Diabetes and Nondiabetic Hypoglycemia

Similar documents
Diabetes Fundamentals

Management of Clients with Diabetes Mellitus

Mary Bruskewitz APN, MS, RN, BC-ADM Clinical Nurse Specialist Diabetes

FYI: (Acceptable range for blood glucose usually mg/dl. know your institutions policy.)

Diabetes, Type 2. RelayClinical Patient Education Sample Topic Diabetes, Type 2. What is type 2 diabetes? How does it occur?

Causes, incidence, and risk factors

Diabetes: Medications

Pharmaceutical Management of Diabetes Mellitus

TYPE 2 DIABETES MELLITUS: NEW HOPE FOR PREVENTION. Robert Dobbins, M.D. Ph.D.

Insulin is a hormone produced by the pancreas to control blood sugar. Diabetes can be caused by too little insulin, resistance to insulin, or both.

Abdulaziz Al-Subaie. Anfal Al-Shalwi

Medications for Diabetes

Comparing Medications for Adults With Type 2 Diabetes Focus of Research for Clinicians

Britni Hebert, MD PGY-1

CME Test for AMDA Clinical Practice Guideline. Diabetes Mellitus

嘉 義 長 庚 醫 院 藥 劑 科 Speaker : 翁 玟 雯

10/30/2012. Anita King, DNP, RN, FNP, CDE, FAADE Clinical Associate Professor University of South Alabama Mobile, Alabama

Diabetes Treatments: Options for Insulin Delivery. Bonnie Pepon, RN, BSN, CDE Certified Diabetes Educator Conemaugh Diabetes Institute

Antidiabetic Drugs. Mosby items and derived items 2011, 2007, 2004 by Mosby, Inc., an affiliate of Elsevier Inc.

ETIOLOGIC CLASSIFICATION. Type I diabetes Type II diabetes

Department Of Biochemistry. Subject: Diabetes Mellitus. Supervisor: Dr.Hazim Allawi & Dr.Omar Akram Prepared by : Shahad Ismael. 2 nd stage.

DIABETES MEDICATION-ORAL AGENTS AND OTHER HYPOGLYCEMIC AGENTS

INSULIN AND INCRETIN THERAPIES: WHAT COMBINATIONS ARE RIGHT FOR YOUR PATIENT?

Pills for Type 2 Diabetes. A Guide for Adults

Diabetes mellitus. Lecture Outline

Treatment of diabetes In order to survive, people with type 1 diabetes must have insulin delivered by a pump or injections.

Type 2 Diabetes Mellitus and Insulin resistance syndrome in Children

Type 2 Diabetes Medicines: What You Need to Know

PowerPoint Lecture Outlines prepared by Dr. Lana Zinger, QCC CUNY. 12a. FOCUS ON Your Risk for Diabetes. Copyright 2011 Pearson Education, Inc.

Therapy Insulin Practical guide to Health Care Providers Quick Reference F Diabetes Mellitus in Type 2

Diagnosis, classification and prevention of diabetes

Nutrition. Type 2 Diabetes: A Growing Challenge in the Healthcare Setting NAME OF STUDENT

Diabetes Mellitus Type 2

TYPE 2 DIABETES IN CHILDREN DIAGNOSIS AND THERAPY. Ines Guttmann- Bauman MD Clinical Associate Professor, Division of Pediatric Endocrinology, OHSU

There seem to be inconsistencies regarding diabetic management in

Overview of Diabetes Management. By Cindy Daversa, M.S.,R.D.,C.D.E. UCI Health

Oral Therapy for Type 2 Diabetes

Diabetes Overview. Sarah Capes MD, FRCPC Assistant Professor, McMaster University Spring 2003

Diabetes: When To Treat With Insulin and Treatment Goals

Take a moment Confer with your neighbour And try to solve the following word picture puzzle slides.

