LM389 LM389 Low Voltage Audio Power Amplifier with NPN Transistor Array



Similar documents
LM388 LM W Audio Power Amplifier

LM709 LM709 Operational Amplifier

54LS174,54LS175,DM54LS174,DM54LS175, DM74LS174,DM74LS175

LM556 LM556 Dual Timer

TL081 TL081 Wide Bandwidth JFET Input Operational Amplifier

LM5030 LM5030 Application: DC - DC Converter Utilizing the Push-Pull Topology

LM386 Low Voltage Audio Power Amplifier

DS8907 DS8907 AM/FM Digital Phase-Locked Loop Frequency Synthesizer

LM1851 LM1851 Ground Fault Interrupter

Application Note AN107

LM380 Audio Power Amplifier

LM566C Voltage Controlled Oscillator

LM381 LM381A Low Noise Dual Preamplifier

LM108 LM208 LM308 Operational Amplifiers

AMC1100: Replacement of Input Main Sensing Transformer in Inverters with Isolated Amplifier

LM1596 LM1496 Balanced Modulator-Demodulator

LM138,LM338. LM138/LM338 5-Amp Adjustable Regulators. Literature Number: SNVS771A

LM79XX Series 3-Terminal Negative Regulators

LM138 LM338 5-Amp Adjustable Regulators

LF412 Low Offset Low Drift Dual JFET Input Operational Amplifier

Design Note DN304. Cebal CCxxxx Development Tools USB Driver Installation Guide By Åsmund B. Bø. Keywords. 1 Introduction

LH0091 True RMS to DC Converter

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

LM101A LM201A LM301A Operational Amplifiers

LM380 Audio Power Amplifier

MM54C150 MM74C Line to 1-Line Multiplexer

Providing Continuous Gate Drive Using a Charge Pump

5495A DM Bit Parallel Access Shift Registers

LM117 LM317A LM317 3-Terminal Adjustable Regulator

LMS8117A LMS8117A 1A Low-Dropout Linear Regulator

Analysis of Power Supply Topologies for IGBT Gate Drivers in Industrial

APPLICATION NOTE BUILDING A QAM MODULATOR USING A GC2011 DIGITAL FILTER CHIP

Application Report. 1 Description of the Problem. Jeff Falin... PMP Portable Power Applications ABSTRACT

CD4093BM CD4093BC Quad 2-Input NAND Schmitt Trigger

Data sheet acquired from Harris Semiconductor SCHS078C -- Revised October 2003

54157 DM54157 DM74157 Quad 2-Line to 1-Line Data Selectors Multiplexers

DM54LS260 DM74LS260 Dual 5-Input NOR Gate

5485 DM5485 DM Bit Magnitude Comparators

CD4008BM CD4008BC 4-Bit Full Adder

CD4511BM CD4511BC BCD-to-7 Segment Latch Decoder Driver

CD4027BM CD4027BC Dual J-K Master Slave Flip-Flop with Set and Reset


MM58274C MM58274C Microprocessor Compatible Real Time Clock

LM2900,LM3301,LM3900. LM2900/LM3900/LM3301 Quad Amplifiers. Literature Number: SNOSBV6

AN-1733 Load Transient Testing Simplified

Importing a SPICE NetList Into TINA9-TI

LM1036 Dual DC Operated Tone/Volume/Balance Circuit

Quad 2-Line to 1-Line Data Selectors Multiplexers

54191 DM54191 DM74191 Synchronous Up Down 4-Bit Binary Counter with Mode Control

54LS193 DM54LS193 DM74LS193 Synchronous 4-Bit Up Down Binary Counters with Dual Clock

DM74184 DM74185A BCD-to-Binary and Binary-to-BCD Converters

Calculating Gain for Audio Amplifiers

µa7800 SERIES POSITIVE-VOLTAGE REGULATORS

AN-225 IC Temperature Sensor Provides Thermocouple Cold-Junction

54LS169 DM54LS169A DM74LS169A Synchronous 4-Bit Up Down Binary Counter

DM54161 DM74161 DM74163 Synchronous 4-Bit Counters

LM118/LM218/LM318 Operational Amplifiers

Design Note DN004. Folded Dipole Antenna for CC25xx By Audun Andersen. Keywords. 1 Introduction CC2500 CC2550 CC2510 CC2511

