Sulfa Antibiotics - Synthesis of Sulfanilamide



Similar documents
Online edition for students of organic chemistry lab courses at the University of Colorado, Boulder, Dept of Chem and Biochem.

Separation by Solvent Extraction

Experiment 3: Extraction: Separation of an Acidic, a Basic and a Neutral Substance

14 Friedel-Crafts Alkylation

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.

EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate

CHEMISTRY 338 THE SYNTHESIS OF LIDOCAINE

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid

Saturated NaCl solution rubber tubing (2) Glass adaptor (2) thermometer adaptor heating mantle

Page 1 of 5. Purification of Cholesterol An Oxidative Addition-Reductive Elimination Sequence

Isolation of Caffeine from Tea

PHYSICAL SEPARATION TECHNIQUES. Introduction

Experiment 8 Synthesis of Aspirin

Recovery of Elemental Copper from Copper (II) Nitrate

Enantiomers: Synthesis, characterization, and resolution of tris(ethylenediamine)cobalt(iii) chloride Introduction:

Experiment 8 Preparation of Cyclohexanone by Hypochlorite Oxidation

EXPERIMENT FIVE. Preparation of Cyclohexene from Cyclohexanol: an Elimination Reaction DISCUSSION

Hands-On Labs SM-1 Lab Manual

The most common active ingredient used in deodorants is aluminium chlorohydrate. But not all deodorants contain aluminium chlorohydrate:

DYES AND DYEING 2003 by David A. Katz. All rights reserved. Permission for classroom use provided original copyright is included.

Physical and Chemical Properties and Changes

CHM220 Nucleophilic Substitution Lab. Studying S N 1 and S N 2 Reactions: Nucloephilic Substitution at Saturated Carbon*

EXPERIMENT 9 (Organic Chemistry II) Pahlavan - Cherif Synthesis of Aspirin - Esterification

ISOLATION OF CAFFEINE FROM TEA

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD KEY

CH243: Lab 4 Synthesis of Artificial Flavorings by Fischer Esterification

Extraction: Separation of Acidic Substances

Mixtures and Pure Substances

Synthesis of tetraamminecopper(ii) sulfate, [Cu(NH 3 ) 4 ]SO 4 The reaction for making tetraamminecopper(ii) sulfate and some molar masses are:

PET Recycling. Nicholas Robusto Maggie Ifarraguerri Nathaniel Lawton Isabel Hefner

Experiment 12- Classification of Matter Experiment

4026 Synthesis of 2-chloro-2-methylpropane (tert-butyl chloride) from tert-butanol

Synthesis of Isopentyl Acetate

Recrystallization II 23

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

Liquid/liquid Extraction 63 LIQUID/LIQUID SEPARATION: EXTRACTION OF ACIDS OR BASES FROM NEUTRAL ORGANICS

Experiment 5 Preparation of Cyclohexene

EXPERIMENT 12: Empirical Formula of a Compound

Experiment #7: Esterification

SODIUM CARBOXYMETHYL CELLULOSE

Making Biodiesel from Virgin Vegetable Oil: Teacher Manual

Non-polar hydrocarbon chain

Preparation of an Alum

Experiment 8 - Double Displacement Reactions

The Grignard Reaction. Preparation of Benzoic Acid

PREPARATION AND PROPERTIES OF A SOAP

OXIDATION-REDUCTION TITRATIONS-Permanganometry

Sodium and Potassium chlorate synthesis, the complete guide

General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction

GRIGNARD REACTION: PREPARATION OF TRIPHENYLMETHANOL (12/22/2009)

Acid-Base Extraction.