Diabetes and Obesity in Children. Janie Berquist, RN, BSN, MPH, CDE Children s Mercy Hospitals and Clinics Kansas City, MO

SUBJECT: DIABETES MEDICATION MANAGEMENT PROTOCOLS

Distinguishing between Diabetes Mellitus Type 1 and Type 2, (with Overview of Treatment Strategies)

Glucose Tolerance Categories. Distinguishing between Diabetes Mellitus Type 1 and Type 2, (with Overview of Treatment Strategies)

Medicines Used to Treat Type 2 Diabetes

Disclosures. Types of Diabetes Mellitus. Type 1 Diabetes Mellitus. Principles of Basal-Bolus Insulin Therapy and Carbohydrate Counting

How To Treat Diabetes

Add: 2 nd generation sulfonylurea or glinide or Add DPP-4 inhibitor Start or intensify insulin therapy if HbA1c goals not achieved with the above

Treatment of Type 2 Diabetes

CLASS OBJECTIVES. Describe the history of insulin discovery List types of insulin Define indications and dosages Review case studies

What I need to know about. Diabetes Medicines. National Diabetes Information Clearinghouse

Managing Diabetes in the Athletic Population

Diabetes Mellitus. Background Information. Sri Prakash L. Mokshagundam and Vasti L. Broadstone

Diabetes Mellitus 1. Chapter 43. Diabetes Mellitus, Self-Assessment Questions

INPATIENT DIABETES MANAGEMENT Robert J. Rushakoff, MD Professor of Medicine Director, Inpatient Diabetes University of California, San Francisco

A Simplified Approach to Initiating Insulin. 4. Not meeting glycemic goals with oral hypoglycemic agents or

Type II diabetes: How to use the new oral medications

Insulin: Breaking Barriers Enhancing Therapies. Jerry Meece, RPh, FACA, CDE

INJEX Self Study Program Part 1

SHORT CLINICAL GUIDELINE SCOPE

Diabetes Update Lanita S. Shaverd, Pharm.D. Director, UAMS 12 th Street Health and Wellness Center Assistant Professor, UAMS College of Pharmacy

Making Clinical Sense of Diabetes Medications. Types of Diabetes. Pathophysiology. Beta Cell Function & Glucagon

Diabetes: Beyond the D50. Leslie Huntington, BS, Paramedic Mobile Training Unit Oregon OHA-EMS and Trauma Systems

Markham Stouffville Hospital

DR. Trinh Thi Kim Hue

2. What Should Advocates Know About Diabetes? O

Effective pharmacological treatment regimens for diabetes usually require

Intensive Insulin Therapy in Diabetes Management

Fundamentals of Diabetes Care Module 5, Lesson 1

INSULIN TREATMENT FOR TYPE 2 DIABETES MANAGEMENT

polyuria. polydipsia. polyphagia

Diabetes DIABETES MELLITUS. Types of Diabetes. Classification of Diabetes Prediabetes: IFG, IGT, Increased A1C

TYPE2DIABETES INSULIN TREATMENT 2009 UPDATE ON A HEALTHCARE PROFESSIONAL S GUIDE TO TREATMENT BY J. ROBIN CONWAY, MD.

MANAGEMENT OF TYPE - 1 DIABETES MELLITUS

Chapter 4 Type 2 Diabetes

Definition of Diabetes Mellitus

Medications for Type 2 Diabetes

INSULIN INTENSIFICATION: Taking Care to the Next Level

Intensifying Insulin Therapy

Diabetes Medications. Minal Patel, PharmD, BCPS

Faculty. Program Objectives. Introducing the Problem. Diabetes is a Silent Killer. Minorities at Greater Risk of Having Type 2 Diabetes

Medical Nutrition Therapy for Diabetes Mellitus and Hypoglycemia of Nondiabetic Origin

EFFIMET 1000 XR Metformin Hydrochloride extended release tablet

Diabetes Mellitus. Melissa Meredith M.D. Diabetes Mellitus

Treating Type 2 Diabetes Mellitus: a New York State Medicaid Clinical Guidance Document

Noninsulin Diabetes Medications Summary Chart Medications marked with an asterisk (*) can cause hypoglycemia MED GROUP DESCRIPTOR

Type 2 diabetes Definition

Insulin Sooner for Patients with Type 2 Diabetes Supported by an educational grant from Novo Nordisk Inc.

