Investment Behavior and the Negative Side of Emotion Baba Shiv, 1 George Loewenstein, 2 Antoine Bechara, 3 Hanna Damasio, 3 and Antonio R.



From this document you will learn the answers to the following questions:

Along with Davidson , who was the author of the study that showed that patients with emotional dysfunction can be more likely to make more decisions?

Who did Benartzi and in 1995?

In what year did Peters and Slovic publish their findings?

Similar documents
Prospect Theory Ayelet Gneezy & Nicholas Epley

Banking on a Bad Bet: Probability Matching in Risky Choice Is Linked to Expectation Generation

CANHR Nothing Happens By Accident Crafting A Consumer Protection Law

Reasoning and Decision Making

Article. Borderline Personality Disorder, Impulsivity, and the Orbitofrontal Cortex

AMPHETAMINE AND COCAINE MECHANISMS AND HAZARDS

In the winning mood: Affect in the Iowa gambling task

Evolutionary Theories of Emotion

From Loss Aversion to Loss Acceptance: How Casino Contexts Can Undermine Loss Aversion. Working Paper. October 13, 2008

Numeracy and Decision Making Ellen Peters, 1,2 Daniel Västfjäll, 1,3 Paul Slovic, 1,2 C.K. Mertz, 1 Ketti Mazzocco, 4 and Stephan Dickert 1,2

The Executive System and its Disorders

Delusions are false beliefs that are not part of their real-life. The person keeps on believing his delusions even when other people prove that the be

Introduction. Methods

Individual Differences in Susceptibility to Investment Fraud! Brian Knutson Stanford University"

ACADEMIC DIRECTOR: Carla Marquez-Lewis Contact: THE PROGRAM Career and Advanced Study Prospects Program Requirements

Department of Psychology

Neurobiology of Depression in Relation to ECT. PJ Cowen Department of Psychiatry, University of Oxford

Is a monetary incentive a feasible solution to some of the UK s most pressing health concerns?

Investigating the genetic basis for intelligence

PROSPECT THEORY AND INVESTORS TRADING BEHAVIOUR MARKET. Philip Brown Gary Smith * Kate Wilkie. Abstract

Drivers and Outcomes of Perceived Fairness in Consumer Financial Decisions. Suzanne B. Shu, UCLA Sylvia Morelli, UCLA. Working draft: March 2012

Youth Drug Abuse and Addiction

Performance of soccer on the stock market: Evidence from Turkey

psychology the science of psychology CHAPTER third edition Psychology, Third Edition Saundra K. Ciccarelli J. Noland White

Memory Development and Frontal Lobe Insult

Prevention & Recovery Conference November 28, 29 & 30 Norman, Ok

Fig. 1. (Courtesy of Paul Ekman Group. LLC)

Coping With Stress and Anxiety

9.63 Laboratory in Cognitive Science. Factorial Design

Consumers Preference for Flat Rates: A Case of Media Access Fees

ORIEL FELDMANHALL, P H.D. Oriel.FeldmanHall@nyu.edu. New York University. New York City, NY Post Doctoral Fellow, Department of Psychology

PARENTING AND BLOCKED CARE

Favorable Interpretations of Ambiguity and Unstable Preferences for Fairness

Should I Go With My Gut? Investigating the Benefits of Emotion-Focused Decision Making

Substance Addiction. A Chronic Brain Disease

Gender Stereotypes Associated with Altruistic Acts

Using Behavioral Economics to Improve Diversification in 401(k) Plans: Solving the Company Stock Problem

Increased sensitivity to error during decision-making in bipolar disorder patients with acute mania

Jeff, what are the essential aspects that make Schema Therapy (ST) different from other forms of psychotherapy?

