Several important material properties are determined on the type and characteristic interatomic/interionic/intermolecular bonds:



Similar documents
Chapter 2. Atomic Structure and Interatomic Bonding

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras

Section 3: Crystal Binding

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing.

CHAPTER 6 Chemical Bonding

H 2O gas: molecules are very far apart

KINETIC THEORY OF MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature

KINETIC MOLECULAR THEORY OF MATTER

Chapter Outline. Review of Atomic Structure Electrons, Protons, Neutrons, Quantum mechanics of atoms, Electron states, The Periodic Table

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

INTERMOLECULAR FORCES

Chapter 2: The Chemical Context of Life

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

Chapter 13 - LIQUIDS AND SOLIDS

AP CHEMISTRY 2009 SCORING GUIDELINES

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided.

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

Why? Intermolecular Forces. Intermolecular Forces. Chapter 12 IM Forces and Liquids. Covalent Bonding Forces for Comparison of Magnitude

Use the Force! Noncovalent Molecular Forces

Chapter 10 Liquids & Solids

POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s):

Bonding & Molecular Shape Ron Robertson

Type of Chemical Bonds

Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134)

6.5 Periodic Variations in Element Properties

Chapter 8 Basic Concepts of the Chemical Bonding

Chemistry 1050 Chapter 13 LIQUIDS AND SOLIDS 1. Exercises: 25, 27, 33, 39, 41, 43, 51, 53, 57, 61, 63, 67, 69, 71(a), 73, 75, 79

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6, , , ,

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n)

Chapter 7: Polarization

Unit 3: Quantum Theory, Periodicity and Chemical Bonding. Chapter 10: Chemical Bonding II Molecular Geometry & Intermolecular Forces

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges.

The strength of the interaction

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.

Bonding in Elements and Compounds. Covalent

CHEMISTRY BONDING REVIEW

Thermodynamics of Crystal Formation

Matter, Materials, Crystal Structure and Bonding. Chris J. Pickard

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter

Sample Exercise 8.1 Magnitudes of Lattice Energies

CHEM 120 Online Chapter 7

Intermolecular Forces

VAPORIZATION IN MORE DETAIL. Energy needed to escape into gas phase GAS LIQUID. Kinetic energy. Average kinetic energy

Chapter 2: Atomic Structure and Chemical Bonding

Questions on Chapter 8 Basic Concepts of Chemical Bonding

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Bonding Practice Problems

Sample Exercise 8.1 Magnitudes of Lattice Energies

Chapter 2 The Chemical Context of Life

3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP

Non-Covalent Bonds (Weak Bond)

Chapter 2 Polar Covalent Bonds; Acids and Bases

Theme 3: Bonding and Molecular Structure. (Chapter 8)

AS Chemistry Revision Notes Unit 1 Atomic Structure, Bonding And Periodicity

Chapter 8 Concepts of Chemical Bonding

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

Chapter 4: Structure and Properties of Ionic and Covalent Compounds

BOND TYPES: THE CLASSIFICATION OF SUBSTANCES

Unit 2 Periodic Behavior and Ionic Bonding

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

Unit 3: Quantum Theory, Periodicity and Chemical Bonding

Chapter 2 Polar Covalent Bonds: Acids and Bases

The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of

Explain the ionic bonds, covalent bonds and metallic bonds and give one example for each type of bonds.

10.7 Kinetic Molecular Theory Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory

Bonds. Bond Length. Forces that hold groups of atoms together and make them function as a unit. Bond Energy. Chapter 8. Bonding: General Concepts

Section Activity #1: Fill out the following table for biology s most common elements assuming that each atom is neutrally charged.

REVIEW QUESTIONS Chapter 8

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br.

Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num

Trends of the Periodic Table Diary

Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment.

Equations of State. Equations of State (EoS)

Exam 4 Practice Problems false false

Introduction to Chemistry. Course Description

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds?

Chemistry Diagnostic Questions

Laboratory 11: Molecular Compounds and Lewis Structures

CHAPTER 12: CHEMICAL BONDING

Ionic and Metallic Bonding

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Chemistry 151 Final Exam

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.

Unit 11 Practice. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

CHAPTER 10 THE SHAPES OF MOLECULES

The elements of the second row fulfill the octet rule by sharing eight electrons, thus acquiring the electronic configuration of neon, the noble gas o

VSEPR Model. The Valence-Shell Electron Pair Repulsion Model. Predicting Molecular Geometry

KINETIC THEORY AND THERMODYNAMICS

Kinetic Molecular Theory. Chapter 5. KE AVE and Average Velocity. Graham s Law of Effusion. Chapter 7. Real Gases

(1) e.g. H hydrogen that has lost 1 electron c. anion - negatively charged atoms that gain electrons (1) e.g. HCO 3 bicarbonate anion

Getting the most from this book...4 About this book...5

Name period AP chemistry Unit 2 worksheet Practice problems

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes.

