Synthesis of tetraamminecopper(ii) sulfate, [Cu(NH 3 ) 4 ]SO 4 The reaction for making tetraamminecopper(ii) sulfate and some molar masses are:



Similar documents
Experiment 8 Synthesis of Aspirin

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.

Synthesis of Aspirin and Oil of Wintergreen

EXPERIMENT 9 (Organic Chemistry II) Pahlavan - Cherif Synthesis of Aspirin - Esterification

Experiment 5 Preparation of Cyclohexene

Determination of a Chemical Formula

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid

Recovery of Elemental Copper from Copper (II) Nitrate

Separation by Solvent Extraction

ISOLATION OF CAFFEINE FROM TEA

Mixtures and Pure Substances

Experiment 12- Classification of Matter Experiment

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD KEY

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

Hands-On Labs SM-1 Lab Manual

PREPARATION AND PROPERTIES OF A SOAP

Saturated NaCl solution rubber tubing (2) Glass adaptor (2) thermometer adaptor heating mantle

Physical and Chemical Properties and Changes

# 12 Condensation Polymerization: Preparation of Two Types of Polyesters

Chemical versus Physical Changes

The most common active ingredient used in deodorants is aluminium chlorohydrate. But not all deodorants contain aluminium chlorohydrate:

PREPARATION OF ACETYLSALICYLIC ACID (ASPIRIN)

PREPARATION FOR CHEMISTRY LAB: COMBUSTION

PHYSICAL SEPARATION TECHNIQUES. Introduction

General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction

Table 1. Common esters used for flavors and fragrances

EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate

Isolation of Caffeine from Tea

Recrystallization II 23

Extraction: Separation of Acidic Substances

CH243: Lab 4 Synthesis of Artificial Flavorings by Fischer Esterification

OXIDATION-REDUCTION TITRATIONS-Permanganometry

Making Biodiesel from Virgin Vegetable Oil: Teacher Manual

Enantiomers: Synthesis, characterization, and resolution of tris(ethylenediamine)cobalt(iii) chloride Introduction:

PET Recycling. Nicholas Robusto Maggie Ifarraguerri Nathaniel Lawton Isabel Hefner

Acid Base Titrations

Experiment #7: Esterification

Cocaine extraction from Coca Leaves

SEPARATION OF A MIXTURE OF SUBSTANCES LAB

The Empirical Formula of a Compound

Synthesis of Isopentyl Acetate

AN EXPERIMENT IN ALCHEMY: COPPER TO SILVER TO GOLD 2005, 2000, 1996 by David A. Katz. All rights reserved

EXPERIMENT Aspirin: Synthesis and NMR Analysis

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

Experiment 8 Preparation of Cyclohexanone by Hypochlorite Oxidation

Stoichiometry. Can You Make 2.00 Grams of a Compound?

EXPERIMENT 2 (Organic Chemistry II) Pahlavan/Cherif Diels-Alder Reaction Preparation of ENDO-NORBORNENE-5, 6-CIS-CARBOXYLIC ANHYDRIDE

Apparatus error for each piece of equipment = 100 x margin of error quantity measured

Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap

Chemistry 111 Laboratory Experiment 6: Synthesis of a Coordination Compound

Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid

Coordination Compounds with Copper (II) Prelab (Week 2)

SUPPLEMENTARY MATERIAL

Synthesis of Fragrant Esters

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

Preparation of an Alum

EXPERIMENT 12: Empirical Formula of a Compound

#10 Condensation Polymerization: Preparation of Nylon 6/6

Reaction in a Bag. Scientific Method Demonstrations

DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3

#9 Condensation Polymerization: Preparation of Nylon 6/10

Lab 25. Acid-Base Titration and Neutralization Reactions: What Is the Concentration of Acetic Acid in Each Sample of Vinegar?

CHM220 Nucleophilic Substitution Lab. Studying S N 1 and S N 2 Reactions: Nucloephilic Substitution at Saturated Carbon*

DYES AND DYEING 2003 by David A. Katz. All rights reserved. Permission for classroom use provided original copyright is included.

H H H O. Pre-Lab Exercises Lab 6: Organic Chemistry. Lab 6: Organic Chemistry Chemistry Define the following: a.

