Chapter 3: Force and Motion

Similar documents
circular motion & gravitation physics 111N

Name Class Period. F = G m 1 m 2 d 2. G =6.67 x Nm 2 /kg 2

Newton s Law of Universal Gravitation

Newton s Laws of Motion

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Forces. When an object is pushed or pulled, we say that a force is exerted on it.

Gravitation and Newton s Synthesis

Physical Science Chapter 2. Forces

GRAVITATIONAL FIELDS PHYSICS 20 GRAVITATIONAL FORCES. Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units:

4 Gravity: A Force of Attraction

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION

Objective: Equilibrium Applications of Newton s Laws of Motion I

Chapter 5: Circular Motion, the Planets, and Gravity

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Name: Date: Period: Gravity Study Guide

PHY231 Section 2, Form A March 22, Which one of the following statements concerning kinetic energy is true?

Tennessee State University

BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.

Chapter 3.8 & 6 Solutions

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Name Class Date. true

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

PHY231 Section 1, Form B March 22, 2012

Niraj Sir GRAVITATION CONCEPTS. Kepler's law of planetry motion

Lesson 29: Newton's Law of Universal Gravitation

5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

Newton s Laws. Newton s Imaginary Cannon. Michael Fowler Physics 142E Lec 6 Jan 22, 2009

Lecture 4: Newton s Laws

Section 4: The Basics of Satellite Orbits

A = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great.

Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6

Astronomy 1140 Quiz 1 Review

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.

Version A Page The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.

PHY121 #8 Midterm I

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015

Unit 4 Practice Test: Rotational Motion

G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

NEWTON S LAWS OF MOTION

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:

Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy

Physics Midterm Review Packet January 2010

Orbital Mechanics. Angular Momentum

Practice Exam Three Solutions

CLASS TEST GRADE 11. PHYSICAL SCIENCES: PHYSICS Test 1: Mechanics

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Section 1 Gravity: A Force of Attraction

Unit 8 Lesson 2 Gravity and the Solar System

Sample Questions for the AP Physics 1 Exam

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

8.012 Physics I: Classical Mechanics Fall 2008

Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa.

Chapter 4: Newton s Laws: Explaining Motion

Newton s Law of Gravity

Physics 41 HW Set 1 Chapter 15

3600 s 1 h. 24 h 1 day. 1 day

Chapter 8: Rotational Motion of Solid Objects

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION

How To Understand The Theory Of Gravity

Center of Gravity. We touched on this briefly in chapter 7! x 2

Physics 1A Lecture 10C

Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton

The University of Texas at Austin. Gravity and Orbits

Two-Body System: Two Hanging Masses

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Satellites and Space Stations

How Rockets Work Newton s Laws of Motion

GRAVITY CONCEPTS. Gravity is the universal force of attraction between all matter

ELEMENTS OF PHYSICS MOTION, FORCE, AND GRAVITY

Chapter 6. Work and Energy

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

force (mass)(acceleration) or F ma The unbalanced force is called the net force, or resultant of all the forces acting on the system.

1. Mass, Force and Gravity

Lab 8: Ballistic Pendulum

VELOCITY, ACCELERATION, FORCE

Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion

OBJECTIVES. Newton s Laws

PHYS 211 FINAL FALL 2004 Form A

Chapter 9. is gradually increased, does the center of mass shift toward or away from that particle or does it remain stationary.

11. Rotation Translational Motion: Rotational Motion:

Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Practice TEST 2. Explain your reasoning

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

CHAPTER 6 WORK AND ENERGY

Lecture 13. Gravity in the Solar System

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Educational Innovations

GRADE 8 SCIENCE INSTRUCTIONAL TASKS. Gravity

Forces between masses

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

Transcription:

Force and Motion Cause and Effect Chapter 3 Chapter 3: Force and Motion Homework: All questions on the Multiple- Choice and the odd-numbered questions on Exercises sections at the end of the chapter. In chapter 2 we studied motion but not its cause. In this chapter we will look at both force and motion the cause and effect. We will consider Newton s: Three laws of motion Law of universal gravitation Laws of conservation of linear and angular momentum Copyright Houghton Mifflin Company. All rights reserved. Intro 3-2 Sir Isaac Newton (1642 1727) Only 25 when he formulated most of his discoveries in math and physics His book Mathematical Principles of Natural Philosophy is considered to be the most important publication in the history of Physics. Force and Net Force Force a quantity that is capable of producing motion or a change in motion A force is capable of changing an object s velocity and thereby producing acceleration. A given force may not actually produce a change in motion because other forces may serve to balance or cancel the effect. Copyright Houghton Mifflin Company. All rights reserved. Intro 3-3 Copyright Houghton Mifflin Company. All rights reserved. Section 3.1 3-4 Balanced (equal) forces, therefore no motion. Unbalanced forces result in motion Equal in magnitude but in opposite directions. Copyright Houghton Mifflin Company. All rights reserved. Section 3.1 3-5 Net force to the right Copyright Houghton Mifflin Company. All rights reserved. Section 3.1 3-6 1

Newton s First Law of Motion Aristotle considered the natural state of most matter to be at rest. Galileo concluded that objects could naturally remain in motion. Newton An object will remain at rest or in uniform motion in a straight line unless acted on by an external, unbalance force. Objects at Rest An object will remain at rest or in uniform motion in a straight line unless acted on by an external, unbalance force. Force any quantity capable of producing motion Forces are vector quantities they have both magnitude and direction. Balanced equal magnitude but opposite directions External must be applied to the entire object or system. Copyright Houghton Mifflin Company. All rights reserved. Section 3.2 3-7 Copyright Houghton Mifflin Company. All rights reserved. Section 3.2 3-8 A large rock stays put until/if a large enough force acts on it. A spacecraft keeps going because no forces act to stop it Photo Source: Copyright Bobby H. Bammel. All rights reserved. Photo Source: Copyright Bobby H. Bammel. All rights reserved. Copyright Houghton Mifflin Company. All rights reserved. Section 3.2 3-9 Copyright Houghton Mifflin Company. All rights reserved. Section 3.2 3-10 Inertia Inertia - the natural tendency of an object to remain in a state of rest or in uniform motion in a straight line (first introduced by Galileo) Basically, objects tend to maintain their state of motion and resist changes. Newton went one step further and related an object s mass to its inertia. The greater the mass of an object, the greater its inertia. The smaller the mass of an object, the less its inertia. Mass and Inertia The large man has more inertia more force is necessary to start him swinging and also to stop him due to his greater inertia Copyright Houghton Mifflin Company. All rights reserved. Section 3.2 3-11 Copyright Houghton Mifflin Company. All rights reserved. Section 3.2 3-12 2

Mass and Inertia Law of Inertia Because of the relationship between motion and inertia: Newton s First Law of Motion is sometimes called the Law of Inertia. Seatbelts help correct for this law during sudden changes in speed. Quickly pull the paper and the stack of quarters tend to stay in place due to inertia. Copyright Houghton Mifflin Company. All rights reserved. Section 3.2 3-13 Copyright Houghton Mifflin Company. All rights reserved. Section 3.2 3-14 Newton s Second law of Motion Force Acceleration a mass Acceleration (change in velocity) produced by a force acting on an object is directly proportional to the magnitude of the force (the greater the force the greater the acceleration.) Acceleration of an object is inversely proportional to the mass of the object (the greater the mass of an object the smaller the acceleration.) a = F/m or F = ma Force, Mass, Acceleration a) Original situation a a F m b) If we double the force we double the acceleration. c) If we double the mass we half the acceleration. Copyright Houghton Mifflin Company. All rights reserved. Section 3.3 3-15 Copyright Houghton Mifflin Company. All rights reserved. Section 3.3 3-16 F = ma F is the net force (unbalanced), which is likely the vector sum of two or more forces. m & a are concerning the whole system Units Force = mass x acceleration = kg x m/s 2 = N N = kg-m/s 2 = newton -- this is a derived unit and is the metric system (SI) unit of force Net Force and Total Mass - Example Forces are applied to blocks connected by a string (weightless) resting on a frictionless surface. Mass of each block = 1 kg; F 1 = 5.0 N; F 2 = 8.0 N What is the acceleration of the system? Copyright Houghton Mifflin Company. All rights reserved. Section 3.3 3-17 Copyright Houghton Mifflin Company. All rights reserved. Section 3.3 3-18 3