The Synthesis of trans-dichlorobis(ethylenediamine)cobalt(iii) Chloride

Organic Lab 1 Make-up Experiment. Extraction of Caffeine from Beverages. Introduction

CHEM 2423 Extraction of Benzoic Acid EXPERIMENT 6 - Extraction Determination of Distribution Coefficient

Experiment #10: Liquids, Liquid Mixtures and Solutions

PECTINS. SYNONYMS INS No. 440 DEFINITION DESCRIPTION. FUNCTIONAL USES Gelling agent, thickener, stabilizer, emulsifier CHARACTERISTICS

Apparatus error for each piece of equipment = 100 x margin of error quantity measured

Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER

AN EXPERIMENT IN ALCHEMY: COPPER TO SILVER TO GOLD 2005, 2000, 1996 by David A. Katz. All rights reserved

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND

Determination of a Chemical Formula

Properties of Acids and Bases

A Greener Synthesis of Creatine

EXPERIMENT Aspirin: Synthesis and NMR Analysis

EXPERIMENT 2 (Organic Chemistry II) Pahlavan/Cherif Diels-Alder Reaction Preparation of ENDO-NORBORNENE-5, 6-CIS-CARBOXYLIC ANHYDRIDE

Preparation of frequently used solutions

Extraction Theory. Org I Lab W. J. Kelly. Liquid-liquid extraction is a useful method to separate components (compounds) of a mixture

Dissolving of sodium hydroxide generates heat. Take care in handling the dilution container.

Steam Distillation of Lemongrass Oil

The Empirical Formula of a Compound

Synthesis of Aspirin and Oil of Wintergreen

Santa Monica College Chemistry 11

Green Principles Atom Economy Solventless Reactions Catalysis

Experiment 14 Preparation of p-nitroaniline

Experiment 7: Titration of an Antacid

Lab #13: Qualitative Analysis of Cations and Anions

SEPARATION OF A MIXTURE OF SUBSTANCES LAB

Table 1. Common esters used for flavors and fragrances

Taking Apart the Pieces

PREPARATION OF ACETYLSALICYLIC ACID (ASPIRIN)

METHOD 3510C SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION

Cocaine extraction from Coca Leaves

Austin Peay State University Department of Chemistry CHEM Empirical Formula of a Compound

CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS

Catalase Enzyme Lab. Background information

Molarity of Ions in Solution

EXPERIMENT 2 THE HYDROLYSIS OF t-butyl CHLORIDE. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride.

Chem 100 Lab Experiment #9 - ACID/BASE INDICATORS

Coimisiún na Scrúduithe Stáit State Examinations Commission

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..

To remove solvent: 1. You must have ebullation to concentrate at atmospheric pressure--use a boiling stone, a capillary tube, or agitation.

General Chemistry Lab Experiment 6 Types of Chemical Reaction

XI. Methods of Analysis DETERMINATION OF POTASSIUM CARBONATE CALCULATIONS REAGENTS PROCEDURE

Experiment 3 Limiting Reactants

Chapter 16: Tests for ions and gases

Solubility Curve of Sugar in Water

ph: Measurement and Uses

IB Chemistry. DP Chemistry Review

Coimisiún na Scrúduithe Stáit State Examinations Commission

Transcription:

Sulfa Antibiotics - Synthesis of Sulfanilamide INTRDUCTIN Many people think of the term chemotherapy as relating to specific modern drug treatments used to fight cancer. Actually, modern chemotherapy began in the early 1900 s with the work of Paul Ehrlich, a German medical doctor and researcher, who is known as the father of immunology and chemotherapy. Ehrlich hypothesized that certain dyes could selectively stain harmful bacteria cells without harming host cells. He referred to such compounds as magic bullets and coined the term chemotherapy as a general descriptor for chemical remedies targeted to selectively kill infectious cells. This definition includes all antibiotics as well as the more recently developed chemotherapeutic agents targeted to selectively kill cancer cells. Ehrlich s pioneering work on antibiotics, led, among other remedies, to the discovery of salvarsan, an organoarsenic compound found to be highly effective for treatment of syphilis (replacing mercury which had often disastrous side effects). He was awarded the Nobel Prize for medicine in 1908. Building on Ehrlich s early work, Gerhard Domagk, a medical doctor employed by a German dye manufacturer made a breakthrough discovery by finding that a dye known as prontosil, dosed orally, was effective in curing life threatening streptococci infections in humans. He made the discovery in a desperate, but successful attempt to save his daughter who was dying of a streptococci infection. Domagk s discovery led to an extremely productive period of discovery in antibiotics. He was awarded the Nobel Prize for medicine in 1939. In 1936, a year after Domagk s discovery of the anti-streptococcus activity of the dye prontosil, Ernest Fourneau of the Pasteur Institute in Paris discovered that prontosil breaks down in the human body to produce sulfanilamide which is the active agent that kills streptococcus bacteria. Fourneau s discovery triggered a flurry of research on structural derivatives of sulfanilamide which resulted in development of a family of highly successful antibiotics that have saved millions of lives. S Sulfanilamide

