Lab Manual Introductory Chemistry: A Green Approach Version 4.1. 2010, escience Labs, Inc. All rights reserved esciencelabs.com 888.375.



Similar documents
The Molar Mass of a Gas

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor

Chemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES

DETERMINING THE MOLAR MASS OF CARBON DIOXIDE

CSUS Department of Chemistry Experiment 8 Chem.1A

Molar Mass of Butane

Determining Equivalent Weight by Copper Electrolysis

Where the exp subscripts refer to the experimental temperature and pressure acquired in the laboratory.

Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid

Enzyme Action: Testing Catalase Activity 50 Points

Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Chemicals Needed:

ENZYME ACTION: TESTING CATALASE ACTIVITY

Enzyme Action: Testing Catalase Activity

Enzyme Action: Testing Catalase Activity

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..

Molar Mass and the Ideal Gas Law Prelab

Enzyme Action: Testing Catalase Activity

Evaluation copy. Enzyme Action: Testing Catalase Activity (Method 1 O 2 Gas Sensor) Computer 2

Chemistry 101 Generating Hydrogen Gas

AP CHEMISTRY 2009 SCORING GUIDELINES (Form B)

EXPERIMENT 13: THE IDEAL GAS LAW AND THE MOLECULAR WEIGHT OF GASES

Materials 10-mL graduated cylinder l or 2-L beaker, preferably tall-form Thermometer

Stoichiometry: Baking Soda and Vinegar Reactions

Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1

EXPERIMENT 9 Evaluation of the Universal Gas Constant, R

Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT).

Determination of Citric Acid in Powdered Drink Mixes

CHAPTER 12. Gases and the Kinetic-Molecular Theory

STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14

Enzyme Pre-Lab. Using the Enzyme worksheet and Enzyme lab handout answer the Pre-Lab questions the pre-lab must be complete before beginning the lab.

The Gas Laws. Our Atmosphere. Pressure = Units of Pressure. Barometer. Chapter 10

Analyzing the Acid in Vinegar

Mixtures and Pure Substances

Dissolving of sodium hydroxide generates heat. Take care in handling the dilution container.

Determination of a Chemical Formula

6 H2O + 6 CO 2 (g) + energy

Experiment 12- Classification of Matter Experiment

Experiment 6 Coffee-cup Calorimetry

PREPARATION FOR CHEMISTRY LAB: COMBUSTION

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND

PERCENT ACETIC ACID IN VINEGAR EXPERIMENT 15

AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1

Experiment 8 Synthesis of Aspirin

PART I: PREPARATION OF SOLUTIONS AND STANDARDIZATION OF A BASE

Solubility Product Constants

Physical Properties of a Pure Substance, Water

CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section The Gas Laws The Ideal Gas Law Gas Stoichiometry

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.

UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE ABSORPTION OF CARBON DIOXIDE INTO WATER

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

Experiment 8 Preparation of Cyclohexanone by Hypochlorite Oxidation

F321 MOLES. Example If 1 atom has a mass of x g 1 mole of atoms will have a mass of x g x 6.02 x = 7.

Oxidation States of Copper Two forms of copper oxide are found in nature, copper(i) oxide and copper(ii) oxide.

Kinetic Theory of Gases. 6.1 Properties of Gases 6.2 Gas Pressure. Properties That Describe a Gas. Gas Pressure. Learning Check.

Catalytic Activity of Enzymes

= atm. 760 mm Hg. = atm. d. 767 torr = 767 mm Hg. = 1.01 atm

Catalase. ***You will be working with hot water, acids and bases in this laboratory*** ****Use Extreme Caution!!!****

atm = 760 torr = 760 mm Hg = kpa = psi. = atm. = atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.

