Gradient Operation in HPLC. Dr. Shulamit Levin



Similar documents
cooking trajectory boiling water B (t) microwave time t (mins)

Capacitors and inductors

Module 3 Design for Strength. Version 2 ME, IIT Kharagpur

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

CHARGE AND DISCHARGE OF A CAPACITOR

AP Calculus BC 2010 Scoring Guidelines

AP Calculus AB 2013 Scoring Guidelines

Chapter 7. Response of First-Order RL and RC Circuits

RC (Resistor-Capacitor) Circuits. AP Physics C

9. Capacitor and Resistor Circuits

Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)

11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements

Behavior Analysis of a Biscuit Making Plant using Markov Regenerative Modeling

Answer, Key Homework 2 David McIntyre Mar 25,

Chapter Four: Methodology

Acceleration Lab Teacher s Guide

Full-wave rectification, bulk capacitor calculations Chris Basso January 2009

Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.

Stochastic Optimal Control Problem for Life Insurance

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE

Transient Analysis of First Order RC and RL circuits

Application of Fast Response Dual-Colour Pyroelectric Detectors with Integrated Op Amp in a Low Power NDIR Gas Monitor

Chapter 1.6 Financial Management

Cointegration: The Engle and Granger approach

Pulse-Width Modulation Inverters

The naive method discussed in Lecture 1 uses the most recent observations to forecast future values. That is, Y ˆ t + 1

Chapter 5. Aggregate Planning

Appendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.

Chapter 8: Regression with Lagged Explanatory Variables

Name: Algebra II Review for Quiz #13 Exponential and Logarithmic Functions including Modeling

The Application of Multi Shifts and Break Windows in Employees Scheduling

Chapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m

Vector Autoregressions (VARs): Operational Perspectives

Making a Faster Cryptanalytic Time-Memory Trade-Off

Economics Honors Exam 2008 Solutions Question 5

INDEX RULE BOOK Leverage, Short, and Bear Indices

Differential Equations. Solving for Impulse Response. Linear systems are often described using differential equations.

4. International Parity Conditions

Optimal Growth for P&C Insurance Companies

Pricing Single Name Credit Derivatives

Signal Rectification

CLASSIFICATION OF REINSURANCE IN LIFE INSURANCE

ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS

Strategic Optimization of a Transportation Distribution Network

Differential Equations and Linear Superposition

Capacity Planning and Performance Benchmark Reference Guide v. 1.8

12. TESTING OF CEMENT PART 1.

PREMIUM INDEXING IN LIFELONG HEALTH INSURANCE

STUDY ON THE GRAVIMETRIC MEASUREMENT OF THE SWELLING BEHAVIORS OF POLYMER FILMS

Newton s Laws of Motion

Chapter 6: Business Valuation (Income Approach)

Stability. Coefficients may change over time. Evolution of the economy Policy changes

Chapter 6 Interest Rates and Bond Valuation

Module 3. R-L & R-C Transients. Version 2 EE IIT, Kharagpur

Signal Processing and Linear Systems I

Optimal Investment and Consumption Decision of Family with Life Insurance

CLOCK SKEW CAUSES CLOCK SKEW DUE TO THE DRIVER EROSION OF THE CLOCK PERIOD

Morningstar Investor Return

AP Calculus AB 2010 Scoring Guidelines

Fourier Series & The Fourier Transform

Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary

Frequency Modulation. Dr. Hwee-Pink Tan

A Curriculum Module for AP Calculus BC Curriculum Module

A Novel Approach to Improve Diverter Performance in Liquid Flow Calibration Facilities

Inductance and Transient Circuits

DATA SHEET. 1N4148; 1N4446; 1N4448 High-speed diodes DISCRETE SEMICONDUCTORS Sep 03

DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS

Term Structure of Prices of Asian Options

4 Convolution. Recommended Problems. x2[n] 1 2[n]

SINAMICS S120 drive system

Stock Trading with Recurrent Reinforcement Learning (RRL) CS229 Application Project Gabriel Molina, SUID