Sulfapyridine was shown to be effective against pneumonia in 1938. Sulfacetamide found highly successful use in fighting urinary tract infections starting in 1941. Succinoylsulfathiazole has been used against gastrointestinal tract infections since 1942. Sulfathiazole was used very effectively during World War II to fight infection in soldiers with battle wounds. Sulfanilamide itself, a potent antibiotic, never gained widespread use due to its greater human toxicity versus its various derivatives. NH2SNNH2SNNNH2SNH2SNHSulfapyridineSulfadiazineNCH3Su The total synthesis of sulfanilamide from benzene can be carried out in six steps using reactions that are very familiar to intermediate level organic chemists. In addition to providing a great example of the synthetic utility of these reactions, the synthesis demonstrates the use of protecting group chemistry, and taking advantage of steric and electronic directing effects (in electrophilic aromatic substitution) and differing rates of 2

hydrolysis to optimize the yield of the desired product. The synthesis to be performed here will start from nitrobenzene to make sulfanilamide in five steps: N 2 3 /H 2 S 4 50 o C Sn/HCl (CH 3 C 2 ) 2 CH 3 C 2 Na Benzene Nitrobenzene Aniline Acetanilide ClS 3 H NH 3 1. HCl/H 2 2. Na 2 C 3 S S S Cl 4-Acetamidobenzenesulfanyl chloride 4-Acetamidobenzenesulfonamide Sulfanilamide If we have sufficient time this semester, you will have an opportunity to measure the antibiotic activity of sulfanilamide against selected strains of pathogenic bacteria. You will perform standard zone of inhibition assays using filter paper discs impregnated with sulfanilamide and placed on lawns of growing bacteria. You will be provided with information on the biological assay conditions later in the semester. SYNTHETIC APPRACH Preparation of Aniline via Reduction of Nitrobenzene A wide range of nitrobenzene derivatives can be easily made via regioselective nitration of substituted benzenes. Reduction of the nitrobenzene derivatives using tin/hydrochloric acid provides a convenient and high yielding route to a wide variety of 3

aromatic amines. The simplest case is the synthesis of aniline from nitrobenzene. In this reaction, tin metal serves as the reducing agent and is oxidized to stannic chloride, SnCl 4. N2NH2Sn/HClNitrobenzeneAniline The crude aniline product is contaminated with unreacted nitrobenzene as well as benzidene and 4-aminophenol formed as byproducts in the reduction. It is purified using a combination of steam distillation and extraction. H2NNH2NH2HBenzidine4-Aminophenol Preparation of Acetanilide Aniline can be easily converted to acetanilide by acetylation reaction using acetic anhydride in the presence of sodium acetate. (CH 3 C) 2 CH 3 C 2 Na Aniline Acetanilide The purpose of this step is to protect the amine functional group from entering into unwanted reactions during the subsequent chlorosulfonation and amination steps. 4

Without protection, the free amine, under the strong acid conditions of chlorosulfonation, would protonate or react with strong Lewis acids present (such as S 3 ), resulting in deactivation of the ring toward chlorosulfonation and loss of regioselectivity. Using amidation as a protecting group strategy allows the free amine to be regenerated under mild conditions in the final step without hydrolysis of the more hydrolytically stable sulfonamide group. Preparation of 4-Acetamidobenzenesulfonyl Chloride The chlorosulfonyl group can be introduced para to the acetamide group in one step using the electrophilic aromatic substitution reaction known as chlorosulfonation: ClS 3 H Acetanilide S Cl 4-Acetamidobenzenesulfonyl chloride This reaction is more complicated than it looks at first inspection. The electrophile that initially adds to the ring is probably S 3, forming the sulfonic acid. The initially formed substitution product is the sulfonic acid. Substitution is essentially all para due to combined electronic and steric effects. The sulfonic acid is then converted to 4- acetamidobenzenesulfonyl chloride by reaction with excess chlorosulfonic acid, generating sulfuric acid as the co-product. Preparation of 4-Acetamidobenzenesulfonamide 4-acetamidobenzenesulfonyl chloride is converted to the corresponding sulfonamide by reaction with aqueous ammonia. The reaction equation is shown at the top of the following page. This step is carried out immediately after isolating the 4- acetamidosulfonyl chloride to prevent losses due to hydrolysis of the sulfonyl chloride. 5