CHEMISTRY GAS LAW S WORKSHEET

Metabolism: Cellular Respiration, Fermentation and Photosynthesis

14 Friedel-Crafts Alkylation

Gases. States of Matter. Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large Chaotic (random)

Kool Demo for Acid-Base Reactions

1. The Determination of Boiling Point

Experiment 3 Limiting Reactants

Name. Lab 3: ENZYMES. In this lab, you ll investigate some of the properties of enzymes.

Properties of Acids and Bases

Experiment 2 Kinetics II Concentration-Time Relationships and Activation Energy

Experiment 13H THE REACTION OF RED FOOD COLOR WITH BLEACH 1

CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS

Ascorbic Acid Titration of Vitamin C Tablets This lab will be completed individually! Make sure you come prepared!

Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.

EDTA Titrations 1: Standardization of EDTA and Analysis of Zinc in a Supplement Tablet. by Professor David Cash. September, 2008

Extraction: Separation of Acidic Substances

Enzyme Lab. DEFINITIONS: 1. Enzyme: 2. Catalase: 3. Catalyze: 4. Hydrolysis: 5. Monomer: 6. Digestion: BACKGROUND INFORMATION

EXPERIMENT 13: GAS STOICHIOMETRY

EXPERIMENT 9 (Organic Chemistry II) Pahlavan - Cherif Synthesis of Aspirin - Esterification

Solubility Curve of Sugar in Water

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid

Synthesis of Aspirin and Oil of Wintergreen

PRE-LAB FOR YEAST RESPIRATION AND FERMENTATION

Determination of Molar Mass by Boiling Point Elevation of Urea Solution

Neutralizing an Acid and a Base

Experiment 7: Titration of an Antacid

Popcorn Laboratory. Hypothesis : Materials:

Gas Laws. vacuum. 760 mm. air pressure. mercury

Boyles Law. At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 P = P

Acetic Acid Content of Vinegar: An Acid-Base Titration E10-1

Lab #10 How much Acetic Acid (%) is in Vinegar?

Positive Test for Vitamin C. When a liquid containing Vitamin C is added to Indophenol Solution, the colour changes from Blue to Clear.

The Influence of Carbon Dioxide on Algae Growth

Enzyme Activity Measuring the Effect of Enzyme Concentration

: Biochemistry of macromolecules and metabolic pathways

Teacher Demo: Photosynthesis and Respiration: Complementary Processes

Measurement and Calibration

Recovery of Elemental Copper from Copper (II) Nitrate

Return to Lab Menu. Stoichiometry Exploring the Reaction between Baking Soda and Vinegar

THE KINETIC THEORY OF GASES

General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction

Sample Liver Enzyme Lab

Transcription:

Lab Manual Introductory Chemistry: A Green Approach Version 4.1 2010, escience Labs, Inc. All rights reserved esciencelabs.com 888.375.5487

Table of Contents Lab 1: Introduc on and Safety Lab 2: The Scien fic Method Lab 3: Data Measurement Lab 4: Electron Configura on Lab 5: Molecular Models Lab 6: Chemical Reac ons Lab 7: The Mole and Avogadro s Number Lab 8: Ideal Gas Law Lab 9: Acids and Bases 3