1 The water molecule and hydrogen bonds in water

Chem 121 Problem Set V Lewis Structures, VSEPR and Polarity

Self Assessment_Ochem I

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?

Transcription:

Interatomic and intermolecular forces. What will be covered? 1. Binding energy: basic concepts 2. Ionic bonding. 3. Chemical bonding. a. Primary bonds. b. Secondary bonds. Why do we need to know this material? Several important material properties are determined on the type and characteristic interatomic/interionic/intermolecular bonds: 1. Melting temperature is a function of the interatomic bonding energy. The higher this energy the higher the melting temperature. 2. The modulus of elasticity of a material is related to the shape of a materials force-atomic separation curve. 3. The strength of some polymeric materials are functions of the degree of secondary bonding between adjacent molecules. 4. Electrical conductivity is dependent on the type of interatomic bond. Metallic bonded materials are typically electrical conductors while those that are ionically or covalently bonded tend to be insulators. The magnitude of the coefficient of thermal expansion is dependent upon the materials potential energy atomic separation curve. Binding energy: basic concepts. Two atoms approaching to less than a few tens of angstroms (Å) exert forces on each other. The net force can be thought of as a combination of an attractive and a repulsive term. The dependence upon distance of the two forces is usually different, with repulsion dominating on very close approach. This results in a maximum of the attractive forces at some intermediate distance as well as at a distance (ro) at which the force is zero. The relationship between the force and the potential energy, U(r), is given by: F(r) = du(r)/dr.

In this convention, attractive forces are considered positive. Based upon this relationship, the potential has a minimum at the same distance ro at which the force is zero. Values of ro are generally on the order of a few angstroms. At ro the value of U(r) is termed the binding energy Eb. Eb ranges from 100 to 1500 kj/mole for primary bonds and is of the order of 10 kj/mole for secondary bonds. The changes in interaction potential with distance can generally be described quite well by the following expression: U(r) = - a/r m + b/r n Here the coefficient a describes the attractive potential and b the repulsive potential. The exponents m and n are characteristic of the type of binding and the electronic structure. For the bonding of ions m = 1 while for covalent bonding m = 6. n is also called the Born constant and varies for different electronic configurations. Note that binding occurs when m<n; otherwise repulsion dominates. The situation when m = 6 and n = 12 is termed the Lennard Jones potential. When the potential between two atoms has the general form shown in the energy-well figure, there is a good chance that stable aggregates of these atoms can be formed, and the atoms are said to be held together by chemical bonds. Related to the shape of the potential energy well are the concepts of ionic and atomic radii. In bonded structures the equilibrium distance of the the two bonding partners is considered the sum of their radii.

Several important factors can influence this distance: Temperature: an increase in energy of thermal motion will increase the mean distance between atoms if the potential trough is asymmetrical. This leads to positive expansion coefficients. Ionic valence changes interatomic spacing. Positively charged ions are smaller than the neutral atom whereas negatively charged ions are larger. e.g. Fe: 0.1241nm Fe++: 0.04nm Coordination number: the number of adjacent atoms can increase to the point of crowding: e.g. Fe with CN = 8: Fe with CN = 12: 0.124nm 0.127nm There is a direct proportionality between Eb and Tm.

Specific description of ionic bonds. Overview Ionic bonding results from the strong electrostatic attraction between oppositely charged particles. The ionizations of the originally electrically neutral atoms involved result from the transfer of valence electrons between the atom species involved. One of these gives up its valence electrons and becomes a positively charged ion whereas the other accepts the transferred valence electrons and becomes a negatively charged ion. The resulting coulombic attraction between the charged particles binds the two ions together. Atoms most likely to participate in this mechanism may be identified by their positions in the periodic table relative to those of the noble gases. Atoms with positions just preceding the noble gases tend to accept electrons; those just following tend to donate or to transfer their electrons. The transfer if the valence electrons from the cation to the anion oppositely charges both species and causes both ions to have have highly spherical, noble gas-like electron configurations. This is a major reason why classical electrostatics may be used to describe their bonding mechanism. Mathematical development. The energy of attraction between two isolated charged particles is given by Coulomb s law as: UA = (Z1e)(-Z2e)/4πεor where Z1 and Z2 are the respective numbers of charges on the positive and negative ions, e is the charge on the electron, 4πεo is the dielectric constant of vacuum and r is the distance between the ions.

