AN2389 Application note



Similar documents
AN3332 Application note

TN0023 Technical note

EVL185W-LEDTV. 185 W power supply with PFC and standby supply for LED TV based on the L6564, L6599A and Viper27L. Features.

AN2680 Application note

BD241A BD241C. NPN power transistors. Features. Applications. Description. NPN transistors. Audio, general purpose switching and amplifier transistors

AN2604 Application note

Single LNB supply and control IC DiSEqC 1.X compliant with EXTM based on the LNBH29 in a QFN16 (4x4) Description

2STBN15D100. Low voltage NPN power Darlington transistor. Features. Application. Description

BD238. Low voltage PNP power transistor. Features. Applications. Description. Low saturation voltage PNP transistor

ST High voltage fast-switching NPN power transistor. Features. Applications. Description

DDSL01. Secondary protection for DSL lines. Features. Description

BD135 - BD136 BD139 - BD140

ULN2801A, ULN2802A, ULN2803A, ULN2804A

ULN2001, ULN2002 ULN2003, ULN2004

Order code Temperature range Package Packaging

AN3353 Application note

AN3998 Application note

STP60NF06. N-channel 60V Ω - 60A TO-220 STripFET II Power MOSFET. General features. Description. Internal schematic diagram.

LM135-LM235-LM335. Precision temperature sensors. Features. Description

LM337. Three-terminal adjustable negative voltage regulators. Features. Description

AN4108 Application note

SPC5-FLASHER. Flash management tool for SPC56xx family. Description. Features

AN3354 Application note

AN3110 Application note

STP60NF06FP. N-channel 60V Ω - 30A TO-220FP STripFET II Power MOSFET. General features. Description. Internal schematic diagram.

L78MxxAB L78MxxAC. Precision 500 ma regulators. Features. Description

LM134-LM234-LM334. Three terminal adjustable current sources. Features. Description

STTH2R06. High efficiency ultrafast diode. Features. Description

ESDLIN1524BJ. Transil, transient voltage surge suppressor diode for ESD protection. Features. Description SOD323

Description. Table 1. Device summary

BZW50. Transil, transient voltage surge suppressor (TVS) Features. Description

L6234. Three phase motor driver. Features. Description

DSL01-xxxSC5. Secondary protection for DSL lines. Features. Description. Applications. Benefits. Complies with the following standards

EN: This Datasheet is presented by the m anufacturer. Please v isit our website for pricing and availability at ore.hu.

AN3359 Application note

AN3265 Application note

STN3NF06L. N-channel 60 V, 0.07 Ω, 4 A, SOT-223 STripFET II Power MOSFET. Features. Application. Description

MC Low noise quad operational amplifier. Features. Description

STEVAL-IEG001V2. Smart real-time vehicle tracking system. Features

UM0985 User manual. Developing your STM32VLDISCOVERY application using the IAR Embedded Workbench software. Introduction

ETP01-xx21. Protection for Ethernet lines. Features. Description. Applications. Benefits. Complies with the following standards

UA741. General-purpose single operational amplifier. Features. Applications. Description. N DIP8 (plastic package)

Description. Table 1. Device summary. Order codes. TO-220 (single gauge) TO-220 (double gauge) D²PAK (tape and reel) TO-220FP

AN2866 Application note

AN2824 Application note

UM1613 User manual. 16-pin smartcard interface ST8034P demonstration board. Introduction

Description. Table 1. Device summary. Order code Temperature range Package Packaging Marking

STTH1R04-Y. Automotive ultrafast recovery diode. Features. Description

TDA W CAR RADIO AUDIO AMPLIFIER

AN4156 Application note

STCS A max constant current LED driver. Features. Applications. Description

Table 1. Absolute maximum ratings (T amb = 25 C) Symbol Parameter Value Unit. ISO C = 330 pf, R = 330 Ω : Contact discharge Air discharge

AN2760 Application note

STCS1A. 1.5 A max constant current LED driver. Features. Applications. Description

AN4368 Application note

Description. IO and RF AGC. ASIC controller and power management. Carrier recovery loop. GPIO switch matrix. Lock indicator and monitoring DVBS2 FEC

AN2557 Application note

How To Write To An Eeprom Memory On A Flash Memory On An Iphone Or Ipro Memory On Microsoft Flash Memory (Eeprom) On A Microsoft Microsoft Powerbook (Ai) 2.2.2

Obsolete Product(s) - Obsolete Product(s)

AN3252 Application note

UM1676 User manual. Getting started with.net Micro Framework on the STM32F429 Discovery kit. Introduction

AN2703 Application note

Getting started with DfuSe USB device firmware upgrade STMicroelectronics extension

STP55NF06L STB55NF06L - STB55NF06L-1

MC34063AB, MC34063AC, MC34063EB, MC34063EC

Description SO-8. series. Furthermore, in the 8-pin configuration Very low-dropout voltage (0.2 V typ.)