MTH6121 Introduction to Mathematical Finance Lesson 5

DETERMINISTIC INVENTORY MODEL FOR ITEMS WITH TIME VARYING DEMAND, WEIBULL DISTRIBUTION DETERIORATION AND SHORTAGES KUN-SHAN WU

Multiprocessor Systems-on-Chips

Credit Index Options: the no-armageddon pricing measure and the role of correlation after the subprime crisis

Diagnostic Examination

Imagine a Source (S) of sound waves that emits waves having frequency f and therefore

Optimal Withdrawal Strategies for Retirees with Multiple Savings Accounts

Chapter 2 Kinematics in One Dimension

Improvement of a TCP Incast Avoidance Method for Data Center Networks

µ r of the ferrite amounts to It should be noted that the magnetic length of the + δ

IR Receiver Module for Light Barrier Systems

A Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation

AP Calculus AB 2007 Scoring Guidelines

Why Did the Demand for Cash Decrease Recently in Korea?

The Torsion of Thin, Open Sections

Life insurance cash flows with policyholder behaviour

Table of contents Chapter 1 Interest rates and factors Chapter 2 Level annuities Chapter 3 Varying annuities

Optimal Control Formulation using Calculus of Variations

Switching Regulator IC series Capacitor Calculation for Buck converter IC

Description of the CBOE S&P 500 BuyWrite Index (BXM SM )

Form measurement systems from Hommel-Etamic Geometrical tolerancing in practice DKD-K Precision is our business.

SOLUTIONS RADIOLOGICAL FUNDAMENTALS PRACTICE PROBLEMS FOR TECHNICAL MAJORS

THE FIRM'S INVESTMENT DECISION UNDER CERTAINTY: CAPITAL BUDGETING AND RANKING OF NEW INVESTMENT PROJECTS

Molding. Injection. Design. GE Plastics. GE Engineering Thermoplastics DESIGN GUIDE

Optimal Longevity Hedging Strategy for Insurance. Companies Considering Basis Risk. Draft Submission to Longevity 10 Conference

Astable multivibrator using the 555 IC.(10)

Transcription:

ien Operaion in HPLC Dr. Shulami Levin

% Organic ien Operaion in HPLC Inroducion - Opimizing ien Separaions The following diagram illusraes he cycle ime parameers ha are used in a ypical grien Dr. Shulami Levin ien Injec Ouline Typical Problems Encounered in ien Chromaography Inroducion Sraegies for Higher Throughpu ien Separaions o Achieve Maximum Throughpu and Opimal Resoluion sysem soluions mehod soluions Non-reproducible reenion imes Difficulies o ransfer from analyical o narrowbore columns Long reequilibraion imes Long cycle imes (injecion o injecion) More efficien analyses desired

Inroducion - Opions o Improve Sample Throughpu Ouline Sysem Soluions: Reduce ien Delay Volume Decrease ime Reduce Injecion Cycle ime Modify Insrumen Use Muliple Parallel Columns Adjus Deecor Sampling Rae Mehod Soluions: Use Shorer iens Use Higher Flow Raes Use Shorer Columns Use a Smaller Paricle Size Decrease Time Increase Temperaure Inroducion Sraegies for Higher Throughpu ien Separaions o Achieve Maximum Throughpu and Opimal Resoluion sysemsoluions reduce grien delay volume decreasere-equilibraion ime reduce injecion cycle ime mehod soluions Tes Probe Srucures Iniial Separaion and Condiions S O N N N N OH -hydroxy-7-aza-benzoriazole H3C O C CH3 CH O HC NH mehyl 3-amino--hiophenecarboxylae O 0.0 0. 0.6 0. 0. 0.0 0.0 0.06 0.0 0.0 A B C D Condiions: Column: Symmery C, 5 µm,.6 X 50 mm Mobile phase: A=0.% TFA in waer, B=0.% TFA in aceonirile ien: 0-60% B in minues Column emperaure: 30.0 C Flow rae: ml/min. S O NH -mehylbenzene sulfonamide HN C -aminobenzophenone 0.50.00.50.00.50 3.003.50.00 A - -hydroxy-7-aza-benzoriazole B - -mehylbenzene sulfonamide C - mehyl 3-amino--hiophenecarboxylae Deecor: 5 nm Injecion volume: µl H. Weller, Brisol-Myers Squibb Pharmaceuical Research Insiue D - -aminobenzophenone

