The Synthesis of Biodiesel from Vegetable Oil 2012 by David A. Katz All rights reserved.



Similar documents
Making Biodiesel from Virgin Vegetable Oil: Teacher Manual

PREPARATION AND PROPERTIES OF A SOAP

Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap

Extraction: Separation of Acidic Substances

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..

Physical and Chemical Properties and Changes

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.

AN EXPERIMENT IN ALCHEMY: COPPER TO SILVER TO GOLD 2005, 2000, 1996 by David A. Katz. All rights reserved

Dissolving of sodium hydroxide generates heat. Take care in handling the dilution container.

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid

Separation by Solvent Extraction

Saturated NaCl solution rubber tubing (2) Glass adaptor (2) thermometer adaptor heating mantle

Synthesis of Aspirin and Oil of Wintergreen

ISOLATION OF CAFFEINE FROM TEA

PART I: PREPARATION OF SOLUTIONS AND STANDARDIZATION OF A BASE

Experiment 8 Preparation of Cyclohexanone by Hypochlorite Oxidation

Experiment 3: Extraction: Separation of an Acidic, a Basic and a Neutral Substance

Mixtures and Pure Substances

Experiment 8 Synthesis of Aspirin

Recovery of Elemental Copper from Copper (II) Nitrate

Table 1. Common esters used for flavors and fragrances

Non-polar hydrocarbon chain

Chemistry of Biodiesel Production. Teacher Notes. DAY 1: Biodiesel synthesis (50 minutes)

The most common active ingredient used in deodorants is aluminium chlorohydrate. But not all deodorants contain aluminium chlorohydrate:

DYES AND DYEING 2003 by David A. Katz. All rights reserved. Permission for classroom use provided original copyright is included.

Experiment 5 Preparation of Cyclohexene

Experiment 12- Classification of Matter Experiment

Chuck Neece Director Research and Development FUMPA BioFuels

CH243: Lab 4 Synthesis of Artificial Flavorings by Fischer Esterification

Page 1 of 5. Purification of Cholesterol An Oxidative Addition-Reductive Elimination Sequence

Making Biodiesel in the Classroom

Figure 3-1-1: Alkaline hydrolysis (saponification) of oil to make soaps.

COMMON LABORATORY APPARATUS

Synthesis of Isopentyl Acetate

Determination of a Chemical Formula

EXPERIMENT 9 (Organic Chemistry II) Pahlavan - Cherif Synthesis of Aspirin - Esterification

Isolation of Caffeine from Tea

The Empirical Formula of a Compound

WASTE COOKING OIL TO FUEL PROGRAM HOW TO START YOUR OWN BIODIESEL FUEL PROGRAM

Acid Base Titrations

Determination of Aspirin using Back Titration

Laboratory 28: Properties of Lipids

Introduction to Biodiesel Chemistry Terms and Background Information

Experiment #7: Esterification

STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14

H H H O. Pre-Lab Exercises Lab 6: Organic Chemistry. Lab 6: Organic Chemistry Chemistry Define the following: a.

Unit 5 Renewable Energy Biodiesel Lab. Unit 5. Renewable Energy/Biodiesel Lab

Austin Peay State University Department of Chemistry CHEM Empirical Formula of a Compound

Hands-On Labs SM-1 Lab Manual

Preparation of an Alum

EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate

This compound, which contains two carbon atoms with a C-OH structure on one end of the molecule is ethanol, commonly called ethyl alcohol.

Quality of Soaps Using Different Oil Blends

14 Friedel-Crafts Alkylation

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND

Chapter 5, Lesson 3 Why Does Water Dissolve Salt?

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

Experiment 7: Titration of an Antacid

Taking Apart the Pieces

The Properties of Water (Instruction Sheet)

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

HYDRATES 2009 by David A. Katz. All Rights reserved. Reproduction permitted for education use provided original copyright is included.