The Synthesis of trans-dichlorobis(ethylenediamine)cobalt(iii) Chloride

Experiment #8 properties of Alcohols and Phenols

Determination of calcium by Standardized EDTA Solution

Chem 100 Lab Experiment #9 - ACID/BASE INDICATORS

Taking Apart the Pieces

4026 Synthesis of 2-chloro-2-methylpropane (tert-butyl chloride) from tert-butanol

Experiment 3: Extraction: Separation of an Acidic, a Basic and a Neutral Substance

Experiment 7: Titration of an Antacid

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..

Online edition for students of organic chemistry lab courses at the University of Colorado, Boulder, Dept of Chem and Biochem.

CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS

Partner: Jack 17 November Determination of the Molar Mass of Volatile Liquids

PART I: PREPARATION OF SOLUTIONS AND STANDARDIZATION OF A BASE

ANALYSIS OF FOOD AND NATURAL PRODUCTS LABORATORY EXERCISE

BLOWING UP BALLOONS, chemically

Dry Ice Color Show Dry Ice Demonstrations

Acid-Base Extraction.

Determination of Aspirin using Back Titration

Non-polar hydrocarbon chain

This compound, which contains two carbon atoms with a C-OH structure on one end of the molecule is ethanol, commonly called ethyl alcohol.

SODIUM CARBOXYMETHYL CELLULOSE

DNA SPOOLING 1 ISOLATION OF DNA FROM ONION

Carolina s Solution Preparation Manual

PECTINS. SYNONYMS INS No. 440 DEFINITION DESCRIPTION. FUNCTIONAL USES Gelling agent, thickener, stabilizer, emulsifier CHARACTERISTICS

PURIFICATION TECHNIQUES

Solids, Volatile Dissolved and Fixed Dissolved

Solubility Curve of Sugar in Water

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB

Experiment 14 Preparation of p-nitroaniline

GRIGNARD REACTION: PREPARATION OF TRIPHENYLMETHANOL (12/22/2009)

Science 20. Unit A: Chemical Change. Assignment Booklet A1

IB Chemistry. DP Chemistry Review

Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Chemicals Needed:

Page 1 of 5. Purification of Cholesterol An Oxidative Addition-Reductive Elimination Sequence

Transcription:

Experiment 9 Synthesis of a opper oordination omplex and Aspirin with Demonstrations of the Synthesis of Nylon, Bakelite, and Polyvinyl Alcohol Slime Synthesis of tetraamminecopper(ii) sulfate, [u(n 3 ) 4 ]S 4 The reaction for making tetraamminecopper(ii) sulfate and some molar masses are: us 4 5 2 + 4 N 3 [u(n 3 ) 4 ]S 4 2 + 4 2 249.68 g/mol 245.74 g/mol Synthesis of Aspirin rganic syntheses often involve the addition of a functional group to a molecule. An example is the synthesis of acetylsalicylic acid, the compound known as aspirin. Aspirin can be synthesized by combining salicylic acid with acetic acid. The reaction results in the formation of an ester (see table of functional groups shown). + 3 + 2 3 salicylic acid acetylsalicylic acid A preferred method for synthesizing aspirin is to use acetic anhydride instead of acetic acid. Phosphoric acid can also be added to catalyze the reaction. 3 + 3 + 3 3 salicylic acid acetic anhydride acetylsalicylic acid acetic acid Procedure Eye protection must be worn during this lab. Students work in pairs. Use graduated cylinders for all volume measurements. oncentrated ammonium hydroxide should be added in the fume hood to reduce the emission of ammonia vapor in the laboratory. 99