Challenges in Glycemic Control in Adult and Geriatric Patients. Denyse Gallagher, APRN-BC, CDE Endocrinology Nurse Practitioner

Medicines for Type 2 Diabetes A Review of the Research for Adults

Diabetes. AUTHOR: Susan Rogers, RN, BSN, CCM

June Fowler Brill, RN, CDE UC San Diego Diabetes and Pregnancy Program

Insulin Initiation and Intensification

Anti-Diabetic Agents. Chapter. Charles Ruchalski, PharmD, BCPS. Drug Class: Biguanides. Introduction. Metformin

Let s Talk About Meters and Meds. Adapted for Upstate Medical University by: Kristi Shaver, BS, RN, CDE, MS-CNS Student (2014) January 2014

Section 5: Type 2 Diabetes

Endocrine Disorders. Diabetes Meds Objectives. Diabetes Type 1 and Type 2. Insulin Dynamics. Insulin is all about timing! Rapid acting insulin O P D

DRUGS FOR GLUCOSE MANAGEMENT AND DIABETES

Management of Diabetes in the Elderly. Sylvia Shamanna Internal Medicine (R1)

Diabetes Medications: Insulin Therapy

Transcription:

Diabetes and Nondiabetic Hypoglycemia

Diabetes Mellitus Definition A group of diseases characterized by high blood glucose concentrations resulting from defects in insulin secretion, insulin action, or both

Obesity and Diabetes Prevalence by Age 30 25 20 % 15 10 5 Obesity Diabetes 0 18-29 30-39 40-49 50-59 60-69 70+ Sullivan PW et al. Obesity, inactivity, and the prevalence of diabetes, and diabetesrelated cardiovascular comorbidities in the U.S., 2000-2002. Diabetes Care 28;1599-1603, 2005.

Obesity and Diabetes Prevalence by Race 35 30 25 20 15 10 Obesity Diabetes 5 0 White Black Hispanic Asian Pacific Islander Native American Sullivan PW et al. Obesity, inactivity, and the prevalence of diabetes, and diabetesrelated cardiovascular comorbidities in the U.S., 2000-2002. Diabetes Care 28;1599-1603, 2005.

Obesity and Diabetes Prevalence by Education 30 25 20 15 10 Obesity Diabetes 5 0 <High School High School Some College College Degree Grad Degree Sullivan PW et al. Obesity, inactivity, and the prevalence of diabetes, and diabetes-related cardiovascular comorbidities in the U.S., 2000-2002. Diabetes Care 28;1599-1603, 2005..

Sullivan PW et al. Obesity, inactivity, and the prevalence of diabetes, and diabetesrelated cardiovascular comorbidities in the U.S., 2000-2002. Diabetes Care 28;1599-1603, 2005 Obesity and Diabetes by Activity 35 30 25 20 15 10 Obese Diabetes 5 0 Active Inactive

Obesity Trends 1990 2001 1990 Diabetes Trends 2001 BRFSS, 1990-2001

A crisis in the making Millions of Americans Diagnosed with Diabetes

A Crisis in the Making 20 million American adults have impaired glucose tolerance (IGT) 13-14 million Americans have impaired fasting glucose (IFG) 40-50 million Americans have metabolic syndrome In 2002, diabetes-related costs in the US were $132 billion Average annual cost for medical care for people with diabetes is $13,243 vs $2560 for persons without diabetes

American Diabetes Association Standards of Care www.diabetes.org accessed 2-13-08

www.diabetes.org; accessed 2-13-08 American Diabetes Association Standards of Care

National Guideline Clearinghouse

Diabetes and Prediabetes Types Type 1 (formerly IDDM, type I) Type 2 (formerly NIDDM, type II) Gestational diabetes mellitus (GDM) Prediabetes (impaired glucose homeostasis) Other specific types

Diabetes Type 1 Represents about 5-10% of all cases of diabetes Two forms Immune mediated beta cells destroyed by autoimmune process Idiopathic cause of beta cell function loss unknown Diabetes Care, 30;S1, January 2007

Type 1 Diabetes

Diabetes Type 1 Symptoms Hyperglycemia Excessive thirst (polydipsia) Frequent urination (polyuria) Significant weight loss Electrolyte disturbance Ketoacidosis

Type 1 Diabetes Causes Immune-mediated Genetic predisposition Autoimmune reaction may be triggered by viral infection, toxins Destroys β-cells in pancreas that produce insulin Idiopathic (cause unknown) Strongly inherited African or Asian ancestry Diabetes Care, 30:S1, January 2007

Type 1 Diabetes Pathophysiology At onset, affected persons are usually lean, have abrupt onset of symptoms before age 30 Honeymoon phase: after diagnosis and correction of hyperglycemia and metabolic derangements, need for exogenous insulin may drop dramatically for up to a year 8 to 10 years after onset, β-cell loss is complete