M24LRxx/CR95HF application software installation guide

P6KE. Transil, transient voltage surge suppressor (TVS) Features. Description. Complies with the following standards

VN05N. High side smart power solid state relay PENTAWATT. Features. Description

STGB10NB37LZ STGP10NB37LZ

STB75NF75 STP75NF75 - STP75NF75FP

SPC5-CRYP-LIB. SPC5 Software Cryptography Library. Description. Features. SHA-512 Random engine based on DRBG-AES-128

AN820 APPLICATION NOTE INPUT/OUTPUT PROTECTION FOR AUTOMOTIVE COMPUTER

STCS2A. 2 A max constant current LED driver. Features. Applications. Description

LM2901. Low-power quad voltage comparator. Features. Description

UM1790 User manual. Getting started with STM32L053 discovery kit software development tools. Introduction

ST19NP18-TPM-I2C. Trusted Platform Module (TPM) with I²C Interface. Features

STLM20. Ultra-low current 2.4 V precision analog temperature sensor. Features. Applications

UM1727 User manual. Getting started with STM32 Nucleo board software development tools. Introduction

AN3270 Application note

TDA2004R W stereo amplifier for car radio. Features. Description

STOD2540. PMOLED display power supply. Features. Application. Description

STP10NK80ZFP STP10NK80Z - STW10NK80Z

AN3990 Application note

VN03. ISO high side smart power solid state relay PENTAWATT. Features. Description.

UM1680 User manual. Getting started with STM32F429 Discovery software development tools. Introduction

AN235 Application note

AN4128 Application note

STTH3R02QRL. Ultrafast recovery diode. Main product characteristics. Features and benefits. Description. Order codes DO-15 STTH3R02Q DO-201AD STTH3R02

STDP2690. Advanced DisplayPort to DisplayPort (dual mode) converter. Features. Applications

AN438 APPLICATION NOTE SAFETY PRECAUTIONS FOR DEVELOPMENT TOOL TRIAC + MICROCONTROLLER

AN974 APPLICATION NOTE

STTH110. High voltage ultrafast rectifier. Description. Features

STB4NK60Z, STB4NK60Z-1, STD4NK60Z STD4NK60Z-1, STP4NK60Z,STP4NK60ZFP

Low power offline switched-mode power supply primary switcher. 60kHz OSCILLATOR PWM LATCH Q R4 S FF R3 R1 R2 + BLANKING + OVERVOLTAGE LATCH

M4T28-BR12SH M4T32-BR12SH

AN2328 Application note

AN1819 APPLICATION NOTE Bad Block Management in Single Level Cell NAND Flash Memories

AN3327 Application note

Transcription:

Application note An MCU-based low cost non-inverting buck-boost converter for battery chargers Introduction As the demand for rechargeable batteries increases, so does the demand for battery chargers. There are different kinds of design solutions available for implementing battery chargers. Some of them are dedicated hardware based solutions and some are microcontroller based solutions. In a microcontroller based solution, you have the flexibility of using the same hardware for charging different batteries and making only slight changes in the software. But there are still some challenges and one of the major challenges is to have a suitable input power supply available. Generally the Buck converter topology is used as a DC- DC converter to provide the controlled output power supply to the batteries. But in this case a problem may arise, for example, if you want to charge a 4.2V Li-ion batteries from a 5V supply due to the presence of the protection diode and other small drops across other components. This drop is generally about 1V which makes it very difficult to provide 4.2V to the Li-ion batteries using the buck converter topology. This application note describes a simple technique for implementing a non-inverting buckboost converter which requires only one inductor. This converter is basically the result of cascading a Buck converter with a Boost converter. This converter can be controlled by two PWM signals from the microcontroller and can be used as a Buck converter or Boost converter whenever required. So this solution combined with the flexibility of the ST7 microcontroller can be used to charge a wide range of the batteries using the same hardware. The example used in this application note is specific to battery chargers but this DC-DC converter can be very useful for portable applications in general or any application which uses rechargeable batteries. August 2007 Rev 1 1/16 www.st.com

Contents AN2389 Contents 1 Circuit diagram............................................. 3 2 Theory of operation......................................... 4 2.1 Buck-boost implementation.................................... 4 2.2 Buck converter implementation................................. 6 2.3 Boost converter implementation................................. 7 3 Selection of components..................................... 8 3.1 Inductor selection............................................ 8 3.2 Capacitor selection........................................... 8 4 Application in battery charger................................. 9 4.1 Theory of operation.......................................... 9 4.2 Software flowchart.......................................... 10 5 Test environment and results................................. 11 6 Conclusion................................................ 13 7 References................................................ 14 8 Revision history........................................... 15 2/16