B A C D Proporioning Valve Volumes in an HPLC Sysem Sysem Volume Waers 690 <650 µl Solven delivery Injecor Column Volume Column Deecor Deerminaion of Sysem Precolumn Volume Heigh Definiion: Delay volume is he volume of plumbing beween he poin he grien is formed and he inle of he column..0 0. 0.6 0. 0. Measured by linear grien Heigh.0 0. 0.6 0. 0. Measured by sep grien Exra Column Volume Effec of Precolumn Volume Reducing Delay Volume Volume (µl) Sysem componens affecing dwell volume: Pump ien Mixers Injecor ien Shape and Precolumn Volume Volume (µl) in heory real life n %B ie ien Theoreical ien No column,.00 ml/min 3.9x50 mm,.00 ml/min.x50 mm, 0.9 ml/min Injec Injec Delay Volume Time 0 5 0 5 0 5 30 3

Ouline Inroducion Sraegies for Higher Throughpu ien Separaions o Achieve Maximum Throughpu and Opimal Resoluion sysem soluions reduce grien delay volume decrease re-equilibraion ime reduce injecion cycle ime mehod soluions %B ien Shape and Delay Volume Time Theoreical ien No column,.00 ml/min 3.9x50mm,.00 ml/min.x50mm, 0.9 ml/min 0 5 0 5 0 5 30 Calculaion ofien Equilibraion Volume is a necessary parof grien chromaography. Boh he HPLC sysem and he column mus be a iniial condiions a hebeginning of each run o ensure reproducible chromaographic separaions. The re-equilibraion volumecan be divided ino wo pars, he sysem washou and he column re-equilibraion. For good sysem/columnequilibraion rr = (3V T + 5Vc)/F where: rris he re-equilibraion imein minues, VTis he oalsysem volume, Vc ishe column volume in ml F is he flowrae in ml/min. column volume = 0.7(πrL/) sysem volume= 650-3000 µl 3.9 x 50 mm. x 50 mm.0 x 50 mm.0 ml/min 0.90 ml/min 0.066 ml/min Column 0 6 Volume, ml 0 0 0 0 30 0 Time, min 3xSysem 5xColumn

Reducion of Time Reducion of Time (Approach - Increase Flow Rae) Reduce ime, wo Approaches: ie Injec n. increase flow rae. reduce column volume ie Injec n Column: 3.9 X 50 mm G ra die Injec n ien Time Column: 3.9 X 50 mm G ra die Injec n ien Time ie Injec n Column volume (c.v.) =0.60 ml 5 minue grien @ ml/min insrumen delay volume (d.v.) = 650 µl grien volume = x g c.v. =3 Toal re-equilibraion ime, r = {3(0.65) + 5(0.7)(0.6)}/ =.0/ =.0 min. Column volume (c.v.) =0.60 ml 5 minue grien @ ml/min insrumen delay volume (d.v.) = 650 µl grien volume = x g c.v. =3 Toal re-equilibraion ime, r = {3(0.65) + 5(0.7)(0.6)}/ =.0/ =.0 min. Reducion of Time (Approach - Increase flow rae) re-equilibraion ime is reduced by 50% Reducion of Time (Approach - Reduce Column Volume) 0 6 Symmery C Alkylphenones 3.9 x 50 mm 0-00%B 3.0 min, 3 ml/min.5 min, ml/min 9.0 min, ml/min ien Injec Column:. X 50 mm Column volume (c.v.) = 0.70 ml 5 minue grien @ ml/min insrumen delay volume (d.v.) = 650 µl grien volume = g x c.v. = 0.5 Toal re-equilibraion ime, r = {3(0.65) + 5(0.7)(0.7)}/ =.5 min. ien Injec Column volume (c.v.) = 5 minue grien @ Column:. X 0 mm 0.069 ml ml/min insrumen delay volume (d.v.) = 650 µl grien volume = g x c.v. = 0.35 Toal re-equilibraion ime, r = {3(0.65) + 5(0.7)(0.069)}/ =.0 min. re-equilibraion ime is reduced by 0% 5

