IV. Egyptian Mathematics

Similar documents
Timeline of Egyptian History. Ancient Egypt (Languages: Egyptian written in hieroglyphics and Hieratic script)

Ancient Egypt Handouts

The history of Egypt is divided into dynasties of rulers. What is a dynasty? A succession of rulers from the same family or line is called a Dynasty.

PYRAMID CFE 3284V. OPEN CAPTIONED PBS VIDEO 1988 Grade Levels: minutes 1 Instructional Graphic Enclosed

What the Ancients Knew The Egyptians Teacher s Guide

Year 2 History: Ancient Egypt Resource Pack

Egypt. The Old Kingdom

Four Early River Valley Civilizations. Egyptian Civilization - Nile River

Ancient Egypt and Kush. Topic 3 Presentation

Egyptian History 101 By Vickie Chao

Government of Ancient Egypt Question Packet

Egypt Unit Project Topics (Newspaper Articles & Visual Presentations)

Y OHANNIS ANCIENT EGYPT. Pharaohs and Dynasties

Lesson 2 Life in Ancient Egypt

WORKSHEET PHARAOHS, PYRAMIDS AND THE WORLD OF THE GODS

Section 7.2 Area. The Area of Rectangles and Triangles

Natural Advantages 2/21/2012. Lecture 9: Pre-Dynastic Egypt

APPLICATIONS AND MODELING WITH QUADRATIC EQUATIONS

CH10 Practice Test 2015

Shapes & Symbols. Shape is an element of art. There are two kinds of shapes, geometric and organic.

Woolooware High School YEAR 7 EGYPT HOMEWORK NAME: CLASS: TEACHER: HOMEWORK #

Students will: Explain how ancient Egypt was united. Analyze the workings of government and the importance of religion in Egypt.

Ancient Egypt. LEVELED BOOK L Ancient Egypt. Visit for thousands of books and materials.

Sources for the War of Reunification at the end of the Second Intermediate Period

Teacher s Masters California Education and the Environment Initiative. History-Social Science Standards and Egypt and Kush: A Tale of

Mesopotamia is the first known civilization. Mesopotamia means land between two rivers. This civilization began on the plains between the Tigris and

Grade 5 Math Content 1

EARLIEST CIVILIZATIONS. Egypt and the Kingdom of Kush

To Evaluate an Algebraic Expression

INTRODUCTION TO EUCLID S GEOMETRY

Emergence of Civilizations / Anthro 341: Notes 17 Egypt: Naqada III and Early Dynastic Copyright Bruce Owen 2009

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite

Chapter 3. Ancient Egypt & Nubia

In this chapter, you will learn about the African kingdom of Kush. Kush was located on the Nile River, to the south of Egypt.

Life of Moses, Part 6 God Never Wastes an Experience Exodus 2:1-10

Hieroglyphic Questions

Egypt and China. Ancient Worlds: VMFA Resources

Egyptian Pyramids Lesson Plan. Central Historical Question: Did slaves build the Great Pyramid at Giza?

Microeconomics Sept. 16, 2010 NOTES ON CALCULUS AND UTILITY FUNCTIONS

In this chapter, you will visit ancient Egypt. You will meet four leaders, called pharaohs.

Numerical integration of a function known only through data points

Chapter 11 Number Theory

THE TECHNOLOGY BEHIND THE CONSTRUCTION OF THE PYRAMIDS OF GIZA

POLYNOMIAL FUNCTIONS

The Story of the Nile

Empires of Early Africa

Maths Workshop for Parents 2. Fractions and Algebra

Grade 5 Mathematics Curriculum Guideline Scott Foresman - Addison Wesley Chapter 1: Place, Value, Adding, and Subtracting

Characteristics of the Four Main Geometrical Figures

A project about Pyramids...and Mathematics. (Source: )

Properties of Real Numbers

Multiplication and Division with Rational Numbers

Africa Before the Slave Trade

How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.