Ultrasonic Sensing Basics for Liquid Level Sensing, Flow Sensing, and Fluid

Design Note DN041. Using CC253X or CC254X with Dipole PCB Antennas. Keywords. 1 Introduction. By Espen Wium CC2530 CC2531 CC2533 CC2540 CC2541

LMC835 LMC835 Digital Controlled Graphic Equalizer

AN-311 Theory and Applications of Logarithmic Amplifiers

2N3903, 2N3904. General Purpose Transistors. NPN Silicon. Pb Free Packages are Available* Features. MAXIMUM RATINGS

LM1084 5A Low Dropout Positive Regulators

P2N2222ARL1G. Amplifier Transistors. NPN Silicon. These are Pb Free Devices* Features.

LM78XX Series Voltage Regulators

LF442 Dual Low Power JFET Input Operational Amplifier

Data sheet acquired from Harris Semiconductor SCHS067B Revised July 2003

2N3906. General Purpose Transistors. PNP Silicon. Pb Free Packages are Available* Features MAXIMUM RATINGS

2N4401. General Purpose Transistors. NPN Silicon. Pb Free Packages are Available* Features MAXIMUM RATINGS THERMAL CHARACTERISTICS

LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators

Evaluating the complex configuration options of the Texas Instruments advanced fuel gauges can be

V OUT. I o+ & I o- (typical) 2.3A & 3.3A. Package Type

SDLS068A DECEMBER 1972 REVISED OCTOBER Copyright 2001, Texas Instruments Incorporated

ORDERING INFORMATION. TOP-SIDE MARKING PDIP N Tube SN74LS07N SN74LS07N PACKAGE. SOIC D Tape and reel SN74LS07DR

Data sheet acquired from Harris Semiconductor SCHS087D Revised October 2003

MPS2222, MPS2222A. NPN Silicon. Pb Free Packages are Available* Features MAXIMUM RATINGS MARKING DIAGRAMS THERMAL CHARACTERISTICS

Features. Applications

SDLS940A MARCH 1974 REVISED MARCH Copyright 1988, Texas Instruments Incorporated

ZigBee Sensor Monitor SWRU157D 2008 Low-Power RF

2N3903, 2N3904. General Purpose Transistors. NPN Silicon. Features Pb Free Package May be Available. The G Suffix Denotes a Pb Free Lead Finish

Features. Note Switches shown in digital high state

NPN wideband transistor in a SOT89 plastic package.

DC/DC LED Lighting Developer s Kit Hardware

White Paper on Decision of Make vs. Buy of ISM RF Module Written by Bruce Ulrich October 2006

TS321 Low Power Single Operational Amplifier

Thumbus2300. User's Guide. 1 Introduction. 1.1 Features. 1.2 Kit Contents

Wide Bandwidth, Fast Settling Difet OPERATIONAL AMPLIFIER

2N6056. NPN Darlington Silicon Power Transistor DARLINGTON 8 AMPERE SILICON POWER TRANSISTOR 80 VOLTS, 100 WATTS

Data sheet acquired from Harris Semiconductor SCHS020C Revised October 2003

AN-1963 IEEE 1588 Synchronization Over Standard Networks Using the

2N2222A. Small Signal Switching Transistor. NPN Silicon. MIL PRF 19500/255 Qualified Available as JAN, JANTX, and JANTXV.

DISCRETE SEMICONDUCTORS DATA SHEET BC856; BC857; BC858

AN-1900 LM3150 Evaluation Boards

TI and ibiquity Introduce Industry s Lowest Cost Single-Chip AM/FM and HD Radio Baseband John Gardner Digital Radio Marketing Manager

BC546B, BC547A, B, C, BC548B, C. Amplifier Transistors. NPN Silicon. Pb Free Package is Available* Features. MAXIMUM RATINGS

BD238. Low voltage PNP power transistor. Features. Applications. Description. Low saturation voltage PNP transistor