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

EXPERIMENT 12 A SOLUBILITY PRODUCT CONSTANT

PREPARATION FOR CHEMISTRY LAB: COMBUSTION

Green Principles Atom Economy Solventless Reactions Catalysis

Solubility Curve of Sugar in Water

Recrystallization II 23

PECTINS. SYNONYMS INS No. 440 DEFINITION DESCRIPTION. FUNCTIONAL USES Gelling agent, thickener, stabilizer, emulsifier CHARACTERISTICS

Synthesis of tetraamminecopper(ii) sulfate, [Cu(NH 3 ) 4 ]SO 4 The reaction for making tetraamminecopper(ii) sulfate and some molar masses are:

Separation and Identification of Plant Pigments Dr. Gergens - SD Mesa College

Determining the Quantity of Iron in a Vitamin Tablet. Evaluation copy

PHYSICAL SEPARATION TECHNIQUES. Introduction

General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction

Determination of the enthalpy of combustion using a bomb calorimeter TEC. Safety precautions

Solids, Volatile Dissolved and Fixed Dissolved

EXPERIMENT FIVE. Preparation of Cyclohexene from Cyclohexanol: an Elimination Reaction DISCUSSION

Properties of Acids and Bases

PREPARATION OF ACETYLSALICYLIC ACID (ASPIRIN)

Experiment 8 - Double Displacement Reactions

The Synthesis of trans-dichlorobis(ethylenediamine)cobalt(iii) Chloride

IB Chemistry. DP Chemistry Review

DarkStar VI 841 St Louis Rd., Collinsville, IL Biodiesel Basics. By Phillip D. Hill (Updated August 16 th, 2002)

ANALYSIS OF VITAMIN C

EXPERIMENT 12: Empirical Formula of a Compound

Oxidation States of Copper Two forms of copper oxide are found in nature, copper(i) oxide and copper(ii) oxide.

Laboratory 22: Properties of Alcohols

Lab 25. Acid-Base Titration and Neutralization Reactions: What Is the Concentration of Acetic Acid in Each Sample of Vinegar?

SEPARATION OF A MIXTURE OF SUBSTANCES LAB

Enzyme Pre-Lab. Using the Enzyme worksheet and Enzyme lab handout answer the Pre-Lab questions the pre-lab must be complete before beginning the lab.

Warm-Up 9/9. 1. Define the term matter. 2. Name something in this room that is not matter.

# 12 Condensation Polymerization: Preparation of Two Types of Polyesters

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD KEY

Safety and Laboratory Procedures from the CWU Department of Chemistry CHEM 101 Laboratory Manual

Apparatus error for each piece of equipment = 100 x margin of error quantity measured

Chemical versus Physical Changes

Acid-Base Extraction.

Juice Titration. Background. Acid/Base Titration

Physical Properties of a Pure Substance, Water

Transcription:

Introduction The Synthesis of Biodiesel from Vegetable il 2012 by David A. Katz All rights reserved. The use of reclaimed vegetable oil from restaurants, for use as a fuel for road vehicles, has received a lot of attention in recent years. Used vegetable oils contain solids and free fatty acids due to oil breakdown during the frying process. Normally, the used oil must be filtered and the quantity of the free fatty acids must be determined so that the chemicals necessary for the breaking down of the cooking oil can be calculated. In this experiment the biodiesel will be made from fresh vegetable oil to avoid the solids and a titration to determine the mass of sodium hydroxide needed to react with the whole oil molecules. The diesel engine was developed by Rudolf Diesel, a French thermal engineer, in 1893 with the first working prototype in 1897. A diesel engine works by creating heat by compressing air followed by the injection of fuel which burns, increasing pressure to drive the pistons. Early diesel engines were intended to run on peanut oil and were later adapted to run on the lower viscosity and cheaper petroleum diesel. Today, diesel engines are used in cars, buses and trucks. Biodiesel can be used directly in diesel engines or blended with petroleum based diesel fuel. Vegetable oils are esters of glycerin, commonly called triglycerides, with different fatty acids with the structure: I HC 2 CR II HCCR III H2 CCR. Where R I, R II, and R III can be the same or different fatty acids. (See Table 1) The preparation of the biodiesel is a transesterification reaction where the triglycerides are converted into simpler methyl esters of the fatty acids (the biodiesel). HC 2 CR HC 2 H NaH HCCR + 3 CH3H 3 H (catalyst) 2CCR HCH H CCR H CH 2 2 Triglyceride methanol fatty acid methyl ester glycerin 1

