Enzyme Action: Testing Catalase Activity



Similar documents
ENZYME ACTION: TESTING CATALASE ACTIVITY

Enzyme Action: Testing Catalase Activity 50 Points

Evaluation copy. Enzyme Action: Testing Catalase Activity (Method 1 O 2 Gas Sensor) Computer 2

Enzyme Action: Testing Catalase Activity

Enzyme Action: Testing Catalase Activity

Pressure -Temperature Relationship in Gases. Evaluation copy. Figure ml Erlenmeyer flask. Vernier computer interface

2(H 2 O 2 ) catalase 2H 2 O + O 2

Laboratory 5: Properties of Enzymes

Honors 227 Fall 2007 Laboratory with Ms. Clark. Enzymes, Reactions, Metabolism and Homeostasis

This laboratory explores the affects ph has on a reaction rate. The reaction

6 H2O + 6 CO 2 (g) + energy

Pre-lab Questions: 1. Write a balanced chemical equation with state symbols for the reaction catalyzed by peroxidase.

Vapor Pressure of Liquids

Osmosis. Evaluation copy

Catalytic Activity of Enzymes

Catalase. ***You will be working with hot water, acids and bases in this laboratory*** ****Use Extreme Caution!!!****

Enzyme Pre-Lab. Using the Enzyme worksheet and Enzyme lab handout answer the Pre-Lab questions the pre-lab must be complete before beginning the lab.

Sample Liver Enzyme Lab

Investigation 2- ENZYME ACTIVITY BACKGROUND catalase Learning Objectives

Name. Lab 3: ENZYMES. In this lab, you ll investigate some of the properties of enzymes.

Enzyme Lab. DEFINITIONS: 1. Enzyme: 2. Catalase: 3. Catalyze: 4. Hydrolysis: 5. Monomer: 6. Digestion: BACKGROUND INFORMATION

LAB TOPIC 4: ENZYMES. Enzyme catalyzed reactions can be expressed in the following way:

The Determination of an Equilibrium Constant

10-ml Graduated cylinder 40 ml 3% Hydrogen peroxide solution (found in stores) Straight-edged razor blade Scissors and Forceps (tweezers)

Photosynthesis and Respiration

Running Head: ACTION OF CATALASE IN DIFFERENT TISSUES 1. Action of Catalase in Different Tissues. San Nguyen. Biol 1730.

catalase 2H 2 O 2 (l) ----> 2H 2 O (l) + O 2 (g)

Factors Affecting Enzyme Activity

Catalase Enzyme Lab. Background information

Experiment 10 Enzymes

Enzyme Activity Measuring the Effect of Enzyme Concentration

Determining the Quantity of Iron in a Vitamin Tablet. Evaluation copy

Biology 3A Laboratory: Enzyme Function

Activity Sheets Enzymes and Their Functions

THE ACTIVITY OF LACTASE

Mixing Warm and Cold Water

Chemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES

1. Enzyme Function

The Molar Mass of a Gas

Exploring Magnetism. DataQuest

PHOTOSYNTHESIS AND RESPIRATION

LIGHTSTICK KINETICS. INTRODUCTION: General background on rate, activation energy, absolute temperature, and graphing.

: Biochemistry of macromolecules and metabolic pathways

Biopharmaceuticals and Biotechnology Unit 2 Student Handout. DNA Biotechnology and Enzymes

Photosynthesis and Respiration

Phase Diagram of tert-butyl Alcohol

Factors Affecting Hydrogen Peroxidase Activity

ph units constitute a scale which allows scientists to determine the acid or base content of a substance or solution. The ph 0

pencil. Vocabulary: 1. Reactant 2. Product 3. Activation energy 4. Catalyst 5. substrate 6. Chemical reaction Keep your textbooks when you are done

Appendix C. Vernier Tutorial

Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1

Physical Properties of a Pure Substance, Water

The Determination of an Equilibrium Constant

18 Conductometric Titration

Enzyme Kinetics: Properties of â-galactosidase

Figure 5. Energy of activation with and without an enzyme.