BD241A BD241C. NPN power transistors. Features. Applications. Description. NPN transistors. Audio, general purpose switching and amplifier transistors

BC546B, BC547A, B, C, BC548B, C. Amplifier Transistors. NPN Silicon. Pb Free Packages are Available* Features. MAXIMUM RATINGS

LM2907,LM2917. AN-162 LM2907 Tachometer/Speed Switch Building Block Applications. Literature Number: SNAA088

Transcription:

LM389 LM389 Low Voltage Audio Power Amplifier with NPN Transistor Array Literature Number: SNOSBT9A

LM389 Low Voltage Audio Power Amplifier with NPN Transistor Array General Description The LM389 is an array of three NPN transistors on the same substrate with an audio power amplifier similar to the LM386 The amplifier inputs are ground referenced while the output is automatically biased to one half the supply voltage The gain is internally set at 20 to minimize external parts but the addition of an external resistor and capacitor between pins 4 and 12 will increase the gain to any value up to 200 The three transistors have high gain and excellent matching characteristics They are well suited to a wide variety of applications in DC through VHF systems Features Amplifier Battery operation Minimum external parts Wide supply voltage range Low quiescent current drain Voltage gains from 20 to 200 Ground referenced input Self-centering output quiescent voltage Low distortion Transistors Operation from 1 ma to25ma Frequency range from DC to 100 MHz Excellent matching Applications AM-FM radios Portable tape recorders Intercoms Toys and games Walkie-talkies Portable phonographs Power converters Equivalent Schematic and Connection Diagrams Dual-In-Line Package December 1994 TL H 7847 1 LM389 Low Voltage Audio Power Amplifier with NPN Transistor Array Order Number LM389N See NS Package Number N18A TL H 7847 2 C1995 National Semiconductor Corporation TL H 7847 RRD-B30M115 Printed in U S A

Absolute Maximum Ratings If Military Aerospace specified devices are required please contact the National Semiconductor Sales Office Distributors for availability and specifications Supply Voltage 15V Package Dissipation (Note 1) 1 89W Input Voltage g0 4V Storage Temperature b65 Ctoa150 C Operating Temperature 0 Ctoa70 C Junction Temperature 150 C Lead Temperature (Soldering 10 sec ) 260 C Collector to Emitter Voltage V CEO 12V Electrical Characteristics T A e 25 C Collector to Base Voltage V CBO Collector to Substrate Voltage V CIO (Note 2) Collector Current I C Emitter Current I E Base Current I B Power Dissipation (Each Transistor) T A s a70 C Thermal Resistance i JC i JA 15V 15V 25 ma 25 ma 5mA 150 mw 24 C W 70 C W Symbol Parameter Conditions Min Typ Max Units AMPLIFIER V S Operating Supply Voltage 4 12 V I Q Quiescent Current V S e 6V V IN e 0V 6 12 ma P OUT Output Power (Note 3) V THD e 10% S e 6V R L e 8X 250 325 mw V S e 9V R L e 16X 500 mw A V Voltage Gain V S e 6V f e 1 khz 23 26 30 db 10 mf from Pins 4 to 12 46 db BW Bandwidth V S e 6V Pins 4 and 12 Open 250 khz THD Total Harmonic Distortion V S e 6V R L e 8X P OUT e 125 mw f e 1 khz Pins 4 and 12 Open 0 2 3 0 % PSRR Power Supply Rejection Ratio V S e 6V f e 1 khz C BPASS e 10 mf Pins 4 and 12 Open Referred to Output 30 50 db R IN Input Resistance 10 50 kx I BIAS Input Bias Current V S e 6V Pins 5 and 16 Open 250 na TRANSISTORS V CEO Collector to Emitter Breakdown Voltage I C e 1 ma I B e 0 12 20 V V CBO Collector to Base Breakdown Voltage I C e 10 ma I E e 0 15 40 V V CIO Collector to Substrate Breakdown Voltage I C e 10 ma I E e I B e 0 15 40 V V EBO Emitter to Base Breakdown Voltage I E e 10 ma I C e 0 6 4 7 1 7 8 V H FE Static Forward Current I C e 10 ma 100 Transfer Ratio (Static Beta) I C e 1 ma 100 275 I C e 10 ma 275 h oe Open-Circuit Output Admittance I C e 1 ma V CE e 5V f e 1 0 khz 20 mmho V BE Base to Emitter Voltage I E e 1 ma 0 7 0 85 V lv BE1 V BE2l Base to Emitter Voltage Offset I E e 1mA 1 5 mv V CESAT Collector to Emitter Saturation Voltage I C e 10 ma I B e 1mA 0 15 0 5 V C EB Emitter to Base Capacitance V EB e 3V 1 5 pf C CB Collector to Base Capacitance V CB e 3V 2 pf C CI Collector to Substrate Capacitance V CI e 3V 3 5 pf h fe High Frequency Current Gain I C e 10 ma V CE e 5V f e 100 MHz 1 5 5 5 Note 1 For operation in ambient temperatures above 25 C the device must be derated based on a 150 C maximum junction temperature and a thermal resistance of 66 C W junction to ambient Note 2 The collector of each transistor is isolated from the substrate by an integral diode Therefore the collector voltage should remain positive with respect to pin 17 at all times Note 3 If oscillation exists under some load conditions add 2 7X and 0 05 mf series network from pin 1 to ground 2