.0.0.00 0.90 Reducion of Time (Approach - Reduce Column Volume). x 0 mm. x 50 mm Condiions: Symmery C, 5 µm Mobile phase: A=0.% TFA in waer, B=0.% TFA in aceonirile ien: 0-60% B in 5 minues Column emperaure: 30.0 C Deecor: 5 nm Injecion volume: µl Flow rae: ml/min. Ouline Inroducion Sraegies for Higher Throughpu ien Separaions o Achieve Maximum Throughpu and Opimal Resoluion 0.0 0.70 0.60 0.50 0.0 0.30 0.0 -Increase hroughpu by approximaely 5% by reducing column volume from 0.70 (50 mm lengh) o 0.069 (0 mm lengh). sysem soluions reduce grien delay volume decrease re-equilibraion ime reduce injecion cycle ime 0.0 0.50.00.50.00.50 3.00 3.50.00.50 5.00 mehod soluions Reducing Reduce Cycle Times by: Programming a sysem purge in he mehod which occurs during he injecion of he sample or... Employing wo columns and performing column swiching. Faser Chromaography - Shorer Cycle Time Samples per day 30 +6% 76 Column: 3.9 X 50 mm 3 ml/min 3 min. grien 0 6

Higher Throughpu Through Column Swiching Column: Symmery, C, 5 µl, 9 X 50 mm Flow Rae: 0 ml/min. requires 5 column volumes = 50 ml = 7.5 min. period = unused ime Column swiching can reduce runimes by approx. 30% 0 Injec ien Hold 3 0.5 0 Summary - Sysem Soluions Reducing ien Delay Volume Use 0. mm (5") i.d. ubing inse of 0.5 mm (9") o reduce sysem volume; Shoren all ubing lenghs; column columns Reduce he exra-column volume in he auo-injecor by employing a smaller loop 0 hrs Noe: a second pump mus be employed 0.5hrs 6.5hrs Remove grien mixers Summary - Sysem Soluions (con'd) Inroducion Ouline Achieve Faser ien Chromaography By... Reducing Time Reducecolumn volume Increase flow rae Reducing Cycle Time Program injeciono occur during re-equilibraion Implemencolumn swiching Sraegies for Higher Throughpu ien Separaions o achieve maximum hroughpu and maximize resoluion sysem soluions mehod soluions use shorer griens use higher flow raes use shorercolumns use smaller paricle sizes increase emperaure 7

Rs Opimizing Separaions The following diagram illusraes he cycle ime parameers ha were opimized o achieve high hroughpu goals. Injec ien Wha Facors Influence ien RP-HPLC Separaions... Facors Influencing Resoluion in ien RP-HPLC Separaions... Resoluion, Rs, beween wo closelyresolved analyesin grien RP-HPLCis a funcion of column efficiency N, seleciviy a, and he reenion facor: Rs = w N lnα Efficiency Seleciviy Reenion Bc0 + c = %B/minue = % %. 0 + Upon subsiuion of he acual variables ( %/g (grien ime)) for c, grien slope, one can see he relaionship beween grien ime and resoluion, and... Resoluion Dependance on and Flow Rae for a ien Mehod (Symmery C,.6X 50 mm, 5 µm) B. g g...furher derivaizaion of his erm shows he relaionship beween resoluion and flow rae, F, and column lengh, L, or column volume, πrl/. Rs = w lnα I is he effec of hese variables, F, g gand L, ha we will invesigae. B. g N g Efficiency Seleciviy Reenion B. %. 0+ %..πr.l/f + ε 0 6 0 6 0 0.3 0.5 Flow [ml/min] 5 6 [min] Rs = w N ln α % B..ε.or.L/F + } g Efficiency Seleciviy Reenion. Effec of changing grien run ime, g. Effec of changing flow rae, F