The ability to decide advantageously declines prematurely in some normal older persons

Borderline Personality Disorder and Treatment Options

Myopic risk-seeking: The impact of narrow decision bracketing on lottery play

Explaining Anxiety in the Brain:

Behavioral Health Psychological/Neuropsychological Testing Guidelines

Out of the Frying Pan into the Fire: Behavioral Reactions to Terrorist Attacks

Emotional Quotient. Michael Sample. CEO Sample Co Your Address Here Your Phone Number Here Your Address Here

Five Modes of Decision-Making

An Automated Test for Telepathy in Connection with s

Nuclear Energy, Risk, and Emotions

Theories of Violence and Aggression. By Jason Ittel

Oregon Association of Vocational Special Needs Personnel

Post Traumatic Stress Disorder & Substance Misuse

Factorial Design. A factorial design Laboratory in Visual Cognition. Effect of Attraction x Emotion

Equity Investors Risk Tolerance Level During the Volatility of Indian Stock Market

Propaganda and Persuasive Techniques. What is it? What does it do?

Two-sample inference: Continuous data

The Goal of Correctional Counseling

RELATIONSHIP QUESTIONNAIRE. 1. Can you say there s no jealousy in your relationship? Yes No

The Identified Victim Effect: An Identified Group, or Just a Single Individual?

Notes - Gruber, Public Finance Chapter 20.3 A calculation that finds the optimal income tax in a simple model: Gruber and Saez (2002).

With Sadness Comes Accuracy; With Happiness, False Memory Mood and the False Memory Effect

CHAPTER 14 NONPARAMETRIC TESTS

A Behavioural Explanation Of Six Finance. puzzle. Solution

Low-Volatility Investing: Expect the Unexpected

EQUITY MARKET RISK PREMIUMS IN THE U.S. AND CANADA

Please bear in mind the following when finalising your choices: You must have an even balance of Autumn and Spring Term modules.

Multivariate Analysis of Variance. The general purpose of multivariate analysis of variance (MANOVA) is to determine

Teaching & Learning Plans. Plan 1: Introduction to Probability. Junior Certificate Syllabus Leaving Certificate Syllabus

Video Poker in South Carolina: A Mathematical Study

The Relationship between the Fundamental Attribution Bias, Relationship Quality, and Performance Appraisal

Financial Evolution and Stability The Case of Hedge Funds

Brent L. Hughes Lab Manager Columbia University Advisors: Kevin Ochsner, Tor Wager, Edward Smith

Math 728 Lesson Plan

Models of Risk and Return

Requirements. Elective Courses (minimum 9 cr.) Psychology Major. Capstone Sequence (14 cr.) Required Courses (21 cr.)

1. Overconfidence {health care discussion at JD s} 2. Biased Judgments. 3. Herding. 4. Loss Aversion

Analyzing the Effect of Change in Money Supply on Stock Prices

The Transpersonal (Spiritual) Journey Towards Leadership Excellence Using 8ICOL

Inaction Inertia in the Stock Market 1

Unlike other animals, human beings spend

Objectives. Cortical thickness over time. Cortical thickness over time. ADHD neurobiology

LIMITING GOVERNMENT: THE FAILURE OF STARVE THE BEAST William A. Niskanen

Chapter 1 Assignment Part 1

Eliminating Over-Confidence in Software Development Effort Estimates

How Does Money Grow Over Time?

TV commercial effectiveness predicted by functional MRI

Lab 11. Simulations. The Concept

Integrated Neuropsychological Assessment

MGT 162: NEGOTIATION Winter 2015

Report on the Ontario Principals Council Leadership Study

DECISIONS IN FINANCIAL ECONOMICS: AN EXPERIMENTAL STUDY OF DISCOUNT RATES. Uri Benzion* and Joseph Yagil** ABSTRACT

The Continuous Performance Test (CPT) as an Assessment of. Voluntary Attention in Preschool Children at High Risk for Learning.