Diabetes Type 2 Most common form of diabetes accounting for 90% to 95% of diagnosed cases Combination of insulin resistance and beta cell failure (insulin deficiency) Progressive disease Ketoacidosis rare, usually arises in illness

Diabetes Type 2

Diabetes Type 2 Symptoms Insidious onset Often goes undiagnosed for years Hyperglycemia Excessive thirst (polydipsia) Frequent urination (polyuria) Polyphagia Weight loss

Diabetes Type 2 Risk Factors Family history of diabetes Older age Obesity, particularly intra-abdominal obesity Physical inactivity Prior history of gestational diabetes Impaired glucose homeostasis Race or ethnicity

Diabetes Type 2 Pathophysiology Results from a combination of insulin resistance and β-cell failure Insulin resistance: decreased tissue sensitivity or responsiveness to insulin Endogenous insulin levels may be normal, depressed, or elevated, but inadequate to overcome insulin resistance

Diabetes Type 2 Pathophysiology Insulin resistance Compensatory in insulin secretion glucose remains normal As insulin production fails, post-prandial blood glucose Liver production of glucose increases, resulting in fasting blood glucose Glucotoxicity and lipotoxicity further impair insulin sensitivity and insulin secretion

Gestational Diabetes Mellitus (GDM) Glucose intolerance with onset or first recognition during pregnancy Occurs in 7% of all pregnancies (200,000 cases annually) Does not include women who have diabetes diagnosed before pregnancy Usually diagnosed during the 2 nd or 3 rd trimester of pregnancy when hormonal changes cause insulin resistance May or may not require insulin treatment Diabetes Care 30;Supplement 1, January 2007

Prediabetes (Impaired Glucose Homeostasis) Impaired fasting glucose (IFG) fasting plasma glucose (FPG) above normal (>100 ( mg/dl and <126 mg/dl) Impaired glucose tolerance (IGT) plasma glucose elevated after 75 g glucose load (>140 ( and <200 mg/dl) Diagnosis and classification of Diabetes Mellitus; Diabetes Care 2007;30:S42-46

Metabolic Syndrome Characteristics Insulin resistance Compensatory hyperinsulinemia Abdominal obesity Dyslipidemia (elevated TG, low HDL) Hypertension Risk factor for cardiovascular disease and glucose intolerance

Methods of Diagnosis Fasting plasma glucose (FPG) Casual plasma glucose (any time of day) Oral glucose tolerance test (OGTT)* *not generally recommended for clinical use

Revised Diagnostic Criteria FPG mg/dl OGTT 2 hr mg/dl Normal <100 <140 Casual PG mg/dl Prediabetes >100 and < 126 >140 and <200 Diabetes >126 >200 >200 + symptoms Standards of Medical Care in Diabetes--2007. Diabetes Care 30:S4-S41, 2007

Screening for DM All persons >45 years; repeat every 3 years High risk persons: screen at younger age and more frequently Overweight (BMI >25) First-degree relative with diabetes High-risk ethnic population Delivered baby >9 9 lb or diagnosed GDM Hypertensive HDL <35 mg/dl or TG >200 Prediabetes Polycystic ovary syndrome

Diabetes Treatment Goals FPG A 1 c <7% Peak PPG Blood pressure LDL-C Triglycerides HDL-C 90 130 mg/dl <7% <180 mg/dl <130/80 mmhg <100 mg/dl <150 mg/dl >40 mg/dl* *for women HDL-C goal may be increased by 10 mg/dl American Diabetes Association Standards of medical care in diabetes. Diabetes Care 30:S4-S36, 2007

Diabetes Control and Complications Trial (DCCT) Subjects: 1400 young adults (13-39 years) with Type 1 diabetes Compared intensive BG control with conventional tx Results: Intensively treated patients had a 50-75% reduction in progression to retinopathy, nephropathy, neuropathy after 8-9 years Clear link between glycemic control and complications in Type 1 diabetes Diabetes Control and Complications Trial Research Group: The effect of intensive treatment of diabetes on the development and progression of longterm complications in insulin-dependent diabetes mellitus. N Engl J Med 339;977, 1993.