il or Fat Table 1. Fatty acid composition of some common edible fats and oils Percent by weight of total fatty acids Unsat./Sat. ratio Capric C10:0 Saturated fatty acids Lauric C12:0 Myristic C14:0 Palmitic C16:0 Stearic C18:0 Mono unsaturated leic C18:1 Poly unsaturated Linoleic (ω6) C18:2 Alpha Linolenic (ω3) C18:3 Canola il 15.7 - - - 4 2 62 22 10 Coconut il 0.1 6 47 18 9 3 6 2 - Corn il (Maize il) 6.7 - - - 11 2 28 58 1 Cottonseed il 2.8 - - 1 22 3 19 54 1 Flaxseed il 9.0 - - - 3 7 21 16 53 Grape seed il 7.3 - - - 8 4 15 73 - Lard (Pork fat) 1.2 - - 2 26 14 44 10 - live il 4.6 - - - 13 3 71 10 1 Palm il 1.0 - - 1 45 4 40 10 - Palm Kernel il 0.2 4 48 16 8 3 15 2 - Peanut il 4.0 - - - 11 2 48 32 - Safflower il* 10.1 - - - 7 2 13 78 - Sesame il 6.6 - - - 9 4 41 45 - Soybean il 5.7 - - - 11 4 24 54 7 Sunflower il* 7.3 - - - 7 5 19 68 1 Notes: Percentages may not add to 100% due to rounding and other constituents not listed. Where percentages vary, average values are used. The symbol C10:0 or C18:2 tells the number of carbon atoms in the fatty acid and the number of carbon carbon double bonds in the compound Safety Safety goggles must be worn at all times in the laboratory Sodium Hydroxide is caustic both as a solid and in solution. Significant heat is released when the sodium hydroxide dissolves in water. In the event of skin contact, wash the affected area with copious amounts of water. Contact with the eyes can cause serious longterm damage. In the event of eye contact, go to the nearest eyewash and rinse the eyes for up to 15 minutes. Have all areas of contact evaluated by qualified medical personnel. Methanol is flammable. Work with the methanol away from any ignition source. (NTE: Hotplates can spark, unseen to the experimenter.) The flame above burning methanol is virtually invisible, so it is not always easy to observe a methanol flame. Methanol vapors are toxic, work in a well ventilated area. When burning the biodiesel, work in a fume hood. 2

Disposal All wastes from the reaction should be placed in a bottle labeled for vegetable oil, glycerin and methanol. A separate container will be provided for collection of the biodiesel. Materials Needed Vegetable oil (soybean, peanut, cottonseed, coconut, or other oil of your choice) Sodium hydroxide, NaH, pellets Methanol, CH 3 H, absolute Sodium chloride, NaCl Sodium sulfate, Na 2 S 4, anhydrous Steel wool 125 ml Erlenmeyer flask 2-100 ml or 150 ml beakers 50 ml graduated cylinder Thermometer, 110 or 120C Separatory funnel Watch glass Mortar and pestle Vacuum filtration apparatus: side arm flask with Büchner funnel and filter paper Magnetic stir bar Stirring hot plate ph paper test tube, 12 x 75 mm test tube rack digital thermometer or Lab Pro with temperature probe Procedure Measure out 14 ml of methanol and put into the 125 ml Erlenmeyer flask. Weigh out 0.50g of sodium hydroxide pellets. Crush these pellets in a clean, dry mortar and pestle. Transfer the crushed solid into the flask containing the methanol. Place a stir bar into the flask, place it on a magnetic stirrer and stir for 5-10 minutes until the NaH dissolves. Measure out 60 ml of vegetable oil, determine the mass of the oil and add this to the reaction flask. Heat the flask and its contents to a temperature between 45 and 50C for 20 to 30 minutes with continuous stirring such that the mixture does not separate into two layers. While still warm, pour the mixture into a separatory funnel and allow to cool until the mixture separates into two layers. The upper layer will be the biodiesel and the lower layer will be mostly glycerin. Do not let it stand for too long as the lower layer may solidify. 3