Net Force and Total Mass - Example Forces are applied to blocks connected by a string (weightless) resting on a frictionless surface. Mass of each block = 1 kg; F 1 = 5.0 N; F 2 = 8.0 N. What is the acceleration of the system? GIVEN: m 1 = 1 kg; m 2 = 1 kg F 1 = -5.0 N; F 2 = 8.0 N a =? F F net 8.0 N 5.0 N a = = = = 1.5 m/s m m 2 1 + m 2 1.0 kg + 1.0 kg Mass & Weight Mass = amount of matter present Weight =related to the force of gravity Earth: weight = mass x acc. due to gravity w = mg (special case of F = ma) Weight is a force due to the pull of gravity. Therefore, one s weight changes due to changing pull of gravity like between the earth and moon. Moon s gravity is only 1/6 th that of earth s. Copyright Houghton Mifflin Company. All rights reserved. Section 3.3 3-19 Copyright Houghton Mifflin Company. All rights reserved. Section 3.3 3-20 Computing Weight an example What is the weight of a 2.45 kg mass on (a) earth, and (b) the moon? Computing Weight an example What is the weight of a 2.45 kg mass on (a) earth, and (b) the moon? Use Equation w =mg Earth: w = mg = (2.45 kg) (9.8 m/s 2 ) = 24.0 N (or 5.4 lb. Since 1 lb = 4.45 N) Moon: w = mg = (2.45 kg) [(9.8 m/s 2 )/6] = 4.0 N (or 0.9 lb.) Copyright Houghton Mifflin Company. All rights reserved. Section 3.3 3-21 Copyright Houghton Mifflin Company. All rights reserved. Section 3.3 3-22 Newton s Third Law of Motion Acceleration due to gravity is independent of the mass. Both are doubled! For every action there is an equal and opposite reaction. or Whenever on object exerts a force on a second object, the second object exerts an equal and opposite force on the first object. action = opposite reaction F 1 = -F 2 or m 1 a 1 = -m 2 a 2 Section 3.4 Copyright Houghton Mifflin Company. All rights reserved. 3-23 Section 3.3 Copyright Houghton Mifflin Company. All rights reserved. 3-24 4

Newton s Third Law of Motion Newton's Laws in Action F 1 = -F 2 or m 1 a 1 = -m 2 a 2 Jet propulsion exhaust gases in one direction and the rocket in the other direction Gravity jump from a table and you will accelerate to earth. In reality BOTH you and the earth are accelerating towards each other You small mass, huge acceleration (m 1 a 1 ) Earth huge mass, very small acceleration (- m 2 a 2 ) BUT m 1 a 1 = -m 2 a 2 Friction on the tires provides necessary centripetal acceleration. Passengers continue straight ahead in original direction and as car turns the door comes toward passenger 1 st Law As car turns you push against door and the door equally pushes against you 3 rd Law Copyright Houghton Mifflin Company. All rights reserved. Section 3.4 3-25 Copyright Houghton Mifflin Company. All rights reserved. Section 3.4 3-26 Newton s Law of Gravitation Gravity is a fundamental force of nature We do not know what causes it We can only describe it Law of Universal Gravitation Every particle in the universe attracts every other particle with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them Newton s Law of Gravitation Gm 1 m 2 Equation form: F = G is the universal gravitational constant G = 6.67 x 10-11 N. m 2 /kg 2 G: is a very small quantity thought to be valid throughout the universe was measured by Cavendish 70 years after Newton s death not equal to g and not a force r 2 Copyright Houghton Mifflin Company. All rights reserved. Section 3.5 3-27 Copyright Houghton Mifflin Company. All rights reserved. Section 3.5 3-28 Newton s Law of Gravitation Newton's Law of Gravitation The forces that attract particles together are equal and opposite F 1 = -F 2 or m 1 a 1 = -m 2 a 2 Gm 1 m 2 F = r 2 For a homogeneous sphere the gravitational force acts as if all the mass of the sphere were at its center Copyright Houghton Mifflin Company. All rights reserved. Section 3.5 3-29 Copyright Houghton Mifflin Company. All rights reserved. Section 3.5 3-30 5