Typical Amplifier Performance Characteristics Quiescent Supply Current vs Supply Voltage Power Supply Rejection Ratio (Referred to the Output) vs Frequency Peak-to-Peak Output Voltage Swing vs Supply Voltage Voltage Gain vs Frequency Distortion vs Frequency Distortion vs Output Power Device Dissipation vs Output Power 4X Load Device Dissipation vs Output Power 8X Load Device Dissipation vs Output Power 16X Load TL H 7847 3 3

Typical Transistor Performance Characteristics Forward Current Transfer Ratio vs Collector Current Saturation Voltage vs Collector Current Open Circuit Output Admittance vs Collector Current TL H 7847 4 High Frequency Current Gain Noise Voltage vs Frequency Noise Current vs Frequency vs Collector Current g oe and C oe vs Collector g oe and C oe vs Collector Contours of Constant Noise Current Current Figure TL H 7847 5 4

Application Hints Gain Control To make the LM389 a more versatile amplifier two pins (4 and 12) are provided for gain control With pins 4 and 12 open the 1 35 kx resistor sets the gain at 20 (26 db) If a capacitor is put from pin 4 to 12 bypassing the 1 35 kx resistor the gain will go up to 200 (46 db) If a resistor is placed in series with the capacitor the gain can be set to any value from 20 to 200 A low frequency pole in the gain response is caused by the capacitor working against the external resistor in series with the 150X internal resistor If the capacitor is eliminated and a resistor connects pin 4 to 12 then the output dc level may shift due to the additional dc gain Gain control can also be done by capacitively coupling a resistor (or FET) from pin 12 to ground Additional external components can be placed in parallel with the internal feedback resistors to tailor the gain and frequency response for individual applications For example we can compensate poor speaker bass response by frequency shaping the feedback path This is done with a series RC from pin 1 to 12 (paralleling the internal 15 kx resistor) For 6 db effective bass boost R j 15 kx the lowest value for good stable operation is R e 10 kx if pin 4 is open If pins 4 and 12 are bypassed then R as low as 2 kx can be used This restriction is because the amplifier is only compensated for closed-loop gains greater than 9V V Input Biasing The schematic shows that both inputs are biased to ground witha50kxresistor The base current of the input transistors is about 250 na so the inputs are at about 12 5 mv when left open If the dc source resistance driving the LM389 is higher than 250 kx it will contribute very little additional offset (about 2 5 mv at the input 50 mv at the output) If the dc source resistance is less than 10 kx then shorting the unused input to ground will keep the offset low (about 2 5 mv at the input 50 mv at the output) For dc source resistances between these values we can eliminate excess offset by putting a resistor from the unused input to ground equal in value to the dc source resistance Of course all offset problems are eliminated if the input is capacitively coupled When using the LM389 with higher gains (bypassing the 1 35 kx resistor between pins 4 and 12) it is necessary to bypass the unused input preventing degradation of gain and possible instabilities This is done with a 0 1 mf capacitor or a short to ground depending on the dc source resistance of the driven input Supplies and Grounds The LM389 has excellent supply rejection and does not require a well regulated supply However to eliminate possible high frequency stability problems the supply should be decoupled to ground with a 0 1 mf capacitor The high current ground of the output transistor pin 18 is brought out separately from small signal ground pin 17 If the two ground leads are returned separately to supply then the parasitic resistance in the power ground lead will not cause stability problems The parasitic resistance in the signal ground can cause stability problems and it should be minimized Care should also be taken to insure that the power dissipation does not exceed the maximum dissipation of the package for a given temperature There are two ways to mute the LM389 amplifier Shorting pin 3 to the supply voltage or shorting pin 12 to ground will turn the amplifier off without affecting the input signal Transistors The three transistors on the LM389 are general purpose devices that can be used the same as other small signal transistors As long as the currents and voltages are kept within the absolute maximum limitations and the collectors are never at a negative potential with respect to pin 17 there is no limit on the way they can be used For example the emitter-base breakdown voltage of 7 1V can be used as a zener diode at currents from 1 ma to 5 ma These transistors make good LED driver devices V SAT is only 150 mv when sinking 10 ma In the linear region these transistors have been used in AM and FM radios tape recorders phonographs and many other applications Using the characteristic curves on noise voltage and noise current the level of the collector current can be set to optimize noise performance for a given source impedance Some of the circuits that have been built are shown in Figures 1 7 This is by no means a complete list of applications since that is limited only by the designers imagination FIGURE 1 AM Radio TL H 7847 6 5