II. DISTRIBUTIONS distribution normal distribution. standard scores

That s Not Fair! ASSESSMENT #HSMA20. Benchmark Grades: 9-12

Financial Illiteracy Meets Conflicted Advice: The Case of Thrift Savings Plan Rollovers

Behavior Rating Inventory of Executive Function - Adult Version BRIEF-A. Interpretive Report. Developed by

research/scientific includes the following: statistical hypotheses: you have a null and alternative you accept one and reject the other

Dr Sarah Blunden s Adolescent Sleep Facts Sheet

Transcription:

PSYCHOLOGICAL SCIENCE Research Report Investment Behavior and the Negative Side of Emotion Baba Shiv, 1 George Loewenstein, 2 Antoine Bechara, 3 Hanna Damasio, 3 and Antonio R. Damasio 3 1 Stanford University, 2 Carnegie Mellon University, and 3 University of Iowa ABSTRACT Can dysfunction in neural systems subserving emotion lead, under certain circumstances, to more advantageous decisions? To answer this question, we investigated how normal participants, patients with stable focal lesions in brain regions related to emotion (target patients), and patients with stable focal lesions in brain regions unrelated to emotion (control patients) made 20 rounds of investment decisions. Target patients made more advantageous decisions and ultimately earned more money from their investments than the normal participants and control patients. When normal participants and control patients either won or lost money on an investment round, they adopted a conservative strategy and became more reluctant to invest on the subsequent round; these results suggest that they were more affected than target patients by the outcomes of decisions made in the previous rounds. In contrast to the historically dominant view of emotions as a negative influence in human behavior (Peters & Slovic, 2000), recent research in neuroscience and psychology has highlighted the positive roles played by emotions in decision making (Bechara, Damasio, Tranel, & Damasio, 1997; Damasio, 1994; Davidson, Jackson, & Kalin, 2000; Dolan, 2002; LeDoux, 1996; Loewenstein & Lerner, 2003; Peters & Slovic, 2000; Rahman, Sahakian, Rudolph, Rogers, & Robbins, 2001). Notwithstanding the fact that strong negative emotions such as jealousy and anger can lead to destructive patterns of behavior such as crimes of passion and road rage (Loewenstein, 1996), in a series of studies using a gambling task, researchers have shown that individuals with emotional dysfunction tend to perform poorly compared with those who have intact emotional processes (Bechara et al., 1997; Damasio, 1994; Rogers et al., 1999). However, there are reasons to think that individuals deprived of normal Address correspondence to Baba Shiv, Graduate School of Business, 518 Memorial Way, Stanford, CA 94305-5015; e-mail: shiv_baba@ gsb.stanford.edu. emotional reactions might actually make better decisions than normal individuals (Damasio, 1994). For example, consider the case of a patient with ventromedial prefrontal damage who was driving under hazardous road conditions (Damasio, 1994). When other drivers reached an icy patch, they hit their brakes in panic, causing their vehicles to skid out of control, but the patient crossed the icy patch unperturbed, gently pulling away from a tailspin and driving ahead safely. The patient remembered the fact that not hitting the brakes was the appropriate behavior, and his lack of fear allowed him to perform optimally. A broad thrust of the current research is to delve into this latter possibility, that individuals deprived of normal emotional reactions might, in certain situations, make more advantageous decisions than those not deprived of such reactions. Recent evidence suggests that even relatively mild negative emotions that do not result in a loss of self-control can play a counterproductive role among normal individuals in some situations (Benartzi & Thaler, 1995). When gambles that involve some possible loss are presented one at a time, most people display extreme levels of risk aversion toward the gambles, a condition known as myopic loss aversion (Benartzi & Thaler, 1995). For example, most people will not voluntarily accept a 50 50 chance to gain $200 or lose $150, despite the gamble s high expected return. Myopic loss aversion has been advanced as an explanation for the large number of individuals who prefer to invest in bonds, even though stocks have historically provided a much higher rate of return, a pattern that economists refer to as the equity premium puzzle (Narayana, 1996; Siegel & Thaler, 1997). On the basis of research showing that patients with neurological disease that impairs their emotional responses take risks even when they result in catastrophic losses (Bechara et al., 1997), as well as anecdotal evidence that such patients may, under certain circumstances, behave more efficiently than normal subjects (Damasio, 1994), we hypothesized that these same patients would make more advantageous decisions than normal subjects (or than patients with neurological lesions that do not impair their emotional responses) when faced with the types of positive-expected-value gambles we have just highlighted. In Volume 16 Number 6 Copyright r 2005 American Psychological Society 435