NH34-Acetamidobenzene-sulfonamideSNH24-Acetamidobenzene-sulfon Preparation of Sulfanilamide The acetamide group of 4-acetamidobenzenesulfonamide can be hydrolyzed under acidic conditions without affecting the sulfonamide group, which hydrolyzes much more slowly. As a final step, the acidic hydrolysis solution is neutralized with sodium carbonate to isolate sulfanilamide: HCl/H2NH3ClSulfanilamideSNH24-Acetamidobenzene-sulfonamideSNH2Na2C3 6

EXPERIMENTAL Synthesis of Aniline Tin powder (13.1 g) and nitrobenzene (5.2 ml) are added to a 250 ml round-bottom flask equipped with a football-shaped magnetic stir bar and a thermometer extending down into the flask to above the stir bar. The slurry is rapidly stirred while concentrated hydrochloric acid (28 ml) is added to the flask (all at once). The temperature is monitored and the flask is cooled in an ice bath as necessary to maintain the temperature below 60 o C. After the exothermic stage of the reaction is complete (about 15 min) the thermometer is removed, the flask is fitted with a water-cooled reflux condenser, and the solution is heated at reflux for 20 minutes with constant stirring. The solution is cooled in an ice bath and 6 M NaH solution (50 ml) is slowly added. The ph of the solution is checked (using ph paper) to confirm that it is basic. If necessary, more NaH solution is added to achieve a basic solution. The flask is fitted for simple distillation and steam distilled until the condensate no longer appears oily. About 35-40 ml of distillate should be collected. Concentrated HCl (5 ml) is added to the distillate, and the ph is checked to confirm that it is acidic. More acid is added if necessary. The aqueous solution is transferred to a separatory funnel and extracted sequentially with two 15 ml portions of diethyl ether. This removes any unreacted nitrobenzene; note, the protonated aniline remains in the aqueous layer! The aqueous layer is transferred to an Erlenmeyer flask containing a magnetic stir bar, and cooled in an ice-water bath. The aqueous solution is made basic by slow addition of 12 M NaH solution until the solution tests basic to ph paper. Next, this basic solution is saturated with NaCl by addition of solid NaCl with stirring. The solution is then transferred to a clean separatory funnel and extracted with two 15 ml portions of diethyl ether; note, aniline should now be in the organic layer. These combined organic extracts are then dried over anhydrous sodium sulfate. The dried solution is transferred to a dry, weighed round-bottom flask, and the diethyl ether is removed on a rotary evaporator. The % yield is calculated and IR and NMR (CDCl 3 ) spectra of the aniline product are obtained. Synthesis of Acetanilide Hydrochloric acid (0.4 M, 100 ml) is added to a 250 ml Erlenmeyer flask equipped with a magnetic stir bar. Aniline (3.6 ml) is added to the flask with stirring and the mixture is warmed to 50 o C. A separate solution of sodium acetate is prepared by dissolving 6.0 g of the sodium acetate trihydrate in 20 ml of water. In a separate clean, dry beaker or flask, 4.4 ml of acetic anhydride is measured out. The acetic anhydride is added in one portion with rapid stirring to the warm solution of aniline hydrochloride salt, and immediately after, the sodium acetate solution is added in one portion. The mixture is stirred and cooled in an ice bath until the crystalline product 7