Impac of Reducing (g) on Resoluion : minues : minues 5.50 Condiions: Column: Symmery C, 5 µm,.6 X 50 mm Mobile phase: A=0.% TFA in waer, B=0.% TFA in aceonirile ien: 0-60% B in noed grien ime Column emperaure: 30.0 C Flow rae: ml/min. Deecor: 5 nm Injecion volume: µl Summary - Impac of on Resoluion Resoluion increases as grien ime increases : minues : minue 3.50.50 -Longes grien ime provides bes resoluion -Shores grien ime maximizes hroughpu -Reducing jus grien ime sacrifices resoluion Throughpu decreases as grien ime increases.50 Impac of Flow Rae (F) on Resoluion Summary - Impac of Flow Rae on Resoluion Flow rae: ml/min. Flow rae: ml/min. Flow rae: 5 ml/min. 5.00 3.50 Condiions: Column: Symmery C, 5 µm,.6 X 50 mm Mobile phase: A=0.% TFA in waer, B=0.% TFA in aceonirile ien: 0-60% B in minues Column emperaure: 30.0 C Deecor: 5 nm Injecion volume: µl - Resoluion goes hrough an opimum due o he combinaion of grien expansion and decrease in plae coun Resoluion goes hrough an opimum due o he combinaion of grien expansion and decrease in plae coun Opimum resoluion is approximaely o ml/min for mos pracical separaion problems.50 9

Rs 0 6 0 6 0 Resoluion Dependance on boh Flow Rae and for a ien Mehod (Symmery C,.6 X 50mm, 5 µm) Rs = N ln α w %. B. ε.or.l/f + g Efficiency Seleciviy Reenion.0.00 Reducion of Cycle Time Flow rae: 0.5 ml/min.. ime: 6 min. Flow rae:.0 ml/min. ien ime:.0 min..00 Condiions: Column: Symmery C, 5 µm,.6 X 50 mm Mobile phase: A=0.% TFA in waer, B=0.% TFA in aceonirile Column emperaure: 30.0 C Deecor: 5 nm Injecion volume: µl 0.3 0.5 Flow [ml/min] 5 6 [min] 3. Effec of changing grien run ime, g, and flow rae, F 0.60 0.0 Flow rae:.0 mlmin. ien ime:.0 min. Flow rae: 5.0 ml/min. ien ime:.0 min. 9.00 3.50 Flow rae increased proporional o grien ime decrease. Eluion paern is mainained as cycle ime is decreased resuling in an increase in hroughpu..00 Summary - Reducion of Cycle Time To obain he maximum sample hroughpu he grien ime mus be jused inversely proporionally o he flow rae. As shown in he previous slide he sample hroughpu was increased by 00% upon increasing he flow rae o 5 ml/min. and reducing he grien ime o minues. Inroducion Ouline Sraegies for Higher Throughpu ien Separaionso achievemaximum hroughpuand maximize resoluion sysem soluions mehodsoluions useshorer griens usehigher flowraes useshorer columns usesmaller paricle sizes increaseemperaure 0

Impac of Column Lengh on Resoluion How Shor is Too Shor? I is no he column lengh which influences he separaion in so much as he number of grien volumes moving across he column. The Number of Column Volumes per Minue Impacs Resoluion Approaches: Approach : ien volume in no proporion o he column volume (grien run ime consan while changing he column lengh). Approach : Scale grien volume in proporion o he column volume (change he grien run ime proporionally wih he column lengh).