This expression can be simplified by using the relative dielectric constant of vacuum: εr = 1, so that: UA = -(Z1)(Z2)e 2 /r The minimization of the energy of attraction (i.e. the maximization of the negative UA) between the ions requires that they be as close together as possible. The electron clouds abut and start to overlap each other. As the clouds begin their mutual penetration, the Pauli exclusion principle begins to take effect. Since electrons with the same quantum numbers will be present in each cloud, the clouds will resist further penetration. Hence, a mutual repulsion arises as expected based upon the Pauli exclusion principle. Born has shown that the mutual repulsion energy between a pair of ions in a crystal is given by: U R = b/r n Where b is a constant for a given ion pair and n is known as the Born exponent or the repulsion exponent whose value depends on the electronic configuration. Noble Gas Outer Core Repulsion Ion Core Configuration Exponent, n He 1s 2 5 Ne 2s 2 p 6 7 Ar 3s 2 3p 6 9 Kr 3d 10 4s 2 4p 6 10 Xe 4d 10 5s 2 5p 6 12 The total energy of bonding in terms of an isolated ion pair is thus the sum of the attractive and repulsive terms: UT(r) = [ - (Z1)(Z2)e 2 /r] + b/r n

The strong electrostatic attractions between ions in ionic crystals are both omnidirectional and long-range in nature. This causes each ion of a given crystal sign to be attracted to every other ion of opposite sign in the crystal. Since these attractive energies vary inversely with the distances between the ions, the more closely situated neighbors make larger contributions to this than do the more widely separated pairs. The summation of all these contributions is a function of the crystal structure of the solid. This is accounted for by modification of the above equation to include α m, the Madelung constant: UT(r) = [ - (Z1)(Z2)e 2 m /r] + b/r n where m is proportional to ±1/rij j The plus and minus sign refer to the attractions between both a positive and negative reference ion and all other ions in the crystal. Determination of the parameter b. At equilibrium, U T (r) will be a minimum and the variation of U T (r) with respect to r will be zero so that, where n is now a constant for a given ionic solid and r = ro is the equilibrium spacing, dut(r)/dr = [-(Z1)(Z2)e 2 m/ro 2 ] nb/ro n+1 = 0 and b = [-(Z1)(Z2)e 2 m/nro 1-n The Born exponent can be shown to vary inversely with the compressibility of the solid. Incorporating this result, UT(r) = [-(Z1)(Z2)e 2 m/ro] (1-1/n)

Note that the interionic distance ro is the distance of closest approach of the ions of differing sizes treated as hard spheres and therefore represents the sum of the radii of both such spheres. Since the radii of given ions will vary depending on factors that include lattice type and the nature of other ions in the lattices with the given ion, it is not the ionic radius. The molar bonding energy is obtained from the above equation by multiplying both sides by Avagadro s number, NA. Umol = NA UT(r) = [-NA (Z1)(Z2)e 2 m/ro] (1-1/n) Calculations based upon this relationship usually provide molar bonding energies that are slightly less than those determined experimentally. This results from the fact that the clouds that constitute the ions are not perfectly hard spheres; some mutual penetration appears to take place. Some of the electrons in the interpenetrating clouds may be shared by both ions. This is the equivalent of adding a small component of covalent bonding to the predominating ionic bonding. Indeed, it is probable that perfectly pure ionic bonding normally does not exist and that some small degree of covalency is present.

This may account for the aforementioned small differences between the experimental and calculated values of Umol. The minima in the potential energy curves determine the equilibrium interionic spacings, r o ; these are the primary determinants of the crystal lattices formed from the various paired ionic species. The inflection points can be considered proportional to the minimum quantity of energy required to destroy the crystalline array (i.e. melting); these points occur when the second derivative of UT(r) = 0. Any externally added energies, or their derivative forces, equal to or larger than the inherent ones are thus expected to disrupt the crystalline array. Also note that the slope of the force curve evaluated at r = r o is proportional to Young s modulus (E) of the crystal. [d 2 U(r) / Dr 2 ]r=r = CE where C is a constant. In the absence of external forces, the crystal has an equilibrium spacing of ro. When an external force is applied, the interatomic spacing is altered. Both biaxial extension and lateral contraction increase the lattice potential energy. For small elastic extensions (contractions), r, the force increases linearly with r/ro, i.e., the strain. If the single crystal is extended along the [100], it is difficult to relate Young s modulus in the [100] to the force or energy curves. This is because there is an extension along the [100] but a lateral contraction along the [010] and [001]. This problem is avoided if the results of a hydrostatic state of stress are considered. The crystal potential energy can be plotted versus the volume per atom, Ω

When a hydrostatic tensile stress is applied, the atomic volume is increased from Ωo to Ωo + Ω and U increases. Now, = F/A = -( U/ Ω). In the vicinity of the equilibrium spacing (ro) or volume (Ωo), both the U - r and U - Ω relationships are quite symmetric; hence U/ Ω increases linearly with Ω (i.e. Ω Ωo) around Ω = Ωo and so does.