Applying Newton s Law of Gravitation Two objects with masses of 1.0 kg and 2.0 kg are 1.0 m apart. What is the magnitude of the gravitational force between the masses? Applying Newton s Law of Gravitation Example Two objects with masses of 1.0 kg and 2.0 kg are 1.0 m apart. What is the magnitude of the gravitational force between the masses? Gm 1 m F = 2 r 2 F = (6.67 x 10-11 N-m 2 /kg 2 )(1.0 kg)(2.0 kg) (1.0 m) 2 F = 1.3 x 10-10 N Copyright Houghton Mifflin Company. All rights reserved. Section 3.5 3-31 Copyright Houghton Mifflin Company. All rights reserved. Section 3.5 3-32 Force of Gravity on Earth GmM E F = [force of gravity on object of mass m] R 2 E M E and R E are the mass and radius of Earth This force is just the object s weight (w = mg) \ w = mg = GME R 2 E GmM E g = R 2 E m cancels out \ g is independent of mass g = Acceleration due to Gravity for a Spherical Uniform Object GM r 2 g = acceleration due to gravity M = mass of any spherical uniform object r = distance from the object s center Copyright Houghton Mifflin Company. All rights reserved. Section 3.5 3-33 Copyright Houghton Mifflin Company. All rights reserved. Section 3.5 3-34 Earth Orbit - Centripetal Force 1) Proper Tangential Velocity 2) Centripetal Force F c = ma c = mv 2 /r (since a c = v 2 /r) Weightlessness in space is the result of both the astronaut and the spacecraft falling to Earth as the same rate The proper combination will keep the moon or an artificial satellite in stable orbit Copyright Houghton Mifflin Company. All rights reserved. Section 3.5 3-35 Copyright Houghton Mifflin Company. All rights reserved. Section 3.5 3-36 6

Linear Momentum Linear momentum = mass x velocity r = mv If we have a system of masses, the linear momentum is the sum of all individual momentum vectors. P f = P i (final = initial) P = r 1 + r 2 + r 3 + (sum of the individual momentum vectors) Law of Conservation of Linear Momentum Law of Conservation of Linear Momentum - the total linear momentum of an isolated system remains the same if there is no external, unbalanced force acting on the system Linear Momentum is conserved as long as there are no external unbalance forces. It does not change with time. Copyright Houghton Mifflin Company. All rights reserved. Section 365 3-37 Copyright Houghton Mifflin Company. All rights reserved. Section 3.6 3-38 Conservation of Linear Momentum Applying the Conservation of Linear Momentum Two masses at rest on a frictionless surface. When the string (weightless) is burned the two masses fly apart due to the release of the compressed (internal) spring (v 1 = 1.8 m/s). P i = P f = 0 (for man and boat) When the man jumps out of the boat he has momentum in one direction and, therefore, so does the boat. Their momentums must cancel out! (= 0) Copyright Houghton Mifflin Company. All rights reserved. Section 3.6 3-39 Copyright Houghton Mifflin Company. All rights reserved. Section 3.6 3-40 Applying the Conservation of Linear Momentum Two masses at rest on a frictionless surface. When the string (weightless) is burned the two masses fly apart due to the release of the compressed (internal) spring (v 1 = 1.8 m/s). Applying the Conservation of Linear Momentum GIVEN: m 1 = 1.0 kg m 2 = 2.0 kg v 1 = 1.8 m/s, v 2 =? P f = P i = 0 P f = r 1 + r 2 = 0 r 1 = -r 2 m 1 v 1 = -m 2 v 2 m 1 v 1 = -m 2 v 2 v m 1 v 1 2 = - = - (1.0 kg) (1.8 m/s) = -0.90 m/s m 2 2.0 kg Copyright Houghton Mifflin Company. All rights reserved. Section 3.6 3-41 Copyright Houghton Mifflin Company. All rights reserved. Section 3.6 3-42 7