Column Volume o ien Volume Relaionship (Approach ) -ien volume no scaledo column volume Impac of Column Lengh on Resoluion (Approach ) -ienvolume no scaled ocolumn volume 50 mm column Column volume = 0.5 ml 5 minue grien @ ml/min grien volume = g x f.r. = 5 Toal volume = g.v./c.v. = 0 column vols. 0 mm column Column volume = 0. ml 5 minue grien @ ml/min grien volume = gx f.r. = 5 Toal volume = g.v./c.v. = column vols..0.0.00 0.90 0.0 0.70 0.60 0.50 0.0 0.30 0.0,. x 0 mm. x 30 mm. x 50 mm Condiions: Symmery C, 5 µm Mobile phase: A=0.% TFA in waer, B=0.% TFA in aceonirile ien: 0-60% B in 5 minues Column emperaure: 30.0 C Deecor: 5 nm Injecion volume: µl Flow rae: ml/min. Mainain resoluion by no scaling grien volume proporionally o column volume. However maximun reducion of analysis ime is no realized as when grien volume is scaled. 0.0 Column Volume o ien Volume Relaionship (Approach ) -ien volume scaled o column volume 50 mm column 0 mm column 0.50.00.50.00.50 3.00 3.50.00.50 5.00 Wha Facors Influence ien RP-HPLC Separaions... Column volume = 0.5 ml 5 minue grien @ ml/min Column volume = 0. ml minue grien @ ml/min L (column lengh) is varied. ien volume is scaled in proporion o he column volume. grien volume = gx f.r. = 5 grien volume = gx f.r. = Toal volume = g.v./c.v. = 0 column vols. Toal volume = g.v./c.v. = 0 column vols. Rs = w N lnα Efficiency Seleciviy B. %. ε.πr.l/f + g Reenion Terms are consan

Impac of Column Lengh on Resoluion (Approach ) -ien volume scaled ocolumn volume Summary - Impac of Column Lengh on Resoluion.0.0.00 0.90 0.0 0.70 0.60 0.50 0.0 0.30 0.0. x 0 mm ien ime = minue. x 0 mm ien ime = minues. x 30 mm ien ime = 3 minues. x 50 mm ien ime = 5 minues Condiions: Symmery C, 3.5 µm Mobile phase: A=0.% TFA in waer, B=0.% TFA in aceonirile ien: 0-60% B in noed ime Column emperaure: 30.0 C Deecor: 5 nm Injecion volume: µl Flow rae: ml/min. -Reduce analysis ime by >50%. -Tre-off: reducion in resoluion Maximum sample hroughpu is realized when he grien volume is scaled proporionally o he column volume. 0.0 0.50.00.50.00.50 3.00 3.50.00.50 ien Delay Time ien di en G ra Final Hold Impac of he Number of Column Volumes on Peak Shape Injec Column:.6 X 50 mm Column volume (c.v.) = 0.3 ml 5 minue grien @ ml/min insrumen delay volume (d.v.) = 650 µl grien volume = gx c.v. = 6 Toal sysem volume = 0.7(c.v.) + d.v. =. ml Injec Column:. X 50 mm Column volume (c.v.) = 0.7 ml 5 minue grien @ 0. ml/min insrumen delay volume (d.v.) = 650 µl grien volume = gx c.v. = 6 Toal sysem volume = 0.7(c.v.) + d.v. = 0.7 ml 0.05 0.0 0.03 0.0. x 0 mm Peak Widh for Peak # = 0.0533 Condiions: Symmery C, 5 µm Mobile phase: A=0.% TFA in waer, B=0.% TFA in aceonirile ien: 0-60% B in minues Column emperaure: 30.0 C Deecor: 5 nm Injecion volume: µl Flow rae: ml/min. Column re-equilibraion ime = oal vol./f.r. Column re-equilibraion ime = oal vol./f.r. =.5/ = 0.67/0. =. min. = 3.6 min. grien is delayed by a facor of 3 0.0 0.0 0.0 0.60 0.0.00.0.0.60.0.00 3