Circuit diagram 1 Circuit diagram The diagram in Figure 1 shows the structure of the modified buck-boost converter. Figure 1. Modified buck-boost converter PWM1 L d2 P+ SW1 d1 PWM2 SW2 C V IN V OUT P- 3/16

Theory of operation AN2389 2 Theory of operation You can use this converter as buck-boost converter, as a buck converter or as a boost converter by selecting different combinations of switches SW1 and SW2 driven by the PWM1 and PWM2 signals output by the ST7 microcontroller. 2.1 Buck-boost implementation This converter can be used as a non inverting buck-boost converter by selecting the operating mode from Table 1 which briefly describes the converter modes.. Table 1. Operating modes based on switch combinations Phase SW1 (PWM1) SW2 (PWM2) Operating modes 1 OFF OFF BUCK 2 OFF ON N/A 3 ON OFF BUCK-BOOST 4 ON ON BOOST If we look at phase 2 in Table 1, here the switch SW1(PWM1) is OFF and switch SW2 (PWM2) is ON. This condition never occurs either in a buck converter or in boost converter. So you should always take care in your software that this condition must not happen. To avoid this, if we assume that initially both switches are in OFF condition then you should use the following guidelines to manage the PWM signals driving the two switches. 1. Keep the frequency of both PWM signals the same, to better control when synchronizing the two PWM signals using the next three guidelines. 2. The duty cycle D1 of control signal PWM1, must be greater than the duty cycle D2 of control signal PWM2. 3. PWM1 should be enabled before the PWM2 signal. 4. PWM1 should be disabled after the PWM2 signal. 4/16

Theory of operation Figure 2. Timing diagram for two PWM signals Phase 3 PWM1 PWM2 Phase 4 Phase 1 Figure 2 shows a timing example for the two PWM signals based on the above guidelines. Here phase 2 does not occur. If the duty cycles of the two PWM signals driving SW1(PWM1) and SW2 (PWM2) are D1 and D2 respectively and if we exclude the saturation voltage of the switches from our calculation and if the drop across the diodes is V d1 and V d2 respectively, then the output voltage Vout is given by the following formula: V out = [ V in * D1 - V d1 * ( 1 - D1) ] / ( 1 - D2) - V d2 As mentioned in [2], theoretically this converter works linearly over a gain range of 0-200% of the input voltage. 5/16

Theory of operation AN2389 2.2 Buck converter implementation If you keep SW2 always in OFF condition and drive SW1 (PWM1) with a PWM signal from the microcontroller then the circuit works like a buck converter, except that you have an additional diode drop V d2 due to diode d2. Figure 3. Buck converter implementation PWM1 L d2 P+ d1 OFF SW2 C V IN V OUT P- If the duty cycle of the PWM signal driving SW1 (PWM1) is D1, the output voltage will be given by: V out = V in * D1 - V d1 ( 1 - D1) - V d2 6/16

Theory of operation 2.3 Boost converter implementation Again if you keep switch SW1 (PWM1) always in ON condition and drive the Switch SW2 (PWM2) with a PWM signal generated by the microcontroller, then the combination works as a boost converter except that you have an additional free wheeling diode D1 which you can ignore. Figure 4. Boost converter implementation ON L d2 P+ SW1 d1 PWM2 SW2 C V IN V OUT P- If the input voltage is V in, the duty cycle of the PWM signal driving PWM2 is D2 and the drop across the diode d2 is V d2, then the output voltage V out is given by: V out = V in / ( 1 - D2) - V d2 7/16

Selection of components AN2389 3 Selection of components The inductor and capacitor can be selected using the formulae given below. 3.1 Inductor selection The minimum value of the inductor can be selected by choosing the maximum of the values given by the following two formulae: Lmin = T * [ ( V in - V sat1 ) * D1 - V sat2 * D2 - V out * (D1 - D2)] 2 * I out (1) Lmin = T * [ V d1 + V out ] * ( 1 - D1) 2 * I out (2) Here V sat1 and V sat2 are the saturation voltages of the two switches SW1 and SW2. Iout and Vout are the maximum output current and voltage respectively. V d1 and V d2 is the drop across diodes d1 and d2. The duty cycles of the PWM signals driving SW1 and SW2 are D1 and D2 respectively. 3.2 Capacitor selection The minimum of the capacitor value can be selected by using the following formula, assuming a variation in Vout of 1% or less Cmin = 100 * I out * (1 - D1) * T V out (3) In practice, we take inductor and capacitor values that are larger than the values calculated using the above formulae. 8/16