Application Hints (Continued) FIGURE 2 Tape Recorder All switches in record mode Head characteristic 280 mh 300X FIGURE 3 Ceramic Phono Amplifier with Tone Controls TL H 7847 7 TL H 7847 8 6

Application Hints (Continued) 1 f e 0 69R1C1 FIGURE 4 FM Scanner Noise Squelch Circuit FIGURE 5 Siren TL H 7847 10 TL H 7847 9 1 Tremolo freq s 2q (R a 10k)C FIGURE 6 Voltage-Controlled Amplifier or Tremolo Circuit TL H 7847 11 7

LM389 Low Voltage Audio Power Amplifier with NPN Transistor Array Application Hints (Continued) Physical Dimensions inches (millimeters) LIFE SUPPORT POLIC FIGURE 7 Noise Generator Using Zener Diode TL H 7847 12 Molded Dual-In-Line Package (N) Order Number LM389N NS Package Number N18A NATIONAL S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION As used herein 1 Life support devices or systems are devices or 2 A critical component is any component of a life systems which (a) are intended for surgical implant support device or system whose failure to perform can into the body or (b) support or sustain life and whose be reasonably expected to cause the failure of the life failure to perform when properly used in accordance support device or system or to affect its safety or with instructions for use provided in the labeling can effectiveness be reasonably expected to result in a significant injury to the user National Semiconductor National Semiconductor National Semiconductor National Semiconductor Corporation Europe Hong Kong Ltd Japan Ltd 1111 West Bardin Road Fax (a49) 0-180-530 85 86 13th Floor Straight Block Tel 81-043-299-2309 Arlington TX 76017 Email cnjwge tevm2 nsc com Ocean Centre 5 Canton Rd Fax 81-043-299-2408 Tel 1(800) 272-9959 Deutsch Tel (a49) 0-180-530 85 85 Tsimshatsui Kowloon Fax 1(800) 737-7018 English Tel (a49) 0-180-532 78 32 Hong Kong Fran ais Tel (a49) 0-180-532 93 58 Tel (852) 2737-1600 Italiano Tel (a49) 0-180-534 16 80 Fax (852) 2736-9960 National does not assume any responsibility for use of any circuitry described no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Audio www.ti.com/audio Communications and Telecom www.ti.com/communications Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps DLP Products www.dlp.com Energy and Lighting www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID OMAP Mobile Processors Wireless Connectivity www.ti-rfid.com www.ti.com/omap www.ti.com/wirelessconnectivity TI E2E Community Home Page e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright 2011, Texas Instruments Incorporated