Investment Behavior and the Negative Side of Emotion other words, if myopic loss aversion does indeed have an emotional basis as suggested in the literature (Loewenstein, Weber, Hsee, & Welch, 2001), then any dysfunction in neural systems subserving emotion ought to result in reduced levels of risk aversion and, thus, lead to more advantageous decisions in cases in which risk taking is rewarded. To test our hypothesis, we developed a risky decision-making task that simulated real-life investment decisions in terms of uncertainties, rewards, and punishments. The task, closely modeled on a paradigm developed by Gneezy (1997) to demonstrate myopic loss aversion, was designed so that it would behoove participants to invest in every round because the expected value on each round was higher if one invested than if one did not. Our goal, then, was to demonstrate that an individual with a deficient emotional circuitry would experience less myopic loss aversion and make more advantageous decisions than an individual with an intact emotional circuitry. Such a finding would provide a new source of support for the idea that emotions play an important role in risk taking and risk aversion. METHOD Participants We studied 19 normal participants and 15 target patients with chronic and stable focal lesions in specific components of a neural circuitry that has been shown to be critical for the processing of emotions (Damasio, 1994; Davidson et al., 2000; Dolan, 2002; LeDoux, 1996; Rahman et al., 2001; Sanfey, Hastie, Colvin, & Grafman, 2003). Specifically, the target patients lesions were in the amygdala (bilaterally; 3 patients), the orbitofrontal cortex (bilaterally; 8 patients), or the right insular or somatosensory cortex (4 patients). We also studied 7 control patients with chronic and stable focal lesions in areas of the brain that are not involved in emotion processing. All these patients had a lesion in the right (4 patients) or left (3 patients) dorsolateral sector of the prefrontal cortex. The patients were drawn from the Division of Cognitive Neuroscience s Patient Registry at the University of Iowa and have been described previously (Bechara et al., 1997). The lesions in the prefrontal cortex are due to stroke or surgical removal of a meningioma, those in the right insular or somatosensory region are due to stroke, and those in the amygdala are due to herpes simplex encephalitis (2 patients) or Urbach Weithe disease (1 patient). (The patients with bilateral amygdala damage due to herpes simplex encephalitis also have damage to the hippocampal system, and consequently have severe anterograde memory impairment. However, they have normal IQ and intellect. Removing the data for these patients did not affect the results.) The control patients lesions in the dorsolateral sector of the prefrontal cortex are due to stroke. All target patients have been shown to perform poorly on the Iowa Gambling Task (Bechara, Damasio, & Damasio, 2003) and to have low emotional intelligence as measured by the EQi (Bar- On, Tranel, Denburg, & Bechara, 2003). All control patients have been shown to perform advantageously on the Iowa Gambling Task and to have normal EQi scores (Bar-On et al., 2003; Bechara et al., 2003). The target and control patients had a mean age of 53.6 (SD 5 11) at the time of this study; they had 14.5 years of education on average (SD 5 3) and mean verbal and performance IQs of 107.2 (SD 5 11.5) and 103.4 (SD 5 14.5), respectively. The normal participants were recruited from the local community through advertisement in local newspapers. None had any history of neurological or psychiatric disease (assessed by questionnaire). Their mean age was 51.6 years (SD 5 13); on average, they had 14.6 (SD 5 3) years of education and verbal and performance IQs of 105.5 (SD 5 7) and 101.4 (SD 5 10), respectively. All participants provided informed consent that was approved by the appropriate human subject committees at the University of Iowa. Procedure At the beginning of the task, all participants were endowed with $20 of play money, which they were told to treat as real because they would receive a gift certificate for the amount they were left with at the end of the study. Participants were told that they would be making several rounds of investment decisions and that, in each round, they had to decide between two options: invest $1 or not invest. On each round, if the participant decided not to invest, he or she would keep the dollar, and the task would advance to the next round. If the participant decided to invest, he or she would hand over a dollar bill to the experimenter. The experimenter would then toss a coin in plain view. If the outcome of the toss were heads (50% chance), then the participant would lose the $1 that was invested; if the outcome of the toss were tails (50% chance), then $2.50 would be added to the participant s account. The task would then advance to the next round. The task consisted of 20 rounds of investment decisions, and the three groups of participants took roughly the same time on the task. Note that, as indicated earlier, the design of this investment task is such that it would behoove participants to invest in all the rounds because the expected value on each round is higher if one invests ($1.25) than if one does not ($1). In fact, if one invests on each and every round, there is only around a 13% chance of obtaining lower total earnings than if one does not invest in every round and simply keeps the $20. RESULTS AND DISCUSSION Overall Investment Decisions and Amounts Earned Examination of the percentage of the 20 rounds in which participants decided to invest revealed that the target patients made decisions that were closer to a profit-maximizing view- 436 Volume 16 Number 6