Application in battery charger 4 Application in battery charger We can use the modified non-inverting buck-boost converter in a combination of different modes as required by the application. 4.1 Theory of operation The DC-DC converter uses a combination of buck-boost converter and boost converter mode to charge the Li-ion battery. In case of Li-ion, the constant current constant voltage (CC CV) charging algorithm is used to charge the battery. Here we have chosen the input voltage just enough to show the functionality of the converter in buck-boost mode and boost mode. Initially the converter works in Buck-Boost converter mode to charge the battery in constant current mode by keeping the duty cycle of PWM2 constant and varying the duty cycle of PWM1. As soon as there is an overflow condition for the duty cycle of PWM1. The converter switches from buck-boost converter mode to boost converter mode. And then duty cycle of PWM2 is varied to follow the algorithm while SW1 remains in ON condition. Following section shows the software flow chart for this combination. 9/16

Application in battery charger AN2389 4.2 Software flowchart There are many ways in which you can control the operation of this circuit. An example algorithm which can be used for in Li-ion battery charger is given below- Figure 5. Li-ion battery charger flowchart INITIALIZE THE PWM SIGNALS WITH DUTY CYCLE D1 AND D2. WORKS IN BUCK-BOOST MODE. KEEP D2 FIXED AND VARY D1 TO KEEP THE CURRENT CONSTANT. IS THERE A OVERFLOW IN D1? No YES WORKS IN BOOST MODE. KEEP SW1 ALWAYS ON AND VARY THE D2 TO CONTINUE THE ALGORITHM BY KEEP -ING THE CURRENT OR VOLTAGE CONSTANT AS REQUIRED. END 10/16

Test environment and results 5 Test environment and results We used this buck-boost converter in the universal battery charger evaluation board described in AN2390. Figure 6 below shows the general battery charger circuit using the non-inverting buck-boost converter circuit mentioned in this application note. For simplicity, this figure does not show all the connections. Figure 6. General circuit-based battery charger PWM1 L d2 P+ SW1 I BAT Battery V IN d1 PWM2 SW2 C V OUT V BAT R S P- Sense resistor Here some results are shown for charging the Li-ion battery using this converter in buckboost mode. The above charger is is intended for charging a single Li-ion or two NiMH in series using a 5V supply input. Details on the implementation are given in AN2390 where you can find results for NiMH batteries as well as for a charger used simply in buck converter mode. Some parameter values are as follows: V in = 5V, I in (MAX) = 2A, V sat1 = V sat2 = 0.3V, V d1 = V d2 = 0.5V. and PWM frequency for both PWM1 and PWM2 = 16KHz. Also let s say the maximum value of V out = 5.5V and I out = 1.2A and the maximum duty cycle of D1 is 95% and D2 is equal to 30%. Then using the formulas given in Section 3: Lmin = 21 uh (from equation 1) or 10 uh (from equation 2). So we should choose a value larger than 21 uh. Cmin = 70uF (from equation 3). So we need to choose a value higher than 70 uf. In this example, L = 75 uh, C = 470 uf are taken, which are larger than the values calculated using the formulas hence will support the application. The following table shows some of the readings taken for different values of the duty cycles D1 and D2. 11/16

Test environment and results AN2389 I Table 2. Input vs output Sl No V in (V) I in (A) V out (V) I out (A) 1 5 1.23 3.9 1.05 2 5 1.33 4.14 1.05 3 5 1.36 4.2 1.05 4 5 1.27 4.2 0.975 5 5 0.97 4.2 0.80 6 5 0.85 4.2 0.712 7 5 0.65 4.15 0.55 8 5 0.33 4.15 0.28 9 5 0.31 4.15 0.26 10 5 0.16 4.10 0.129 In above results, we have not added V sat (0.3V), diode drop (0.5V) and the drop across the series resistor (connected to measure battery current) as shown in Figure 6 to get the actual output voltage of the non-inverting buck-boost converter. For example it is given that V out (battery voltage) = 4.2V, but the actual output voltage of the converter is equal to: V out 4.2V (Battery Voltage V bat ) + 0.3V(Switch Drop V sat1 )+ 0.5V(Protection Diode V d2 )+ 0.4V (Drop across Sense resistor) = 5.4V. So we are able to achieve 5.4V from a 5V supply thus validating the concept. 12/16

Conclusion 6 Conclusion This application note describes a simple but very useful technique for implementing a microcontroller controlled low cost non-inverting buck-boost converter. This converter can be used as a buck converter or as a boost converter or as a buck-boost converter. The example shows the application of this converter in a battery charger. However it can also be used in other portable applications or any application getting its power from a rechargeable battery. Or you could use this technique to make a USB charger to charge Li-ion batteries or 3 or more NiMH Cells in series. 13/16

References AN2389 7 References [1] AN2390: A flexible universal battery charger, STMicroelectronics [2] A noninverting buck-boost converter with reduced components using a microcontroller by Robert S. Weissbach and Kevin M. Torres, IEEE members. 14/16

Revision history 8 Revision history Table 3. Document revision history Date Revision Changes 21-Aug-2007 1 Initial release. 15/16

Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ( ST ) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 16/16