Rs Rs Reducing he Effec of ien Delay Volume - Makegrien seeperby increasing he flowrae ordecreasing he grien ime Inroducion Ouline 0.030 0.05 0.05 0.05 0.0 0.03 0.0 0.0 Increase flow rae ( o 3 ml/min.) peak widh for peak # = 0.0 peak widh for peak # = 0.0533 0.0 0.0 0.60 0.0.00.0.0.60.0.00 peak widh for peak # = 0.050 Increase grien slope by 50% ( o min. gr) Sraegies for Higher Throughpu ien Separaions o achieve maximum hroughpu and maximize resoluion sysemsoluions mehod soluions use shorer griens use higher flow raes use shorer columns use smaller paricle sizes increase emperaure 5 0 0.0 0.0 0.60 0.0.00.0.0.60.0.00 0.0 0.0 0.60 0.0.00.0.0.60.0.00 Impac of Paricle Size (dp) on Resoluion Comparison of Resoluion Dependence on Paricle Size.00 Symmery C, 3.5 µm,. x 50 mm 0.90 Rs (peak A and B)=.97 0.0 0.70 Symmery C, 3.5 µm, Symmery C, 5 µm, 0.60 Rs (peak B and C)=.79.6 X 50 mm.6 X 50 mm 0.50 Rs (peak C and D)= 7.35 0.0 Max. Resoluion @ Max. Resoluion @ 0.30 ml/min., 6 min. ml/min., 6 min. 0 0 0.0 0.0 grien =. grien = 6. A B 6 6 0 6 0 0.3 0.5 Flow [ml/min] 5 6 ien Time [min] 0 6 0 0.3 0.5 Flow [ml/min] 5 6 ien Time [min].0.0.00 0.90 0.0 0.70 0.60 0.50 0.0 0.30 0.0 0.0 0.50.00.50.00.50 3.00 Symmery C, 5 µm,. x 50 mm Rs (peak A and B)= 6.7 Rs (peak B and C)= 7.3 Rs (peak C and D)= 6.5 C A B 3.50.50.00 0.50.00.50.00.50 3.00 3.50.00.50 5.00 C D D Condiions: Columns: Symmery C, 5 µm,.6, X 50 mm and Symmery C 3.5 µm,.6 X 50 mm Mobile phase: A=0.% TFA in waer, B=0.% TFA in aceonirile ien: 0-60% B in minues Column emperaure: 30.0 C Deecor: 5 nm Injecion volume: µl Flow rae: ml/min. -Achieve increased resoluion wih he smaller paricle size maerial in he same grien ime -Increase hroughpu and resoluion wih smaller paricle size if flow rae is increased

Summary - Impac of Paricle Size on Resoluion Inroducion Ouline Resoluion is increased as a resul of using a smaller paricle size. This is due o he increase in he number of heoreical plaes. If he flow rae is increased as well as he paricle size being decreased, an increase in sample hroughpu is realized wih increasing resoluion. Sraegies for Higher Throughpu ien Separaions o achieve maximum hroughpu and maximize resoluion sysem soluions mehod soluions use shorer griens use higher flow raes use shorer columns use smaller paricle sizes increase emperaure Impac of Temperaure 50 0 30 0 3 5 C Faser Separaion Narrower Peaks Lower Backpressure Lower Viscosiy eaer Sensiiviy- Summary - Mehod Soluions To obain he fases hroughpu: increase flow rae decrease column volume decrease paricle size scale grien volume wih decrease in column volume increase emperaure o reduce viscosiy of mobile phase allowing increases in flow rae 5