Introductory Chemistry Lab 8: Ideal Gas Law

Concepts to explore: Use the ideal gas law to determine the percentage of hydrogen peroxide in a commercially available hydrogen peroxide solu on Observe how a catalyst affects a reac on Determine the decomposi on rate of the hydrogen peroxide solu on Introduc on Have you ever opened a container of milk a er the expira on date and found that it had gone bad? It is very easy to tell if milk has gone bad: it looks, smells, and tastes awful. The putrid odor lets you know a gas is being formed as it decomposes. Many items you purchase are not nearly as easy to tell if they have degraded. Some form a gas that is impossible to detect just by smelling it. Hydrogen peroxide, a common household item that is used to clean minor cuts, is like this. The bo le you buy in the store says it contains 3% hydrogen peroxide, but it will very slowly decompose over me to form water and oxygen gas. Since we breathe oxygen every second, we can t easily detect this. But we can use the ideal gas law and yeast to find this out! The ideal gas law is very valuable when dealing with gases since it establishes a rela onship between temperature, pressure, volume, and amount of a gas. In this equa on: PV = nrt P is the gas pressure in atmospheres V is the volume of the gas in liters n is the number of moles of the gas R is the constant value of 0.0821 L atm/mol K T is for the temperature of the gas in Kelvin. Figure 1: Pressure gauges are found wherever monitoring the pressure of a gas is important such as this fire ex nguisher above. Simple gauges are commonly used to measure the pressure of air in automobile and bicycle res. Pressure 0.6 0.5 0.4 0.3 0.2 0.1 0 Pressure vs. Volume of a Typical Gas (Arbitrary Units) 0 2 4 6 8 10 Volume Figure 2: The rela onship between pressure and volume of an ideal gas. With constant T and n, pressure decreases as volume increases. Can you verify this using the equa on to the le? Since hydrogen peroxide forms oxygen gas when it decomposes, we can use the ideal gas law to check the percent hydrogen peroxide in a bo le of it purchased at the store. To find this out we need to take a small sample out of the bo le and accelerate its decomposi on through using a catalyst. 2 H 2 O 2 catalyst 2 H 2 O + O 2 79

In this experiment, we will use yeast to accelerate the decomposi on of the hydrogen peroxide into water and O 2 gas. Yeast contains the enzyme catalase, which is a catalyst for this reac on. You will add yeast ac vated in warm water to a known amount of hydrogen peroxide and quickly seal off the system so that the O 2 gas formed is collected in a graduated cylinder. A er measuring the total volume of gas produced, its temperature, and the atmospheric pressure, the ideal gas law can then be used to calculate how many moles of O 2 gas is formed. We can do this by solving the ideal gas law equa on for n. PV n = RT Once the number of moles of O 2 gas is calculated, the percent of H 2 O 2 present in the solu on can be determined. To do this, you first need to calculate the theore cal number of moles of O 2 there would be if the solu on was 100% hydrogen peroxide. This can be found by using the following equa on: 1 mol HO 2 2 1 mol O2 Theoretical moles O 2 = HO 2 2 used HO 2 2 density 34.0 g HO 2 mol HO 2 2 2 2 For this experiment: ml H 2 O 2 used is the volume of H 2 O 2 you actually use (approximately 5 ml). H 2 O 2 density is 1.02 g/ml 1 mol H 2 O 2 / 34.0 g H 2 O 2 is the reciprocal (inverted frac on). of the molar mass of H 2 O 2. The molar mass of H 2 O 2 is 34.0 g /mol, so this is equal to 1 mol H 2 O 2 / 34.0 g H 2 O 2. 1 mol O 2 / 2 mol H 2 O 2 is used since the decomposi on produces 1 mole O 2 from 2 moles of H 2 O 2. The units in the en re equa on cancel to give moles of O 2. The percent hydrogen peroxide can now be found. To do this, divide (n), the actual number of moles you calculated, by the theore cal moles of O 2 there would be if the hydrogen peroxide were 100%. This number is then mul plied by 100%. Figure 3: Carbonated beverages contain dissolved CO 2 at high pressure. When the container is opened, this pressure can create a powerful burst, such as with this sparkling wine bo le, or when your soda explodes. Actual moles O (n) 2 % H2O 2 = 100 Theoretical moles O 2 This value can now be compared to the 3% hydrogen peroxide shown on the label to see if any decomposi on has occurred. 80

Pre Lab Ques ons 1. What is it in yeast that aids in the decomposi on of hydrogen peroxide? 2. List the ideal gas law and define each term with units. 3. How many moles of O 2 were produced in a decomposi on reac on of H 2 O 2 if the barometric pressure was 0.980 atm, the temperature was 298 K and the volume of O 2 gas collected was 0.0500 L? 4. If you decomposed 10.00 ml of 100% H 2 O 2, how many moles of O 2 could you theore cally obtain? 81