Micro Mole Rockets Hydrogen and Oxygen Mole Ratio As adapted from Flinn ChemTopic- Labs - Molar Relationships & Stoichiometry

Enzymes Lab Pre-Lab Exercise

ENZYME KINETICS ENZYME-SUBSTRATE PRODUCTS

Materials 10-mL graduated cylinder l or 2-L beaker, preferably tall-form Thermometer

How to write a formal lab report correctly. This is based off a lab done in AP biology and all examples are taken from student lab write-ups.

Human Physiology Lab (Biol 236L) Digestive Physiology: Amylase hydrolysis of starch

1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d.

Experiment 2 Kinetics II Concentration-Time Relationships and Activation Energy

Cornell Institute for Biology Teachers

Lab Manual Introductory Chemistry: A Green Approach Version , escience Labs, Inc. All rights reserved esciencelabs.com

The Huntington Library, Art Collections, and Botanical Gardens. How Sweet It Is: Enzyme Action in Seed Germination

15. Acid-Base Titration. Discover the concentration of an unknown acid solution using acid-base titration.

Evaluation copy. Case File 9. A Killer Cup of Coffee? GlobalTech manager dies

BIOL 1406 Properties of Enzymes: Peroxidase, A Case Study

Teacher Demo: Photosynthesis and Respiration: Complementary Processes

Table of Content. Enzymes and Their Functions Teacher Version 1

Summary of important mathematical operations and formulas (from first tutorial):

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor

Evaluation copy. Titration of a Diprotic Acid: Identifying an Unknown. Computer

Investigation M3: Separating Mixtures into Component Parts

DETERMINATION OF PHOSPHORIC ACID CONTENT IN SOFT DRINKS

Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Chemicals Needed:

Net ionic equation: 2I (aq) + 2H (aq) + H O (aq) I (s) + 2H O(l)

Name Date Period. Keystone Review Enzymes

Enzymes. A. a lipid B. a protein C. a carbohydrate D. a mineral

The Solubility of Calcium Carbonate

2C: One in a Million. Part 1: Making solutions. Name: Section: Date: Materials

Chapter 6, Lesson 4: Temperature and the Rate of a Chemical Reaction

Factors Affecting Enzyme Activity

Experiment 7 (Lab Period 8) Quantitative Determination of Phosphatase Activity

Water Hardness. Evaluation copy

General Properties Protein Nature of Enzymes Folded Shape of Enzymes H-bonds complementary

VAPOR PRESSURE AS A FUNCTION OF TEMPERATURE. This laboratory covers material presented in section 11.8 of the 9 th Ed. of the Chang text.

Chemical reaction (slow): Enzyme-catalyzed reaction (much faster):

Chemical reactions allow living things to grow, develop, reproduce, and adapt.

LAB 14 ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA)

Experiment 6 Coffee-cup Calorimetry

EXPERIMENT 2 THE HYDROLYSIS OF t-butyl CHLORIDE. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride.

To measure the solubility of a salt in water over a range of temperatures and to construct a graph representing the salt solubility.

The Kinetics of Enzyme Reactions

Solubility Curve of Sugar in Water

Catalase Kinetics Chris Su Meiyi Li TR

Activity 5. Two Hot, Two Cold. Introduction. Equipment Required. Collecting the Data

0610 BIOLOGY. 0610/62 Paper 6 (Alternative to Practical), maximum raw mark 40

Transcription:

Enzyme Action: Testing Catalase Activity DataQuest 12 Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities of living organisms. They act as catalysts, substances that speed up chemical reactions without being destroyed or altered during the process. Enzymes are extremely efficient and may be used over and over again. One enzyme may catalyze thousands of reactions every second. Both the temperature and the ph at which enzymes function are extremely important. Most organisms have a preferred temperature range in which they survive, and their enzymes most likely function best within that temperature range. If the environment of the enzyme is too acidic or too basic, the enzyme may irreversibly denature, or unravel, until it no longer has the shape necessary for proper functioning. H 2 O 2 is toxic to most living organisms. Many organisms are capable of enzymatically destroying the H 2 O 2 before it can do much damage. H 2 O 2 can be converted to oxygen and water, as follows: 2 H 2 O 2 2 H 2 O + O 2 Although this reaction occurs spontaneously, the enzyme catalase increases the rate considerably. Catalase is found in most living organisms. A great deal can be learned about enzymes by studying the rates of enzyme-catalyzed reactions. In this experiment, you will measure the rate of enzyme activity under various conditions, such as different enzyme concentrations, ph values, and temperatures. It is possible to measure the pressure of oxygen gas formed as H 2 O 2 is destroyed. If a plot is made, it may appear similar to the graph shown. At the start of the reaction, there is no product, and the pressure is the same as the atmospheric pressure. After a short time, oxygen accumulates at a rather constant rate. The slope of the curve at this initial time is constant and is called the initial rate. As the peroxide is destroyed, less of it is available to react and the O 2 is produced at lower rates. When no more peroxide is left, O 2 is no longer produced. Science with TI-Nspire Technology Vernier Software & Technology 12-1

DataQuest 12 1 2 3 4 OBJECTIVES In this experiment you will Figure 1 Use a Gas Pressure Sensor to measure the production of oxygen gas as hydrogen peroxide is destroyed by the enzyme catalase or peroxidase at various enzyme concentrations. Measure and compare the initial rates of reaction for this enzyme when different concentrations of enzyme react with H 2 O 2. Measure the production of oxygen gas as hydrogen peroxide is destroyed by the enzyme catalase or peroxidase at various temperatures. Measure and compare the initial rates of reaction for the enzyme at each temperature. Measure the production of oxygen gas as hydrogen peroxide is destroyed by the enzyme catalase or peroxidase at various ph values. Measure and compare the initial rates of reaction for the enzyme at each ph value. MATERIALS TI-Nspire handheld or 600 ml beaker computer and TI-Nspire software enzyme suspension data-collection interface four 18 150 mm test tubes Vernier Gas Pressure Sensor ice rubber-stopper assembly ph buffers 10 ml graduated cylinder test tube rack 250 ml beaker of water 3% H 2 O 2 thermometer four dropper pipettes PROCEDURE 1. Obtain and wear goggles. 2. Connect the plastic tubing to the valve on the Gas Pressure Sensor. 3. Connect the Gas Pressure Sensor to the data-collection interface. Connect the interface to the TI-Nspire handheld or computer. 4. Choose New Experiment from the Experiment menu. Choose Collection Setup from the Experiment menu. Enter 0.5 as the rate (samples/second) and 180 as the experiment duration in seconds. The number of points collected should be 91. Select OK. 12-2 Science with TI-Nspire Technology

Part I Testing the Effect of Enzyme Concentration 5. Place four test tubes in a rack and label them 1, 2, 3, and 4. 6. Add 3 ml of 3.0% H 2 O 2 and 3 ml of water to each test tube. Enzyme Action: Testing Catalase Activity 7. Use a clean dropper pipette to add 1 drop of enzyme suspension to test tube 1. Note: Be sure not to let the enzyme fall against the side of the test tube. 8. Stopper the test tube and gently swirl to thoroughly mix the contents. The reaction should begin. The next step should be completed as rapidly as possible. 9. Connect the free-end of the plastic tubing to the connector in the rubber stopper as shown in Figure 2. Start data collection ( ). 10. Monitor the pressure readings displayed on the screen. If the pressure exceeds 130 kpa, the pressure inside the tube will be too great and the rubber stopper is likely to pop off. Disconnect the plastic tubing from the Gas Pressure Sensor if the pressure exceeds 130 kpa. 11. When data collection has finished, an auto-scaled graph of pressure vs. time will be displayed. Disconnect the plastic tubing connector from the rubber stopper. Remove the rubber stopper from the test tube and discard the contents in a waste beaker. 12. Click any data point and use and to examine the data pairs on the displayed graph. Figure 2 13. Determine the rate of enzyme activity for the curve of pressure vs. time. To help make comparisons between experimental runs, choose your data points at the same time values. a. Examine the graph and identify the most linear region. b. Select the linear region of the data. c. Choose Curve Fit Linear from the Analyze menu. The linear-regression statistics for these two data columns are displayed for the equation in the form y = mx + b d. Enter the slope, m, as the reaction rate in Table 1. 14. Find the rate of enzyme activity for test tubes 2, 3, and 4. a. Click the Store Latest Data Set button ( ) to save the first run. Add 2 drops of the enzyme solution to test tube 2. Repeat Steps 8 13. b. Click the Store Latest Data Set button ( ) to save the second run. Add 3 drops of the enzyme solution to test tube 3. Repeat Steps 8 13. c. Click the Store Latest Data Set button ( ) to save the third run. Add 4 drops of the enzyme solution to test tube 4. Repeat Steps 8 13. 15. Graph all four runs of data on a single graph. a. Click run4, and select All. All four runs will now be displayed on the same graph axes. b. Use the displayed graph and the data in Table 1 to answer the questions for Part I. Science with TI-Nspire Technology 12-3