B. Shiv et al. TABLE 1 Percentages of Decisions to Invest as a Function of Decision and Outcome in the Previous Round Previous round Orbitofrontal lesion (n 5 8) Target patients Insular, somatosensory lesion (n 5 4) Amygdala lesion (n 5 3) Overall Normal participants Control patients Did not invest 70.4 70.0 83.3 74.2 64.4 63.4 Invested and lost 79.8 96.8 84.3 85.2 40.5 37.1 Invested and won 79.1 94.4 83.3 84.0 61.7 75.0 Invested overall 79.4 91.3 85.0 83.7 57.6 60.7 Fig. 1. Percentage of rounds in which participants decided to invest $1. point than the other participants did (see Table 1). Specifically, target patients invested in 83.7% of the rounds on average, whereas normal participants invested in 57.6% of the rounds (Wilcoxon statistic 5 345.0, p <.002) and control patients invested in 60.7% of the rounds (Wilcoxon two-sample test statistic 5 44.5, p <.006). Further, as hypothesized, target patients earned more money over the 20 rounds of the experiment ($25.70, on average) than did normal participants ($22.80; Wilcoxon statistic 5 315.5, p <.03) or control patients ($20.07; Wilcoxon statistic 5 44, p <.006); the average amount earned by normal participants did not differ from that earned by control patients (Wilcoxon statistic 5 73, n.s.). Figure 1 shows the percentage of rounds in which participants decided to invest, broken down into four 5-round blocks. The pattern of results suggests that all three groups of participants started close to the normative benchmark. However, unlike target patients, who remained close to the normative benchmark, normal participants and control patients seemed to become more conservative, investing in fewer rounds, as the investment task progressed. One potential account for these findings is that emotional reactions to the outcomes on preceding rounds affected decisions on subsequent rounds for normal participants and control patients, but not for target patients. We examine this potential account in greater detail in the next section. Impact of Outcomes on Previous Rounds on Decisions in Subsequent Rounds We conducted a lagged logistic regression analysis to examine whether the decision-outcome combination in preceding rounds (did not invest, invested and won, invested and lost) affected decisions on successive rounds more for control participants (normal participants and control patients) than for target patients. The dependent variable in this analysis was whether the decision on a particular round was to invest (coded as 1) or not invest (coded as 0). The independent variables were several dummies that were created for the analysis: control (coded as 1 for control participants, 0 otherwise), invest-won (coded as 1 if the participant invested on the previous round and won, 0 otherwise), invest-lost (coded as 1 if the participant invested on the previous round and lost, 0 otherwise), and participantspecific dummies (e.g., dummy1, coded as 1 for Participant 1, 0 otherwise). The overall logit model that was tested was decision 5 control invest-won invest-lost control by invest-won control by invest-lost dummy1 dummy2 etc. Note that any significant interactions would indicate that the effects of the decisions and outcomes in preceding rounds on decisions made in successive rounds were different for target patients and control participants. Both interactions in the logit model were significant: control by invest-won, w 2 (1) 5 10.27, p <.001; control by invest-lost, w 2 (1) 5 31.98, p <.0001. These results suggest that normal participants and control patients behaved differently from target patients both when they had won on the previous round and when they had lost. As detailed in Table 1, control participants were more likely than target patients to withdraw from risk Volume 16 Number 6 437