Part 1: Synthesis of an Inorganic ompound Eye protection must be worn during this lab. Students work in pairs. 1. btain about 3 g of copper(ii) sulfate pentahydrate, us 4 5 2 using an analytical balance. Record the color and mass of the compound. 2. Dissolve the compound in 15 ml of distilled water in a 125 ml Erlenmeyer flask. Use a magnetic stir bar to ensure that the complex dissolves completely. Note the color of the solution in the Data Table. 3. nce the solid has completely dissolved, add 15 ml of concentrated ammonium hydroxide (in the fume hood) with stirring and note any color change in the Data Sheet. 4. To induce crystal formation, add 15 ml 95% ethanol with stirring and note what happens in the solution. Is this reaction exothermic or endothermic? 5. Allow the crystals to settle for 15 min. 6. btain 10 ml of 95% ethanol to wash the product. 7. ollection of the crystals is performed using a irsh funnel apparatus with filter paper. The apparatus should be attached to the laboratory vacuum line. 8. Wet the filter paper with 5 ml of ethanol to seat it against the holes in the funnel, and turn on the vacuum. Use a stirring rod to get as much of the solid transferred from the beaker to the funnel. Allow the suction to remain on until the flow of liquid through the funnel ceases. 9. Wash the crystals by slowly dropping 10 ml of ethanol using a plastic pipette. 10. Allow the suction to continue for 10-15 minutes. 11. Place an 8 cm filter paper on a watch glass and measure its mass. Record this mass in the Data Sheet. 12. Turn off the vacuum and carefully remove the filter paper with the solid on it from the irsh funnel. Place the solid, without its filter paper, on the 11 cm filter paper that was weighed with the watch glass. 13. Place the watch glass with the product into the drying oven for 45 min. After removing the watch glass from the oven, allow it to cool to room temperature. 14. Measure the mass of the watch glass with the product and record the value in the Data Sheet. Part 2: Synthesis of an rganic ompound Eye protection must be worn during this lab. Students work in pairs. Start by heating 300-mL of water in a 600-mL beaker to a temperature of between 75-80 deg. While the water is heating, obtain 2.5 g of salicylic acid that is in a 125-mL Erlenmeyer flask. Add 5 ml of acetic anhydride to the Erlenmeyer flask followed by 5 drops of 85% phosphoric acid. eat the Erlenmeyer flask in the 600 ml beaker for about 10 min, stirring the contents occasionally. Remove the flask from the hot water bath and immediately add, drop by drop, being extremely careful, 2 ml of water to the flask. Some spattering is to be expected so be very careful not to burn yourself. 100

When the reaction in the flask subsides, add 30-40 ml of ice water (ice mixed with water) to the reaction mixture and wait until you see a milky cloudiness. This is the beginning of crystallization. It may help initiate crystallization if you scratch the wall of the flask at the solution s surface with a stirring rod. After you get the cloudiness, place the flask in another 600-mL beaker that contains an ice/water mixture. Rotate the flask in the ice water to ensure uniform cooling and completeness of precipitation. After you think that crystallization is complete, you will filter the product through a irsh funnel. To do this, put a piece of filter paper at the bottom of the funnel, wet it with water, and turn on the vacuum. Pour the aspirin slurry into the funnel using a stirring rod to transfer as much aspirin as possible. After all the water has been drawn through the funnel, turn off the vacuum. Pour an additional 25 ml of cold water into the funnel and carefully stir to wash the product. Restart the vacuum. When all of the water has been removed, transfer the product to a dry piece of filter paper and allow it to dry at room temperature for a least 25 min. You can tell if you have washed the aspirin enough if it has no smell of acetic acid (vinegar). If you could remove all traces of acetic acid, you could press the aspirin into tablets and use it as an analgesic. owever, your aspirin is still a bit crude, so the instructor will collect it for use in the organic chemistry lab. The organic students will further purify the aspirin by re-crystallization. 101

Synthesis of Tetraamminecopper(II) sulfate monohydrate Data Sheet Experiment 9 Synthesis of an Inorganic and rganic ompound Mass and % yield olors Mass of copper(ii) sulfate pentahydrate g solid solution Mass of product + watch glass and filter paper g No entry Mass of watch glass and filter paper g No entry Mass of product, tetraamminecopper(ii) sulfate g In solution solid Is the reaction exothermic or endothermic? (ircle one) Exothermic Endothermic Theoretical yield g No entry Percent yield % No entry 102

rganic Molecules (These will be passed around in small bottles for you to look at and smell.) Substance hemical Structure Functional Group dor Uses Acetone Ethanol Isopropanol Acetic acid Benzaldehyde Ethyl acetate Amyl acetate Phenol Methyl salicylate Trimethylamine amphor ketone Synthesis of Nylon 610 103