United Kingdom Prospective Diabetes Study (UKPDS) Subjects: 5102 newly-diagnosed Type 2 diabetic patients Compared traditional care (primarily nutrition therapy) with A1C of 7.9% with intensively treated group (A1C of 7%) Intensively treated group microvascular complications by 25% and macrovascular disease by 16%. United Kingdom Prospective Diabetes Study Group: Intensive blood glucose control with sulfanylureas or insulin compared with conventional treatment and risk of complications in Type 2 diabetes. UKPDS 34, Lancet 352:854, 1998a

United Kingdom Prospective Diabetes Study (UKPDS) Combination therapy (insulin or metformin with sulfonylureas) was needed in both groups to meet glycemic goals with loss of glycemic control over the 10-year trial. Confirmed progressive nature of the disease. As the disease progresses, MNT alone is generally not enough; should not be considered a failure of diet

United Kingdom Prospective Diabetes Study (UKPDS) Prior to randomization into intensive or conventional treatment, subjects received individualized intensive nutrition therapy for 3 months. Mean A1C decreased by 1.9% (~9% to ~7%) and patients lost an average of 3.5 kg United Kingdom Prospective Diabetes Study Group: UK Prospective Diabetes Study 7: Response of fasting plasma glucose to diet therapy in newly presenting Type 2 diabetic patients. Metabolism 39:905, 1990.

Diabetes Management

Evaluation of Glycemic Control: SMBG SMBG should be carried out 3+ times daily for those using multiple insulin injections (A) For pts using less frequent insulin injections or oral agents or MNT alone, SMBG is useful in achieving glycemic goals (E) Instruct the pt in SMBG and routinely evaluate the pts ability to use data to adjust therapy (E) American Diabetes Association Standards of medical care in diabetes. Diabetes Care 30:S4-S36, 2007

Evaluation of Glycemic Control: A1C Perform the A1C test at least 2 times a year in pts who are meeting treatment goals and have stable glycemic control (E) Perform the A1C test quarterly in pts whose therapy has changed or who are not meeting glycemic goals (E) Use of point-of-care testing for A1C allows for timely decisions on therapy changes when needed (E) American Diabetes Association Standards of medical care in diabetes. Diabetes Care 30:S4-S36, 2007

Diabetes Self- Management Education (DSME) People with diabetes should receive DSME according to national standards when their diabetes is diagnosed and as needed thereafter (B) DSME should be provided by health care professionals who are qualified to provide it based on their training and continuing education (E) DSME should address psychosocial issues since emotional well-being is strongly associated with positive diabetes outcomes DSME should be reimbursed by third-party payors. American Diabetes Association Standards of medical care in diabetes. Diabetes Care 30:S4-S36, 2007

Required Elements of Recognized DSME Programs Diabetes disease process Nutrition Physical activity Medications Monitoring / using results Acute complications Chronic complications Goal setting and problem solving Psychosocial adjustment Preconception care, pregnancy, and GDM (if applicable)

Physical Activity Improves insulin sensitivity in Type 2 diabetes Reduces hepatic glucose output Reduces cardiovascular risk factors Controls weight Improves mental outlook

Physical Activity To improve glycemic control, assist with weight maintenance, and reduce risk of CVD, at least 150 min/week of moderate- intensity aerobic physical activity (50-70% MHR) and/or at least 90 minutes/week of vigorous aerobic exercise (>70% MHR) is recommended Should be distributed over at least 3 days a week with no more than two consecutive days without physical activity (A) American Diabetes Association Standards of medical care in diabetes. Diabetes Care 30:S4-S36, 2007

Physical Activity In the absence of contraindications, people with type 2 diabetes should be encouraged to perform resistance exercise three times a week, targeting all major muscle groups, progressing to three sets of 8-10 repetitions at a weight that cannot be lifted more than 8-10 times (A) American Diabetes Association Standards of medical care in diabetes. Diabetes Care 30:S4-S36, 2007

Effect of Exercise on Blood Glucose In well-controlled diabetes, lowers blood glucose In poorly-controlled (underinsulinized) diabetes, blood glucose and ketones will increase If BG> 250-300 mg/dl, postpone exercise until control improves

Activity in Presence of Specific Long Term Complications of Diabetes Retinopathy: vigorous aerobic or resistance exercise may trigger hemorrhages or retinal detachment Peripheral neuropathy: lack of pain sensation increases risk of injury and skin breakdown; non weight-bearing exercise may be best American Diabetes Association Standards of medical care in diabetes. Diabetes Care 30:S4-S36, 2007

Activity in Diabetes Autonomic neuropathy: may decrease cardiac responsiveness to exercise, risk of postural hypotension, impaired thermoregulation, etc Persons with diabetes should undergo cardiac evaluation prior to initiation of increased activity program