Teacher-Directed Tour World History I: Egypt

Math 115 Spring 2011 Written Homework 5 Solutions

Quick Reference ebook

Calculating Area, Perimeter and Volume

Polynomial and Rational Functions

World History: 150,000 to 642 CE

CONTENTS. Please note:

Free Pre-Algebra Lesson 55! page 1

Charlesworth School Year Group Maths Targets

MATH 100 PRACTICE FINAL EXAM

Formulas and Problem Solving

A Short History of Egypt Part I: From the Predynastic Period to the Old Kingdom

MATH 110 Landscape Horticulture Worksheet #4

4. How many integers between 2004 and 4002 are perfect squares?

exercise: write down other things you know which are connected to Egypt.

SSWH3 THE STUDENT WILL EXAMINE THE POLITICAL, PHILOSOPHICAL, AND CULTURAL INTERACTION OF CLASSICAL MEDITERRANEAN SOCIETIES FROM 700 BCE TO 400 CE.

Egypt Under the Pharaohs

Egypt. 1. Find the words to do with Ancient Egypt in the wordsearch below?

Ancient Egypt and Kush

1.2 Chord Tables of Hipparchus and Ptolemy (Copyright: Bryan Dorner all rights reserved)

ALGEBRA I (Common Core) Wednesday, August 13, :30 to 11:30 a.m., only

DRAW CONCLUSIONS As you read, draw conclusions about the importance of the Nile River to life in Egypt. Focus Skill

Geometry of sacred number 7 (l'll examine 7 points star within a circle)

History of U.S. Measurement

Investigating Area Under a Curve

Lesson 21. Circles. Objectives

TEST BOOK AND ANSWER KEY

SOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( )( ). The Odd-Root Property

Scope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B

Session 6 Number Theory

MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created January 17, 2006

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Surveying in Ancient Egypt

Tennessee Mathematics Standards Implementation. Grade Six Mathematics. Standard 1 Mathematical Processes

PowerScore Test Preparation (800)

MATH 60 NOTEBOOK CERTIFICATIONS

Mathematics. What to expect Resources Study Strategies Helpful Preparation Tips Problem Solving Strategies and Hints Test taking strategies

Warm-Up What is the least common multiple of 6, 8 and 10?

Polynomial Operations and Factoring

Common Core State Standards for Mathematics Accelerated 7th Grade

The Fibonacci Sequence and the Golden Ratio

Chapter 18 Introduction to. A f r i c a

D Nile Is Where It s At! Grade Level:

Common Core Unit Summary Grades 6 to 8

Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series

Tom wants to find two real numbers, a and b, that have a sum of 10 and have a product of 10. He makes this table.

Transcription:

IV. Egyptian Mathematics There are five main features of Egyptian mathematics on which we will focus. We will experience them first hand in homework II and in worksheet #3. The absence of place-value notation in their Hieroglyphic system of writing numbers Their advances in geometry Their use of addition in place of multiplication The use of only unit fractions with attendant algorithms the use of base ten arithmetic The first pharaoh to unite the upper and lower kingdoms of Egypt was the ruler of the southern, or upper kingdom, Narmer. He may have been the father of the king Aha. He united the two kingdoms in about 3100 B.C.E. This military victory is documented for us in the Narmer palette. The early pharaohs were buried in the ancient city of Abydos, in upper Egypt. There are inscriptions on ivory and wood in these pre-pyramidal tombs known as mastabas, which contain hieroglyphic numbers. Abydos predates Narmer, and this form of writing numerals goes back to the fifth millennium B.C.E. Abydos is about half way between Cairo and the Aswan dam. There is a map of ancient Egypt at the end of this section on Egyptian mathematics. There is a recently excavated area of older tombs in Abydos that lend credence to idea that the unification process took a few centuries to achieve. The king who finally united the upper and lower kingdoms may then have claimed full credit for himself. Older pharaohs known as Crocodile, Scorpion I and II, Iryhor and Ka have been identified, predating the first dynasty of Narmer. The lack of a place-value notation and the use of complicated ideographic hieroglyphics severely hampered the development of calculation in Egypt. Here are slightly fanciful depictions of the base ten hieroglyphic numbers. There is no zero. There are no negative numbers. The first row on this page shows their numbers 1, 3 10, 100 and 1,000. The numbers 2 through 9 are appropriate bunches of lines. The numbers 11 through 19 just place the lines by the loaf of bread (?) symbol for 10. Similarly for 101, 1,001, using the coil of rope for 100 and the lotus plant for 1,000.