Investment Behavior and the Negative Side of Emotion taking both when they lost on the previous round and when they won. Compared with the target patients, who invested in 85.2% of rounds following losses, normal participants invested in only 40.5% of rounds following losses (Wilcoxon statistic 5 350.0, p <.001), and control patients invested in only 37.1% of such rounds (Wilcoxon statistic 5 45, p <.006). Similarly, although target patients invested in 84.0% of rounds following wins, normal participants invested in only 61.7% of rounds following wins (Wilcoxon statistic 5 323, p <.01), and control patients invested in 75.0% of such rounds (Wilcoxon statistic 5 67.5, p 5.16). These results also suggest that normal participants and control patients were considerably less risk aversive following wins than following losses (normal participants: 61.7% vs. 40.5%, difference 5 21.2%; control patients: 75.0% vs. 37.1%, difference 5 37.9%); in contrast, target patients invested equally often following wins and following losses (84.0% vs. 85.2%, difference 5 1.2%). CONCLUSIONS The results of this study support our hypothesis that patients with lesions in specific components of a neural circuitry critical for the processing of emotions will make more advantageous decisions than normal subjects when faced with the types of positive-expected-value gambles that most people routinely shun. Such findings lend support to theoretical accounts of risk-taking behavior that posit a central role for emotions (Loewenstein et al., 2001). Most theoretical models of risk taking assume that risky decision making is largely a cognitive process of integrating the desirability of different possible outcomes with their probabilities. However, researchers have recently argued that emotions play a central role in decision making under risk (Mellers, Schwartz, & Ritov, 1999; Slovic, Finucane, Peters, & MacGregor, 2002). The finding that lack of emotional reactions may lead to more advantageous decisions in certain situations lends further support to such accounts. Our results raise several issues related to the role of emotions in decision making involving risk. It is apparent that neural systems that subserve human emotions have evolved for survival purposes. The automatic emotions triggered by a given situation help the normal decision-making process by narrowing down the options for action, either by discarding those that are dangerous or by endorsing those that are advantageous. Emotions serve an adaptive role in speeding up the decisionmaking process. However, there are circumstances in which a naturally occurring emotional response must be inhibited, so that a deliberate and potentially wiser decision can be made. The current study demonstrates this dark side of emotions in decision making. Depending on the circumstances, moods and emotions can play useful as well as disruptive roles in decision making. It is important to note that previous experiments demonstrating a positive role of emotion in decision making involved tasks in which decisions were made under ambiguity (i.e., the outcomes were unknown; Bechara et al., 1997). In the present experiment, the patients made decisions under uncertainty (i.e., the outcome involved risk but was defined by some probability distribution). We do not know at this point whether decisions under uncertainty and decisions under ambiguity draw upon different neural processes, so that emotion is disruptive in one case but not the other. Regardless, the issue is not simply whether emotions can be trusted as leading to good or bad decisions. Rather, research needs to determine the circumstances in which emotions can be useful or disruptive, and then the reasoned coupling of circumstances and emotions can be a guide to human behavior. Acknowledgments We gratefully acknowledge a suggestion from C. Hsee that sparked the idea for this study. This work was supported by Grant PO1 NS19632 from the National Institutes of Health (National Institute of Neurological Disorders and Stroke) and by Grant SES 03-50984 from the National Science Foundation. REFERENCES Bar-On, R., Tranel, D., Denburg, N., & Bechara, A. (2003). Exploring the neurological substrate of emotional and social intelligence. Brain, 126, 1790 1800. Bechara, A., Damasio, H., & Damasio, A. (2003). The role of the amygdala in decision-making. In P. Shinnick-Gallagher, A. Pitkanen, A. Shekhar, & L. Cahill (Eds.), The amygdala in brain function: Basic and clinical approaches (Annals of the New York Academy of Sciences Vol. 985, pp. 356 369). New York: New York Academy of Sciences. Bechara, A., Damasio, H., Tranel, D., & Damasio, A.R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275, 1293 1295. Benartzi, S., & Thaler, R. (1995). Myopic loss aversion and the equity premium puzzle. Quarterly Journal of Economics, 110, 73 92. Damasio, A.R. (1994). Descartes error: Emotion, reason, and the human brain. New York: Grosset/Putnam. Davidson, R.J., Jackson, D.C., & Kalin, N.H. (2000). Emotion, plasticity, context, and regulation: Perspectives from affective neuroscience. Psychological Bulletin, 126, 890 909. Dolan, R.J. (2002). Emotion, cognition, and behavior. Science, 298, 1191 1194. Gneezy, U. (1997). An experiment on risk taking and evaluation periods. Quarterly Journal of Economics, 112, 631 645. LeDoux, J. (1996). The emotional brain: The mysterious underpinnings of emotional life. New York: Simon and Schuster. Loewenstein, G. (1996). Out of control: Visceral influences on behavior. Organizational Behavior and Human Decision Processes, 65, 272 292. Loewenstein, G., & Lerner, J. (2003). The role of emotion in decision making. In R.J. Davidson, H.H. Goldsmith, & K.R. Scherer (Eds.), Handbook of affective science (pp. 619 642). Oxford, England: Oxford University Press. Loewenstein, G.F., Weber, E.U., Hsee, C.K., & Welch, N. (2001). Risk as feelings. Psychological Bulletin, 127, 267 286. Mellers, B., Schwartz, A., & Ritov, I. (1999). Emotion-based choice. Journal of Experimental Psychology: General, 128, 332 345. 438 Volume 16 Number 6