Hypoglycemia and Exercise in Insulin Users Common after exercise Add 15 g CHO for every 30-60 minutes of activity over and above normal routines Ingest CHO after 40-60 minutes of exercise Drinks containing 6% or less of CHO can replace CHO and fluid Adjust fast-acting insulin dose 1-2U for strenuous activity lasting >45 to 60 minutes

Adjustment Pre-Meal Rapid- Acting Insulin for Exercise Level of Exercise % dose reduction 30 min of exercise 60 min of exercise Very light 25% 50% Moderate 50% 75% Vigorous 75% Source: American Dietetic Association Guide to Diabetes, 2005, p. 77

Classes of Oral Glucose- Lowering Medications Insulin secretagogues: sufonylureas and meglitinides Biguanides (metformin) Thiasolidinediones (TZD, e.g. pioglitazone, rosiglitazone) Alpha-glucosidase inhibitors (acarbose, miglitol) Gliptins (Januvia, Galvus) American Dietetic Association Guide to Diabetes MNT and Education, 2005. p. 86

Insulin Secretagogues Sulfanylureas: Glipizide (Glucotrol), glyburide (Glynase Prestabs) glimepiride (Amaryl) Meglitinides: Repaglinide (Prandin) Nateglinide (Starlix) Promote insulin secretion by the β-cells of the pancreas May cause weight gain and hypoglycemia Not effective in persons with little or no beta-cell activity

Sulfanylureas: Indications More effective in persons who Have had diabetes for <5 years Developed diabetes after age 40 Have a fasting blood glucose level <200 mg/dl Do not have dislipidemia Are not overweight

Sulfanylureas: Adverse Effects Weight gain (2-5 kg) secondary to increased insulin secretion and overtreatment of hypoglycemia Hypoglycemia More common in older adults and those with impaired liver and kidney function Also may occur with physical activity and inconsistent carbohydrate intake Source: American Dietetic Association Guide to Diabetes, 2005, p. 83

Meglitinides Repaglinide and nateglinide (Prandin and Starlix) Short acting insulin secretagogues Generally taken with meals to blunt post-prandial glucose Allows more flexible meal timing Take 15 minutes before meals Omit if meal is skipped or <240 kcals

Meglitinides: Adverse Effects Hypoglycemia Weight gain Generally less pronounced than with sulfanylureas Can be used in patients with renal disease Avoid in malnourished, elderly, persons with liver disease American Dietetic Association Guide to Diabetes, 2005, p. 84-85

Biguanides Metformin (Glucophage) Decrease hepatic glucose production by suppressing gluconeogenesis Enhances insulin sensitivity in muscles Metformin also available in combination with other medications Metformin glyburide (Glucovance) Metformin/glipizide (Metaglip) Metformin/rosiglitazone (Avandamet)

Biguanides Does not stimulate insulin secretion May lead to modest weight loss (4-6 lb) during first 6 months of treatment Little risk of hypoglycemia in monotherapy Reduces triglycerides and LDL- cholesterol levels American Dietetic Association Guide to Diabetes MNT and Education. 2005. p. 86

Biguanides: Indications Persons with type 2 diabetes who are overweight, have elevated cholesterol levels, and elevated fasting blood glucose levels

Biguanides Improves ovulatory function in women with polycystic ovary disease (PCOS) Reduces risk of gestational diabetes (GDM) in women with PCOS Reduces risk of diabetes in persons with impaired glucose tolerance American Dietetic Association Guide to Diabetes MNT and Education, 2005, p. 86

Thiazolidinediones (TZD) Pioglitazone (Actos), Rosiglitazone (Avandia) Improves peripheral insulin sensitivity Most useful in overweight persons with insulin resistance HDL-C increases, TG often decrease LDL-C may increase, but larger particles Adverse effects: weight gain and edema Patients with advanced CHF or liver disease should not take these

Alpha-Glucosidase Inhibitors Acarbose (Precose) and miglitol (Glyset) inhibit intestinal brush-border enzymes Work in the small intestine to inhibit enzymes that digest carbohydrates, delaying CHO absorption Lowers post-prandial glycemia