Below we have their symbols for 10,000, 100,000 and 1,000,000. The frog is usually more of a tadpole. Since there was no place value 123 could be written several ways: and so on.., or The ancient Egyptians were more explicitly interested in geometry than their Mesopotamian counterparts. This is perhaps due to the annual flooding of the Nile River which was a powerful influence on the entire society. The upper kingdom of Egypt is the Valley of the Nile, never more than 15 miles wide, and surrounded by limestone cliffs with the desert beyond. The boundaries of land worked by farmers had to be reset every year. The areas of such geometric figures as rectangles, trapezoids and triangles were well known to these people. They used the formula A = 8d 2 " % $ ', for the area of a circle of diameter d. This translates in our terms into # 9 & " = 3.16049. This is not as accurate as the Babylonian value for ". Notice that both societies used such values for " in practical ways, and seem to have had no interest in fantastic accuracy, or conceptual differences between numbers that are integers, and numbers like ". The Egyptians of this ancient era were familiar with the use of similar figures in geometry. The construction of large tombs such as the pyramids required huge organization of logistics, and excellent geometric engineering feats. We still are not sure how they accomplished what they did with the technology at their disposal. The great pyramid of Khufu (Greek Cheops) was completed in 2744 B.C.E. and is an astounding building. In connection with these pyramids, the Egyptians found the formula ( ) for the volume of a truncated, square based pyramid of V = h 3 a2 + ab + b 2 height h, with base a and upper square side b. Again, we do not know how they did this. We would use calculus in some part of our derivation of this fact. The ancient Egyptians did not multiply but used doubling, a simple form of addition to accomplish any integer multiplication. Here is an example. to multiply 56 times 73 you take the larger number, 73. Line it up with the number 1:

1 ----- 73 You can get any integer by 2 ----- 146 Keep doubling the 73. adding powers of 2. 4 ----- 292 8 ----- 584 16 ----- 1168 Notice that 32 + 16 + 8 is 32 ----- 2336 56 56 times 73 is gotten by adding 2336 + 1168 + 584 = 4088. The ancient Egyptians used unit fractions (fractions with a numerator of 1) with the sole exception of 2/3. This is a less comfortable way to deal with fractions than the Mesopotamian unified place value notation. They had extensive tables for reducing fractions with numerators larger than 1 to unit fractions. We find tables of fractions as well as problems involving them in the Rhind papyrus written about 1650 B.C.E by the scribe Ahmose. Egyptian writing, when not on stone monuments, ivory or wood, was on papyrus which was used as far back as the first dynasty, around 3100 B.C.E. This material rots in humid conditions, so the documentation in Egypt is less than in Mesopotamia. In the Rhind Papyrus we find Ahmose using the splitting algorithm to create tables of unit fractions equivalent to other fractions: 2 n = 2 n + 1 + 2, where we assume n is an odd number. n(n + 1) If n is even, cancel the 2 to get a unit fraction. The Egyptians also used 2 3 = 1 2 + 1 6, a special case of the splitting algorithm We are now in a position to examine Egyptian division. Again, they used doubling and halving to accomplish division. Suppose you want to know how many times 8 goes into 59. You begin by doubling the divisor until the next double will exceed the dividend. 1 ---- 8 2 ---- 16 4 ---- 32 the next double is 64, bigger than 59. So add as many multiples of 8 as you can, 32 + 16 + 8 = 56, staying less than or equal to the dividend, in this case 59. We have 7 = 1 + 2 + 4 multiples of 8 here. We have 3 left over. We now need to get 3 from 8. Start halving the 8. 1 ---- 8 1/2 --- 4