Experiment: Finding Percent H 2 O 2 with Yeast Materials Safety Equipment: Safety goggles, gloves Yeast Rubber band Flexible tubing (18 in.) 10 ml Hydrogen peroxide 2 Droppers (pipe es) 250 ml Beaker 10 and 100 ml Graduated cylinders S r rod 600 ml Beaker Erlenmeyer flask Thermometer Stopwatch Stopper with hole Warm water* Ring stand* Rigid plas c tubing (3 in.) Large ring* Dis lled water* *You must provide *Op onal Materials (not provided) Graduated cylinder Collected gas Flexible tubing Rigid tubing 600 ml Beaker Stopper Ring Stand Rubber Band Erlenmeyer flask Procedure Figure 3: Gas Collec on Apparatus (not to exact scale) 1. Prepare the materials for the apparatus as shown in Figure 1. Insert the smaller rigid tubing into one end of the larger, flexible tubing. Insert the free end of the rigid tubing securely into the rubber stopper hole. 2. Bend the free end of the flexible tubing into a U shape, and use a rubber band to hold this shape in place. This will allow you to more easily insert this end of the flexible tubing into the inverted graduated cylinder. Make sure the tubing is not pinched and that gas can flow freely through it. 2. Fill the 600 ml beaker with 400 ml dis lled water. 82 3. Fill the 100 ml graduated cylinder with dis lled water slightly over the 100 ml mark.

4. Take the temperature of the water in the 600 ml beaker, and record it in the Data sec on. Also, determine the barometric pressure in the room, and record it in the Data sec on. HINT: The pressure in your region may be found online if necessary, convert this value to mm Hg. 5. Mix 100 ml of warm water (45 C) and 1 packet of baker s yeast in a 250 ml beaker. This will ac vate the yeast from the dormant (dry) state. Be sure to mix well with a s r rod un l the yeast is completely dissolved. 6. Use a 10 ml graduated cylinder and pipe e to measure out 5.00 ml of hydrogen peroxide. Pour this hydrogen peroxide into the Erlenmeyer flask, and place the stopper with stopper tube over the top. 7. Clean the 10 ml graduated cylinder by rinsing it at least three mes with dis lled water. Dispose of the rinse down the drain. 8. Cover the opening of the graduated cylinder with two or three fingers and quickly turn it upside down into the 600 ml beaker already containing 400 ml of water. DO NOT remove your fingers from the opening un l the graduated cylinder is fully submerged under the water. If the amount of trapped air exceeds 10 ml, refill the cylinder and try again. 9. Insert the U shaped side of the flexible tubing into the beaker, and carefully snake it into the submerged opening of the graduated cylinder. You want as li le air as possible to be in the graduated cylinder. 10. Secure the graduated cylinder to the ring stand by sliding a ring under the submerged cylinder, then a aching the ring to the stand. OPTIONAL PROCEDURE: If your kit does not include a ring stand, you will hold the graduated cylinder in place while gas is collected. Make sure to keep the open end of the cylinder completely submerged to prevent addi onal gas from entering. Rest the graduated cylinder against the side of the beaker during experimental setup. 11. With the cylinder ver cal, record the volume of air inside (the line at which the water reaches in the cylinder) in the Data sec on in Table 1. 12. Using the pipe e, measure out 5.00 ml of yeast solu on into the rinsed 10 ml graduated cylinder. NOTE: Do not immediately pour the yeast solu on into the Erlenmeyer flask. 13. Prepare to place the stopper (s ll connected to the hose) on the Erlenmeyer flask. Reset the stopwatch. 14. Quickly pour the 5.0 ml of yeast solu on into the Erlenmeyer flask. Immediately place the stopper securely in the opening of the Erlenmeyer flask by twis ng it down into the flask gently. 15. Start ming the reac on with the stopwatch. 16. Swirl the Erlenmeyer flask to mix the two solu ons together. 17. You will begin to see bubbles coming up into the 100 ml graduated cylinder. HINT: If gas bubbles are not immediately visible, make sure the stopper is on ght enough and the tubing is not leaking. You will need to start over a er correc ng any problems. 18. Con nue to swirl the Erlenmeyer flask and let the reac on run un l no more bubbles form to assure the reac on has gone to comple on. This should take approximately 6-10 minutes. HINT: Catalase works best around the temperature of the human body. You can speed the reac on up by warming the Erlenmeyer flask with your hands. 19. Record the me when the reac on is finished in Table 2 of the Data sec on, along with the final volume of air in Table 1. Remember to read it at eye-level and measure from the bo om of the meniscus. 20. Pour all other liquids down the drain and clean the labware. 83