completely precipitates. The acetanilide is collected by vacuum filtration, washed with a small amount of ice-cold water and air dried on the filter funnel. The dry product is weighed, % yield calculated, and IR and NMR (DMS-d 6 ) spectra are obtained. Synthesis of 4-Acetamidobenzenesulfonyl Chloride Dry acetanilide (2.7 g) is placed in a clean, dry, 50 ml round-bottom flask equipped with a stir bar and fitted with a Claisen adapter. The Claisen adapter is in turn fitted with a dropping funnel on the straight arm and a vacuum distillation adapter on the side arm connected to a water aspirator as a vapor sweep to remove HCl evolved during the reaction (see figure on page 10). The dropping funnel is removed, set into a beaker as a secondary container and taken to a fume hood where chlorosulfonic acid (8.0 ml) is added. (Caution! Wear gloves!) The dropping funnel is stoppered and carefully checked (while in hood) to ensure that there is no leaking, after which it is stoppered and carefully carried back to the bench (in the beaker) where it is fitted back onto the Claisen adaptor. The reaction flask is cooled in a cold water bath (not an ice bath) maintained between 10 and 15 o C. The stopcock of the dropping funnel is opened fully to add the chlorosulfonic acid rapidly all at once. The solution is rapidly stirred keeping it in the cooling bath with the water temperature below 20 o C. After the acetanilide is mostly dissolved and the initial exothermic reaction has subsided, the cooling bath is removed and the solution allowed to warm to room temperature with continuous stirring. Then the flask is heated in a hot water bath at 70-80 o C for 20 min to complete the reaction. The reaction mixture is cooled in an ice bath to room temperature or below. The reaction flask is transferred to a fume hood where it is carefully poured into a 500 ml beaker containing 150 grams of crushed ice. (Caution: wear gloves and pour the reaction solution over the ice slowly and carefully to avoid splattering.) The ice slurry is stirred using a stir rod to prevent formation of large lumps as the product precipitates. Any large lumps that form should be carefully broken up using the stir rod. The precipitate is collected by vacuum filtration and washed with 15 ml portions of cold water until the filtrate tests neutral to ph paper. The product is air dried on the filter funnel by pulling air through it for at least 10 minutes. A small sample of the product is saved to obtain IR and NMR spectra. The remainder of the product is used immediately for synthesis of 4-acetamidobenzene-sulfonamide. Synthesis of 4-Acetamidobenzenesulfonamide. The crude 4-acetamidobenzenesulfonyl chloride is placed in a 125 ml Erlenmeyer flask and 15 ml of concentrated (28%) aqueous ammonia ( ammonium hydroxide ) is added. (Caution: a vigorous reaction may occur if the crude starting material was not previously washed enough to remove strong acid impurities.) The resulting thick suspension is stirred with a stirring rod to break up any lumps, and the mixture is heated 8

at 70-80 o C for 30 minutes. The mixture is then cooled in an ice bath, and the product is collected by vacuum filtration. The product is washed with ice cold water and air dried. The product is weighed and % yield is determined. An IR and 1 H NMR spectrum is obtained. Synthesis of Sulfanilamide. 4-acetamidobenzenesulfonamide from the previous step is weighed and placed in a 50 ml round-bottom flask equipped with a magnetic stir bar. Dilute hydrochloric acid (6 M) is added to the flask in an amount equal to twice the weight of the 4-acetamidobenzenesulfonamide. The flask is fitted with a cold water condenser and heated at reflux with constant stirring for 45 minutes, after which it is allowed to cool to room temperature. If any solid appears upon cooling, the mixture is reheated at reflux for another 15 minutes. After cooling, the reaction mixture is neutralized by slow addition of a saturated Na 2 C 3 solution with stirring until it tests slightly alkaline to ph paper. A precipitate may have begun to form during neutralization. Cool the beaker in an ice bath to complete the precipitation of product. It may be necessary to gently scratch the inside bottom of the beaker to induce crystallization. The product is collected by vacuum filtration, washed with a small amount of ice cold water and air dried. A small sample of the crude product is saved, and the remainder is purified by recrystallization by dissolving in a minimum amount of boiling hot water, allowing the solution to slowly cool to room temperature, then further cooling in an ice bath to crystallize as much product from solution as possible. The recrystallized product is collected by vacuum filtration. The product is weighed and % yield is calculated. The overall yield for the five-step synthesis of sulfanilamide from nitrobenzene is calculated and reported. IR and NMR spectra are obtained on the final product. 9

open to aspirator Figure: Reaction vessel with dropping funnel and gas trap. 10