Drain the lower layer into a 100 ml beaker. This solution contains glycerin, unreacted methanol, unreacted sodium hydroxide, a trace of water and salts. In a commercial process, the glycerin and methanol can be collected for reuse. In this experiment, it will be disposed in a waste container labeled for glycerin and methanol. The top layer in the separatory funnel should be the biodiesel. It will be contaminated with traces of methanol, glycerin, unreacted sodium hydroxide, and some soap which is a byproduct of the reaction. (Soap is the sodium salt of a fatty acid.) Wash the biodiesel by adding 10 ml of tap water to the separatory funnel. Gently swirl the mixture for about 1 minute to dissolve the methanol, glycerin, sodium hydroxide, and any soap. Do not shake the mixture vigorously as an emulsion may form. Allow the mixture to separate. Drain of an discard the bottom layer. NTE: If an emulsion forms, add 0.2 g of sodium chloride and swirl the mixture for 1 to 2 minutes. Allow the mixture to stand. Two layers should form. Drain off the lower layer and discard it in the waste container labeled for glycerin and methanol. Drain the biodiesel layer into a clean, dry beaker. Vacuum filter the biodiesel using a Buchner filtration apparatus into a clean, dry side arm flask. Remove any traces of water from the biodiesel by adding 0.5 g of anhydrous sodium sulfate. Swirl the mixture for 1 to 2 minutes. Pour the dried biodiesel into a clean, dry, weighed 50 ml graduated cylinder. Determine the mass and the volume of the biodiesel. Evaluation of the Biodiesel Determination of ph Add 5 drops of your biodiesel to 1 ml of distilled water and mix thoroughly. Using ph paper, estimate the aqueous ph of your biodiesel. Freezing point Biodiesel will gel at low temperatures. Transfer approximately 1 ml of your biodiesel to a small test tube. Place the test tube in a test tube rack and place it in the freezer for 15-20 minutes. Your biodiesel should gel in this time. If your biodiesel does not gel, repeat the drying step. Remove the sample from the freezer and immediately add a digital thermometer and record the temperature. Holding the test tube near its top, gently stir the gel with the thermometer and record the temperature when the sample has completely melted. Clean the thermometer or temperature probe when done. 4

Combustion Test btain a small wad of clean steel wool. Fluff the steel wool to the size of a ping pong ball. Place the steel wool on a watch glass and determine the total mass. Place 5 10 drops of your biodiesel on the steel wool. Determine the mass of the biodiesel used. Take the watch glass and steel wool to the fume hood. Ignite the sample with a match. Record the time it takes for the sample to burn, the color of the flames, and if any smoke or soot is observed. Does the burning biodiesel have any odor? Allow the residue and watch glass to cool. Determine the residual mass of the biodiesel after combustion. References Harrison, Shallcross, and Henshaw, Climate Change: Some Chemistry Experiments, National Science Learning Centre, University of York, 2006 Costello, Small Scale Biodiesel Production, Chemistryland.com, web page updated 2011. Meyer and Morgenstern, Small Scale Biodiesel Production: A Laboratory Experience for General Chemistry and Environmental Science Students, Chem. Educator, Vol. 10, No. X, 2005 5

Report Form The Synthesis of Biodiesel from Vegetable il Name Course/Section Partner s Name (if applicable) Date Data and Results Volume of vegetable oil used Mass of vegetable oil used Volume of the dried purified biodiesel Mass of the dried purified biodiesel ml g ml g % yield of biodiesel based on mass % mass of dried biodiesel % yield = 100% mass of oil used Note: The theoretical yield of biodiesel is 70% Color of the purified biodiesel ph Test Estimated aqueous ph of your biodiesel Freezing point Temperature at which your gelled biodiesel melted C Combustion Test Was the biodiesel easy to ignite? 6

What color was the flame of the burning biodiesel? Did you observe any soot or smoke? Did the burning biodiesel have an odor? If yes, describe it. Time that your biodiesel sample burned min Questions 1. Why do fatty acid esters (the biodiesel) and glycerin separate into different layers? 2. Why would the unreacted methanol and sodium hydroxide be more soluble in the glycerin layer rather than in the biodiesel? 3. Why has the biodiesel better physical properties than the starting vegetable oil for use in an engine? 7

4. Based on the ph of the biodiesel, do you think it has any corrosive effects on the engine or fuel system? 5. Look up the freezing point of the type of vegetable oil you used in this experiment. Compare that to the freezing point of your biodiesel. 6. Is biodiesel a practical fuel for the northern U.S. or Canada? What options are possible to improve the freezing point characteristics of biodiesel? 7. List four advantages of using biodiesel as a fuel. 8. Explain the difference between renewable and non-renewable resources. 8

9. In the commercial production of biodiesel, 1.20 x 10 3 kg of vegetable oil produces 1.1 x 10 3 kg of biodiesel. How does your yield compare to this? 10. Find the current price of biodiesel doing an Internet search. Compare that to the current price of diesel fuel made from petroleum. (Note: The retail cost of fuels includes state and national taxes.) 11. ne argument against biodiesel being a green fuel is that combustion produces C 2 which is a greenhouse gas. Is it possible to counter this argument from the standpoint of using renewable resources? 9