DataQuest 12 Part II Testing the Effect of Temperature 16. Insert a new problem in the document. Insert a new DataQuest App into problem 2. Choose Collection Setup from the Experiment menu. Enter 0.5 as the rate (samples/second) and 180 as the experiment duration in seconds. The number of points collected should be 91. Select OK. 17. Place four clean test tubes in a rack and label them T 0 5, T 20 25, T 30 35, and T 50 55. 18. Add 3 ml of 3.0% H 2 O 2 and 3 ml of water to each test tube. 19. Measure the enzyme activity at 0 5 C. a. Prepare a water bath at a temperature in the range of 0 5 C by placing ice and water in a 600 ml beaker. Using a thermometer check that the temperature remains in this range throughout this test. See Figure 3. b. Place test tube T 0 5 in the cold water bath for 5 minutes so that it reaches a temperature in the 0 5 C range. Record the actual temperature of the test-tube contents in Table 2. c. Add 2 drops of the enzyme solution to test tube T 0 5. Repeat Steps 8 13, except this time record the reaction rate in Table 2. 20. Measure the enzyme activity at 30 35 C. a. Prepare a water bath at a temperature in the range of 30 35 C by placing warm water in a 600 ml beaker. Using a thermometer, check that the temperature remains in this range throughout this test. b. Place test tube T 30 35 in the warm water bath for 5 minutes so that it reaches a temperature in the 30 35 C range. Record the actual temperature of the test-tube contents in the blank in Table 2. c. Add 2 drops of the enzyme solution to test tube T 30 35. d. Click the Store Latest Data Set button ( ) to save the first run. Repeat Steps 8 13, again recording the reaction rate in Table 2. 21. Measure the enzyme activity at 50 55 C. a. Prepare a water bath at a temperature in the range of 50 55 C by placing hot water in a 600 ml beaker (hot tap water will probably work fine). Check that the temperature remains in this range throughout this test. b. Place test tube T 50 55 in the warm water bath until the temperature of the mixture reaches a temperature in the 50 55 C range. Record the actual temperature of the test-tube contents in the blank in Table 2. c. Add 2 drops of the enzyme solution to test tube T 50 55. d. Click the Store Latest Data Set button ( ) to save the second run. Repeat Steps 8 13, again recording the reaction rate in Table 2. 22. Measure the enzyme activity at 20 25 C (room temperature). Figure 3 a. Record the temperature of test tube T 20 25 in Table 2. b. In the tube labeled T 20 25, add 2 drops of the enzyme solution. c. Click the Store Latest Data Set button ( ) to save the third run. Repeat Steps 8 13, again recording the reaction rate in Table 2. 12-4 Science with TI-Nspire Technology