This will be done as a demonstration. Your instructor will pour hexamethylenediamine (also known as 1,6- hexanediamine, 6 16 N 2 ) down the wall of a slightly tilted beaker that contains an aqueous solution of sebacoyl chloride (also known as decanedioyl dichloride, 10 16 l 2 2 ), to form two layers. A polymer film of nylon will form between the two liquids. This nylon is called nylon 610 because there are six carbon atoms in the hexamethylenediamine and 10 carbon atoms in the sebacoyl chloride. This reaction is an example of a condensation polymerization. See p 1069 in your textbook for a photograph of the reaction. (In the photograph, they are making nylon 66. an you see why?) Your instructor will write the equation for the reaction on the chalk board. opy it in the box below. Synthesis of Bakelite This will be done as a demonstration in the hood. The demonstrator should be well protected with a full-face shield, gloves, and lab coat. Students should be at least 2 bench rows away from the hood as the reaction has been known to spatter. Procedure n a tray inside the hood, add the following to a 600-mL beaker: 104 80 ml of liquefied phenol ( 6 5 ) 80 ml of formaldehyde ()

40 ml of glacial acetic acid 30 ml of concentrated hydrochloric acid Using a stirring rod, stir the mixture for about one minute and leave the stirrer in the beaker. lose the hood and stand away and wait. This reaction takes a few minutes, so be patient. A solid pink phenol formaldehyde condensation polymer forms with some spattering. The reaction is very exothermic. You can read more about Bakelite on page 1064 in your textbook and on the web site http://www.let.uu.nl/ams/xroads/bakelite.htm. The chemistry of the reaction is rather difficult and will not be discussed in this lab. After the reaction is completed: Add cold water to the beaker to dilute any unreacted material. You can poke holes in the Bakelite with a glass rod, but do not touch it with your bare hands. The Bakelite can be discarded in the trash after being washed. Synthesis of Polyvinyl Alcohol Slime Although not dangerous, this will done as a demonstration. Materials A 4% solution of sodium tetraborate (Borax). This solution can be prepared by dissolving 4 grams of Borax in 100 ml of water. A 4% solution of polyvinyl alcohol. This solution is prepared by dissolving 4 grams of polyvinyl alcohol (PVA) in 100 ml of water. The PVA does not dissolve well so heating and stirring are required. For detailed instructions on how to dissolve PVA, see http://www.murraystate.edu/kate/magic/polyvinyl_alcohol.htm. Note: PVA comes in a variety of average molar masses. ur PVA has an average molar mass of between 124,000 and 186,000 g/mol. igher molar masses produce a "stiffer" slime while lower molar masses produce a more fluid, i.e., "slimier" slime. About 345 million pounds of PVA is produced each year. Search www.google.com for more information on PVA. Procedure The alcohol and borax solutions should be mixed in the ratio of about 200 ml of PVA solution to 15 ml of borax solution. Prior to mixing, food coloring can be added to the PVA solution to make different colors of slime. Best results are obtained if the borax solution is added to the PVA solution. The 200:15 ratio can be achieved by the following English volume measurements: (1) one-half cup of PVA solution to one tablespoon of borax solution. (2) one-quarter cup of PVA solution to 1.5 teaspoons of borax solution. Polyvinyl alcohol is a polymer, a very long molecule rather like a very long piece of string. The borax joins the polymer molecules together to make a large network rather like a flexible scaffolding. This is called cross-linking. This turns the water dissolved polymer into a gel (the cross-linked polymer incorporates water into its matrix) which in this case is called Slime. Note: The reaction is rather slow. Wait about ½ hour for the sliminess to develop. Nice Things About Slime Materials can be cleaned up with hot water and soap or detergent. Slime can be stored for fairly long periods of time in sealed plastic sacks to prevent evaporation. 105

Slime is not poisonous, but since it does contain small quantities of a mildly toxic material (Borax), we would not advise leaving it around unattended children. Slime is fun. Students like to play with it, while teachers like to "work" with it. ospitals use "soluble" laundry bags which also consist of PVA. Boric acid and Boraxo seem to work as well as Borax. Slime is used to fix holes in flat tires. In the box below, copy the polymer structure of polyvinyl alcohol from the chalkboard. 106