Jet Propulsion Jet Propulsion can be explained in terms of both Newton s 3 rd Law & Linear Momentum r 1 = -r 2 m 1 v 1 = -m 2 v 2 The exhaust gas molecules have small m and large v. The rocket has large m and smaller v. BUT m 1 v 1 = -m 2 v 2 (momentum is conserved) Torque Torque the twisting effect caused by one or more forces As we have learned, the linear momentum of a system can be changed by the introduction of an external unbalanced force. Similarly, angular momentum can be changed by an external unbalanced torque. Copyright Houghton Mifflin Company. All rights reserved. Section 3.6 3-43 Copyright Houghton Mifflin Company. All rights reserved. Section 3.6 3-44 Torque Torque is a twisting action that produces rotational motion or a change in rotational motion. Law of Conservation of Angular Momentum Law of Conservation of Angular Momentum - the angular momentum of an object remains constant if there is no external, unbalanced torque (a force about an axis) acting on it Concerns objects that go in paths around a fixed point, for example a planet orbiting the sun Copyright Houghton Mifflin Company. All rights reserved. Section 3.6 3-45 Copyright Houghton Mifflin Company. All rights reserved. Section 3.6 3-46 Angular Momentum Angular Momentum L = mvr L = angular momentum, m = mass, v = velocity, and r = distance to center of motion L 1 = L 2 m 1 v 1 r 1 = m 2 v 2 r 2 Mass (m) is constant. As r changes so must v. When r decreases, v must increase so that m 1 v 1 r 1 = m 2 v 2 r 2 Section 3.6 Copyright Houghton Mifflin Company. All rights reserved. 3-47 Section 3.6 Copyright Houghton Mifflin Company. All rights reserved. 3-48 8

Angular Momentum in our Solar System In our solar system the planet s orbit paths are slightly elliptical, therefore both r and v will slightly vary during a complete orbit. Conservation of Angular Momentum Example A comet at its farthest point from the Sun is 900 million miles, traveling at 6000 mi/h. What is its speed at its closest point of 30 million miles away? EQUATION: m 1 v 1 r 1 = m 2 v 2 r 2 GIVEN: v 2, r 2, r 1, and m 1 = m 2 v 2 r 2 (6.0 x 10 3 mi/h) (900 x 10 6 mi) FIND: v 1 = r = 1 30 x 10 6 mi 1.8 x 10 5 mi/h or 180,000 mi/h Copyright Houghton Mifflin Company. All rights reserved. Section 3.6 3-49 Copyright Houghton Mifflin Company. All rights reserved. Section 3.6 3-50 Conservation of Angular Momentum Conservation of Angular Momentum Figure Skater she/he starts the spin with arms out at one angular velocity. Simply by pulling the arms in the skater spins faster, since the average radial distance of the mass decreases. Rotors on large helicopters rotate in the opposite direction m 1 v 1 r 1 = m 2 v 2 r 2 m is constant; r decreases; Therefore v increases Copyright Houghton Mifflin Company. All rights reserved. Section 3.6 3-51 Copyright Houghton Mifflin Company. All rights reserved. Section 3.6 3-52 Chapter 3 - Important Equations F = ma (2 nd Law) or w = mg (for weight) F 1 = -F 2 (3 rd Law) F = (Gm 1 m 2 )/r 2 (Law of Gravitation) G = 6.67 x 10-11 N-m 2 /kg 2 (gravitational constant) g = GM/r 2 (acc. of gravity, M=mass of sph. object) r = mv (linear momentum) P f = P i (conservation of linear momentum) L = mvr (angular momentum) L1= m 1 v 1 r 1 =L2 = m 2 v 2 r 2 (Cons. of ang. Mom.) Copyright Houghton Mifflin Company. All rights reserved. Review 3-53 9