Data Water temperature: Barometric Pressure: ⁰C mm Hg Ini al volume of air (ml) Table 1: Volume data Final volume of air a er reac on (ml) Volume of O 2 collected (Final volume ini al volume) Table 2: Reac on me data Time reac on started Time reac on ended Reac on me (s) Calcula ons The goal is to find the percentage of hydrogen peroxide in the solu on! This can be found by working through the following steps. 1. Convert the temperature of the water from ⁰C to Kelvin (K). Use the equa on K = ⁰C + 273. This will be your value for absolute T or the temperature in Kelvin. T = ⁰C + 273 = K 2. If necessary, convert the barometric pressure in the room from mm Hg to atmospheres (atm). Divide the measured pressure from the Data sec on by 760 mm Hg. This will give you pressure (P) in atmospheres. P = mm Hg * = atm 1 atm 760 mm Hg 84

3. Convert the volume of oxygen from ml to liters (L). 1 L V = ml * = L 1000 ml 4. Rearrange the ideal gas law to solve for n. 5. You are now ready to solve for the number of moles of O 2. Be sure the units cancel so that you end up with only the moles of O 2 le. Use the value for the constant R given: R = 0.0821 L atm/mol K Actual number of moles of O 2 (n) = moles 85

6. Calculate the theore cal number of moles of O 2 there would be if the hydrogen peroxide were 100%, and not an aqueous solu on. mol H 2 O 2 Theore cal moles of O 2 = H 2 O 2 volume * H 2 O 2 density * * g H 2 O 2 1 mol O 2 2 mol H 2 O 2 To use the above equa on, calculate the following: H 2 O 2 volume is the volume (ml) of hydrogen peroxide used: Volume = ml H 2 O 2 H 2 O 2 density is known: Density = 1.02 g/ml mol H 2 O 2 g H 2 O 2 is the reciprocal of the molar mass of H 2 O 2. First write the molar mass of H 2 O 2 then find the reciprocal. Molar mass of H 2 O 2 = g H 2 O 2 /1 mol H 2 O 2 Molar mass of H 2 O 2 reciprocal = Now you have all of the informa on needed to solve the equa on for the theore cal moles of O 2. All you need to do is fill in the blanks and do the calcula ons. Theore cal moles of O 2 = * * * Theore cal moles of O 2 = mol 86

7. Find the percent hydrogen peroxide. Actual moles O 2 % H 2 O 2 = * 100% = % Theore cal moles O 2 8. You can also easily determine the reac on rate. To do this, divide the total volume of oxygen collected by the total me of the reac on. Reac on rate = Volume O 2 (ml) = ml/sec Reac on me (s) Post Lab Ques ons 1. Was the calculated percentage of hydrogen peroxide close to the same as the percentage on the label? 2. Considering that catalysts are not consumed in a reac on, how do you think increasing the amount of catalyst would affect the reac on rate for the decomposi on of hydrogen peroxide? 87

1500 West Hampden Avenue Suite 5-H Sheridan, CO 80110 303 741 0674 888 ESL KITS www.esciencelabs.com