Therefore, the bulk modulus K can be related to the change in atomic volume according to: Since the derivative of the U - Ω curve increases linearly with increases in Ω, U 2 / Ω 2 is constant near Ω = Ωo and linear elasticity is observed. At larger strain this is no longer true and linear elasticity is not found even though the elastic behavior still results from the stretching of primary atomic bonds. While modulus values are related to bond energy, U, the bond energy in return depends on the equilibrium interatomic spacing and the nature of the chemical bonding force. Based on these concepts, the properties of ionically bonded solids may be derived on the basis that the electrons involved are in very deep wells and consequently their bonding energies are expected to be high. The electrons may be considered as being virtually immobile and as a result their electrical and thermal conductivities are antipated to be very low, i.e. ionic solids would be expected to be insulators. The deep wells and corresponding high bond strengths are manifested by deep and narrow energy versus distance curves. These lead to the prediction of high modulii of elasticity, high melting points and low coefficients of thermal expansion.

General description of chemical bonds. In general, a non-rigid classification scheme is utilized in which gradual transitions from one type to another are possible. Primary bonds Ionic Exchange of valence electrons Electrostatic (coulombic) attractive forces Non-directional nature Large bonding energies Covalent Shared electrons between adjacent atoms Directional nature Wide range of bonding energies Metallic Electron cloud / ion core Delocalized nature Wide range of bonding energies Secondary bonds Physical bonds that are weak relative to primary bonds and may be obscured by the presence of primary bonds. Arise from atomic or molecular dipoles (electrostatic) Types van der Waals Induced dipole Instantaneous and temporary Polar Permanent dipoles Depends on asymmetry of component atoms Hydrogen Special case of polar bonding Occurs with covalent bonding of H to O, N and F Strength arises from presence of positively charged, unscreened bare proton

Importance Accounts for properties of molecular substances ranging from diatomic molecules to polymers. More detailed consideration of van der Waals interactions Dipole dipole bonds When different atoms in a molecule carry equal and opposite charges, the molecule is described as polar and possesses a dipole moment (µ = qr). At large distance such a molecule acts as an electrically neutral system, but at molecular distances the separation becomes sufficiently small for an intermolecular attractive force to be generated. Example: methyl chloride (CH3Cl) The magnitude of this interaction is given by: where ε o is the permittivity of free space. At T increases, thermal agitation destroys the alignment of the dipoles. Dipole induced dipole bonds Te presence of a polar molecule in the vicinity of another molecule (polar or non-polar) has the effect of polarizing the second molecule. The induced dipole can then interact with the dipole moment of the first molecule. The magnitude of the interaction depends on the size of the permanent dipole moment of the polar molecule and the polarizability of the second molecule:

Since the induced dipole moment follows the direction of the inducing dipole, we do not need to take account of the effects of thermal motion. Because the pair of molecules is unable to disorientate the induced moment from the direction of the inducing moment, the effect survives even when the polar molecule is rotating freely (at higher temperatures) in the vicinity of the polarizable molecule. Induced Dipole induced dipole bonds. Fluctuation of electron clouds creates an instantaneous (time varying) dipole moment constantly changing in magnitude and direction. This fluctuation generated a mutual polarization. Example: methane (CH4) The magnitude of these dispersive forces is quite involved but a reasonable approximation is given by: where I represents the ionization potential. These dispersive forces account for the major portion of the intermolecular forces in nonpolar materials. This interaction is critical when summed over large distance (i.e. molecular weight effects).

Total interactions. The London formula also applies to the interactions between polarizable molecules so the total interaction energy between molecules is given by the sum of the above three equations. All three energies are negative, implying a lowering of energy as the molecules approach; hence, they indicate the presence of attractive forces between the molecules. Note that all three effects vary as r -6 General representation: Attraction: Repulsion: Overall: When molecules are pushed together the nuclear and electronic repulsions begin to dominate the attractive forces. The repulsive interactions rise very steeply with decreasing separation and so the intermolecular energy is expected to follow a sharply rising curve.