1/4 --- 2 1/8 --- 1, and notice that 1 + 2 = 3. So 59/8 = 7 + 1/4 + 1/8, the answer always being in unit fractions. Another example is 83 divided by 7: 1 ---- 7 2 ---- 14 4 ---- 28 8 ---- 56 and 77 = 7 + 14 + 56 is best, so the whole number part of the answer is 11 = 1 + 2 = 8. We have 6 left over. The halving is awful so we use the splitting algorithm instead: 6 7 = 2 7 + 2 7 + 2 7 = 1 4 + 1 28 + 1 4 + 1 28 + 1 4 + 1 28 = 1 2 + 1 4 + 1 14 + 1 28 So the answer is 11 + 1 2 + 1 4 + 1 14 + 1 28. We engage with worksheet #3, Ancient Egyptian Calculations, at this point The ancient Egyptians seem to have had a more limited ability to solve quadratic equations than the Mesopotamians, although they did some solving of these equations. They also had less observational astronomy, though they had a 365 day year by 2776 B.C.E. Their new year was measured by the heliacal (rises at dawn and disappears in the sunlight) rising of the star we call Sirius, the dog star. To them it was the soul of Isis. Isis is the sister and wife of Osiris, both being the children of Geb (the earth) and Nut (the sky), and the parents of the god Horus, the falcon god. The Egyptians had a 12 month year with the day divided into 12 decans. These decans were longer or shorter, depending on the season of the year. It is not until Hipparchus around 175 B.C.E. proposed equal length hours that some educated people began using them. Popular use had to wait for the invention of mechanical clocks in the 14 th century. Homework II 1. Use the splitting algorithm to exhibit the following as sums of unit fractions: a. 2/7 b. 2/11 c. 2/13 d. 2/17 2. Exhibit the fraction 2/97 in two different ways as the sum of unit fractions.

3. Use the Egyptian method of doubling to calculate the following multiplications: a. 23x134 b. 14x58 c. 31x192 4. Use the Egyptian method of doubling and halving to calculate the following divisions: a. 1060 divided by 12 b. 19 divided by 8. 5. The Moscow Papyrus has the formula mentioned above for the volume of a truncated square pyramid. a. Suppose a = 3, b = 7 and h = 6. What is V? b. Suppose V = 183, a = 5 and b = 4, what is h? 6. Find the lengths of the sides of a rectangle whose area is 20 square feet and whose width is 4/5 of its length. 7. (Math Credit) Suppose you know that the volume of a square pyramid is V v = 1 3 " a2 h where a is the side of the base and h is the height. Use this extra fact to prove the Egyptian formula for the volume of a truncated square pyramid.. Here is a brief timeline of the history that parallels the mathematical developments described above. Before 3100 B.C.E. there were two kingdoms in Egypt already, one in the upper, or southern area, in the narrow Nile valley, and one in the northern, wide delta of the Nile. The city of Memphis was a dividing point. A thriving culture was mostly beyond our knowledge there. But there is evidence that the isolated cultures at several settlements along the Nile River were swallowed by the more advanced culture at Nagada. This culture spread both downriver and upriver around 4,000 B.C.E. Around 3100 Narmer united the two, establishing the first Dynasty, which lasted from 3100 to 2890 B.C.E. It may be the case that Narmer chose to claim total credit for the unification, while the actual process had been going on for several centuries. A second dynasty extended from 2890 to 2686 B.C.E. The Old Kingdom (4 th to 8 th dynasties) is usually dated from about 2575 to 2181 B.C.E. when the culture developed more of its science and mathematics and built its most impressive structures. During this period the religion came into being and

the pharaoh was equated with god. The capital city of Memphis was established in this era. The first intermediate period (9 th to 11 th dynasties) from 2125 to 1975 B.C.E. had Egypt as two kingdoms again. The capitals were at Memphis in the north and Thebes in the south. The Middle Kingdom (11 th to 14th dynasties) extends form 1975 to 1640 B.C.E. Mentuhotep reunited all of Egypt. During this period the capital was moved upriver from Memphis to Thebes. This was the classical period for arts and literature. The second intermediate period (15 th to 17 th dynasties) from 1630 to 1520 B.C.E. saw the Hyksos conquer the northern kingdom. The Hyksos had some Canaanite gods and were from the east. They introduced horse-drawn chariots into Egypt. Ahmose I drove the Hyksos out of Egypt. The New kingdom (18 th to 20 th dynasties) extends form 1539 to 1075 B.C.E. and saw a woman as pharaoh, Hatshepsut. The pharaoh Akhenaten introduced monotheism, but it did not last. Nefertiti was his queen. Elaborate tombs were built in the Valley of the Kings. Tutankhamun was the pharaoh from 1334 to 1325 B.C.E. Ramses II, the most powerful pharaoh, ruled from 1279 to 1213 B.C.E. Nubia conquered Egypt around 710 B.C.E. The Persians conquered Egypt in 525 B.C.E. In 332 B.C.E. Alexander the Great conquered Egypt.