B. Shiv et al. Narayana, K. (1996). The equity premium: It is still a puzzle. Journal of Economics Literature, 34, 42 71. Peters, E., & Slovic, P. (2000). The springs of action: Affective and analytical information processing in choice. Personality and Social Psychology Bulletin, 26, 1465 1475. Rahman, S., Sahakian, B.J., Rudolph, N.C., Rogers, R.D., & Robbins, T.W. (2001). Decision making and neuropsychiatry. Trends in Cognitive Sciences, 6, 271 277. Rogers, R.D., Everitt, B.J., Baldacchino, A., Blackshaw, A.J., Swainson, R., Wynne, K., Baker, N.B., Hunter, J., Carthy, T., Booker, E., London, M., Deakin, J.F.W., Sahakian, B.J., & Robbins, T.W. (1999). Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: Evidence for monoaminergic mechanisms. Neuropsychopharmacology, 20, 322 339. Rogers, R.D., & Robbins, T.W. (2001). Investigating the neurocognitive deficits associated with chronic drug misuse. Current Opinion in Neurobiology, 11, 250 257. Sanfey, A., Hastie, R., Colvin, M., & Grafman, J. (2003). Phineas gauged: Decision-making and the human prefrontal cortex. Neuropsychologia, 41, 1218 1229. Siegel, J., & Thaler, R. (1997). The equity premium puzzle. Journal of Economics Perspectives, 11, 191 200. Slovic, P., Finucane, M., Peters, E., & MacGregor, D.G. (2002). The affect heuristic. In T. Gilovich, D. Griffin, & D. Kahneman (Eds.), Heuristics and biases: The psychology of intuitive judgment (pp. 397 420). New York: Cambridge University Press. (RECEIVED 5/27/04; REVISION ACCEPTED 11/10/04) Volume 16 Number 6 439