in a sequence of nonzero future structural shocks provides a conditional forecast (also see Waggoner and Zha REStat 1999). The difference in the path of yt h, h 1,2,..., provides the required adjustment to the baseline forecast. y t

Forecast Scenarios The structural MAR coefficients used in constructing scenarios are based on ex-post revised data to allow the best possible estimate of the effect of a given sequence of future structural shocks. Like impulse responses, VAR forecast scenarios are timeinvariant. They do not necessarily have to be recomputed every month, except to the extent that a longer sample offers efficiency gains in estimating the structural model. The key difference to impulse response analysis is that forecast scenarios involve a sequence of future shocks rather than a one-time shock.

Forecast Scenarios Often historical events provide guidance about realistic structural shock sequences. Example: The effect of another Asian crisis on flow demand. Alternatively, we may specify purely hypothetical sequences reflecting thought experiments. Example: The effect of shutting down Iranian oil production.

Forecast Scenarios for Real Refiners Acquisition Cost Percent Deviations from Baseline Forecast Iraq at Full Capacity Percent Percent Percent Percent Percent 20 0-20 0 3 6 9 12 15 18 21 24 Libyan Production Shortfall 20 0-20 0 3 6 9 12 15 18 21 24 Contagion 1 20 0-20 0 3 6 9 12 15 18 21 24 Contagion 2 20 0-20 0 3 6 9 12 15 18 21 24 Libyan Production Shortfall + Contagion 1 20 0-20 0 3 6 9 12 15 18 21 24

Forecast Scenarios for Real Refiners Acquisition Cost Percent Deviations from Baseline Forecast Global Recovery 100 80 Percent 60 40 20 0 0 3 6 9 12 15 18 21 24 0 Lehman -20 Percent -40-60 -80-100 0 3 6 9 12 15 18 21 24 Percent 100 80 60 40 20 Nightmare Nightmare 1 Nightmare 2 0 0 3 6 9 12 15 18 21 24 NOTES: The two nightmare scenarios combine the global recovery scenario with the Libyan production shortfall scenario and with the contagion 1 and contagion 2 scenarios, respectively.

Real-Time Forecasts of Real U.S. Refiners Acquisition Cost as of 2010.12 130 120 No-change forecast Kilian-Murphy (2010) model-based forecast Futures-based forecast 110 2010.12 dollars 100 90 80 70 60 2011 2012

2010.12 dollars 160 140 120 100 80 60 Sensitivity Analysis as of 2010.12 Baseline Iraq full capacity Libya cut Contagion 1 Contagion 2 Libya+Contagion1 Global Recovery Nightmare 1 Nightmare 2 Lehman 40 20 0 2011 2012

Formal Risk Analysis in Real Time Probability weighted densities for scenarios Risk measures for real price of oil. Example: Real price in excess of $100 or below $80. Building on Kilian and Manganelli (JMCB 2007, JMCB 2008), we can quantify how upside and downside oil price risks change with the probability weights attached to the scenarios.

Event Analysis using Venn Diagrams An Illustrative Example Le C 1 Li R B C 2 NOTES: B stands for baseline, Le for Lehman, Li for Libyan production shortfall, R for global recovery, C 1 and C 2 stand for contagion 1 and contagion 2. We abstract from the Iraq at full capacity scenario for expository purposes. The Le and R scenarios are mutually exclusive, as is the baseline scenario with the other scenarios. Likewise C 1 and C 2 are treated as mutually exclusive.

Probability Weights for Forecast Scenarios Events Baseline Alternative 1: Moderately Pessimistic Weighted Forecast Scenarios Alternative 2: Pessimistic on Economy Alternative 3: Optimistic on Economy B 1 0.41 0.31 0.16 C 2 0 0.16 0.16 0.11 Li C 2 0 0.05 0.05 0.05 Li C 2 R 0 0.03 0.03 0.03 C 2 R 0 0.04 0.04 0.04 Li C 1 R 0 0.03 0.03 0.03 Li C 1 0 0.05 0.05 0.05 C1 0 0.16 0.16 0.11 R C 1 0 0.04 0.04 0.04 Li R 0 0.07 0.07 0.07 Le 0 0.13 0.23 0.08 Le Li 0 0.03 0.03 0.03 Le C 1 0 0.01 0.01 0.01 Le C 1 Li 0 0.01 0.01 0.01 Le C 2 0 0.01 0.01 0.01 Le C 2 Li 0 0.01 0.01 0.01 R 0 0.14 0.14 0.59 Li 0 0.22 0.22 0.17 I 0 0 0 0

Real-Time Probability-Weighted 1-Year Ahead Predictive Densities for the Real Price of Oil as of 2010.12: An Illustrative Example 0.02 0.018 0.016 Baseline Alternative 1 Alternative 2 Alternative 3 0.014 0.012 0.01 0.008 0.006 0.004 0.002 0 0 20 40 60 80 100 120 140 160 180 200 2010.12 Dollars/Barrel

How to Construct Risk Measures Consider the events of Rt exceeding an upper threshold of R h (upside risk) and of Rt falling below the lower threshold of R h (downside risk): 0 and 0 denote the user s degree of risk aversion: 1. Target probabilities: 0 DR Pr( R R) and UR Pr( R R) 0 0 2. Probability-weighted expected shortfall/excess: 1 DR E( R R R R)Pr( R R) 1 t h t h t h t h UR E( R R R R)Pr( R R). 1 t h t h t h t h

Risk Measures for Probability Weighted Forecast Scenarios Upside Risks Scenario h P( Rt h 100) ER ( t h 100 Rt h 100) ER ( t h 100 Rt h 100) Pr( Rt h 100) Baseline 3 0.67 13.53 9.06 6 0.46 17.09 7.93 12 0.20 16.70 3.27 24 0.23 23.13 5.37 1 3 0.72 14.25 10.19 6 0.41 16.63 6.79 12 0.18 16.50 3.02 24 0.21 22.93 4.82 2 3 0.61 12.72 7.72 6 0.26 15.10 3.89 12 0.12 15.81 1.88 24 0.16 22.40 3.60 3 3 0.93 21.01 19.54 6 0.74 21.82 16.15 12 0.60 21.16 12.64 24 0.47 25.56 11.92

Risk Measures for Probability Weighted Forecast Scenarios Downside Risks Scenario h P( Rt h 80) ER ( t h 80 Rt h 80) ER ( t h 80 Rt h 80) Pr( Rt h 80) Baseline 3 0.02 5.34 0.11 6 0.15 8.22 1.25 12 0.51 14.37 7.26 24 0.52 18.32 9.59 1 3 0.02 5.11 0.08 6 0.19 8.82 1.71 12 0.53 14.97 7.94 24 0.56 19.53 10.94 2 3 0.03 5.29 0.16 6 0.36 11.50 4.09 12 0.66 18.86 12.50 24 0.65 23.07 14.95 3 3 0.00 3.15 0.01 6 0.03 6.04 0.18 12 0.08 6.41 0.51 24 0.23 10.35 2.35

How Did We Do? 130 120 No-change forecast Futures-based forecast Kilian-Murphy (2010) model-based forecast Actual oil price 110 2010.12 dollars 100 90 80 70 60 2011 2012

What if We Had Foreseen the Libyan Supply Cut? 130 120 Kilian-Murphy (2010) model-based forecast Libya cut Actual oil price 110 2010.12 dollars 100 90 80 70 60 2011 2012