Alpha-Glucosidase Inhibitors Do not cause hypoglycemia with monotherapy Can cause hypoglycemia when used in conjunction with insulin or sulfanylureas Treat hypoglycemia with glucose tablets or milk (medication delays digestion of complex carbs and absorption of sugars) Does not cause weight gain, but can cause flatulence, diarrhea, cramping, abdominal pain American Dietetic Association Guide to Diabetes MNT and Education, 2005. p. 86

Insulin All people with Type 1 diabetes need insulin to survive Many people with Type 2 diabetes need insulin to achieve good blood glucose control Failure to achieve adequate control with oral medications Acute injury, infection, surgery, pregnancy

Four Properties of Insulin Action: speed of onset and duration Concentration: U-100 is the concentration of insulin available in the US (100 units/ml) Purity Source: most insulins are made biosynthetically, treated to yield human insulin

Rapid-Acting Insulins Insulin lispro (Humalog) and insulin aspart (Novalog) Used as bolus or mealtime insulins Onset: within 15 minutes Peak: 60-90 minutes Duration: 3-5 hours

Short-Acting Insulins Regular insulin (Novolin R, Humulin R) Onset: 15 to 60 minutes Peak: 2-3 hours Duration: 5 to 8 hours Slow onset means it must be taken 30 to 60 minutes before meals American Dietetic Association Guide to Diabetes MNT and Education, 2005. p. 86

Lispro vs Regular Insulin

Intermediate-Acting Insulins NPH, Humulin N, Novolin N) Cloudy appearance Onset: 1-2 hours after injection Peak: 6 to 12 hours Duration: 18-24 hours

Long-acting insulins Insulin glargine (Lantus) Insulin detemir (Levemir) Relatively constant peakless over 24 hours Clear in solution Cannot be mixed with other insulins Usually given at bedtime but can be given before any meal; time must be consistent

Insulins Glargine vs NPH

Pre-Mixed Insulins 70/30: 70% NPH, 30% regular 50/50: 50% NPH, 50% regular

Action Times of Human Insulin Regimens Insulin Onset Peak Duration Rapid acting (Lispro, Aspart) Short acting (Regular) Intermediate (NPH) <15 min 0.5 1.5 hr 2 4 hr 0.5 1 hr 2 3 hr 3 6 hr 2 4 hr 6 10 hr 10 16 hr Mixtures 0.5 1 hr Dual 10 16 hr

Insulin Mealtime Dose Mealtime or bolus dose: rapid-acting (or short-acting) insulin is given before meals to mimic normal insulin response to a meal Adjusted based on the CHO content of the meal Can establish an insulin-to- carbohydrate ratio for an individual

Insulin Basal or Background Dose Insulin required in post-absorptive state to restrain endogenous glucose output from the liver Limits lipolysis and excess flux of fatty acids to the liver

Insulin Dosing: Type 1 Normal weight persons with Type 1 require. 5 to 1 U/kg of body weight About 50% is used to provide for basal or background insulin needs (NPH or glargine) Remainder (lispro or aspart) is divided up among the meals or giving about 1 to 1.5 U insulin per 10 g CHO consumed Higher amount is needed in the morning due to higher levels of counter-regulatory hormones and surge in blood glucose levels (dawn phenomenon)

Insulin Dosing: Type 2 Persons with Type 2 may require insulin doses in the range of.5 to 1.2 U/kg Large doses (>1.5 U/kg) may be required at first to overcome insulin resistance American Dietetic Association Guide to Diabetes MNT and Education, 2005.

Insulin Pump Therapy Provides basal rapid-acting or short-acting insulin pumped continuously

Insulin Dosing A single dose is seldom effective in achieving good blood glucose control in either type of diabetes Insulin may be added at bedtime for persons with Type 2 diabetes to suppress nocturnal glucose production and normalize fasting glucose with oral meds during the day

Flexible Insulin Regimens Allow Flexible Meal Plans Involve multiple insulin injections ( 3 or more) or the use of an insulin pump Half of the required insulin dose is given as a basal or background insulin Half is divided and given before meals (bolus or premeal insulin) Allows increased flexibility in choosing when and what to eat

Flexible Insulin Regimens Allow Flexible Meal Plans The total CHO content of meals is the major determinant of the mealtime rapid-acting insulin dose Individuals can be taught how to adjust mealtime insulin based on CHO content of the meal However, consistency in meal intake promotes improved glycemic control

Fixed Insulin Regimens Pre-mixed insulin or fixed daily dose No mealtime insulin doses Requires day-to-day consistency in timing and amount of carbohydrate eaten