23. Graph all four runs of data on a single graph. Enzyme Action: Testing Catalase Activity a. Click run4, and select All. All four runs will now be displayed on the same graph axes. b. Use the displayed graph and the data in Table 2 to answer the questions for Part II. Part III Testing the Effect of ph 24. Insert a new problem in the document. Insert a new DataQuest App into problem 3. Choose New Experiment from the Experiment menu. Choose Collection Setup from the Experiment menu. Enter 0.5 as the rate (samples/second) and 180 as the experiment duration in seconds. The number of points collected should be 91. Select OK. 25. Place three clean test tubes in a rack and label them ph 4, ph 7, and ph 10. 26. Add 3 ml of 3% H 2 O 2 and 3 ml of the appropriate ph buffer to each labeled test tube label. 27. In the tube labeled ph 4, add 2 drops of the enzyme solution. Repeat Steps 8 13, except this time record the reaction rate in Table 3. 28. Click the Store Latest Data Set button ( ) to save the first run. In the tube labeled ph 7, add 2 drops of the enzyme solution. Repeat Steps 8 13, again recording the reaction rate in Table 3. 29. Click the Store Latest Data Set button ( ) to save the second run. In the tube labeled ph 10, add 2 drops of the enzyme solution. Repeat Steps 8 13, again recording the reaction rate in Table 3. 30. Graph all three runs of data on a single graph. a. Click run3 and select All. All three runs will now be displayed on the same graph axes. b. Use the displayed graph and the data in Table 3 to answer the questions for Part III. DATA Table 1 Label 1 drop 2 drops 3 drops 4 drops Rate (kpa/s) Reaction Rate (kpa/min) Science with TI-Nspire Technology 12-5

DataQuest 12 DATA (CONT.) Table 2 Label Actual Temperature ( C) Rate (kpa/s) Reaction Rate (kpa/min) 0 5 C 20 25 C 30 35 C 50 55 C Table 3 Label Rate (kpa/s) Reaction Rate (kpa/min) ph 4 ph 7 ph 10 PROCESSING THE DATA 1. Convert your reaction rates from kpa/s to kpa/min. Record the rates in the appropriate tables. 2. Create summary graphs for the data in each part. a. Insert a new problem in the document, then Insert a new DataQuest App into problem 4. Click on the Table View tab ( ) to view the Table. b. Double click on the X column to access the column options. Enter Test Tube for the column name. Change the Display Precision to 0 decimal places. Select OK. c. Double click on the Y column to access the column options. Enter Rate for the column name. Enter kpa/min as the units. Select OK. d. Using the data from Table 1, enter the values in the DataQuest Table. Use the number of drops in the Test Tube column. e. Choose New Data Set from the Data menu. Using the data from Table 2, enter the values in the DataQuest Table. Use the actual temperature in the Test Tube column. f. Choose New Data Set from the Data menu. Using the data from Table 3, enter the values in the DataQuest Table. Use the ph value in the Test Tube column. g. For each data set, double click the data set name and change the name to something more meaningful (for example, change run1 to Concentration). h. Click on the Graph View tab ( ) to view the summary graphs. To view the different summary graphs, click on the run indicator and select the desired run. 12-6 Science with TI-Nspire Technology

Enzyme Action: Testing Catalase Activity QUESTIONS Part I Effect of Enzyme Concentration 1. How does changing the concentration of enzyme affect the rate of decomposition of H 2 O 2? 2. What do you think will happen to the rate of reaction if the concentration of enzyme is increased to five drops? Predict what the rate would be for 5 drops. Part II Effect of Temperature 3. At what temperature is the rate of enzyme activity the highest? Lowest? Explain. 4. How does changing the temperature affect the rate of enzyme activity? Does this follow a pattern you anticipated? 5. Why might the enzyme activity decrease at very high temperatures? Part III Effect of ph 6. At what ph is the rate of enzyme activity the highest? Lowest? 7. How does changing the ph affect the rate of enzyme activity? Does this follow a pattern you anticipated? EXTENSIONS 1. Different organisms often live in very different habitats. Design a series of experiments to investigate how different types of organisms might affect the rate of enzyme activity. Consider testing a plant, an animal, and a protist. 2. Presumably, at higher concentrations of H 2 O 2, there is a greater chance that an enzyme molecule might collide with H 2 O 2. If so, the concentration of H 2 O 2 might alter the rate of oxygen production. Design a series of experiments to investigate how differing concentrations of the substrate hydrogen peroxide might affect the rate of enzyme activity. 3. Design an experiment to determine the effect of boiling catalase on the reaction rate. 4. Explain how environmental factors affect the rate of enzyme-catalyzed reactions. Science with TI-Nspire Technology 12-7