TSH70, TSH71, TSH72, TSH73, TSH74, TSH75



Similar documents
UA741. General-purpose single operational amplifier. Features. Applications. Description. N DIP8 (plastic package)

MC Low noise quad operational amplifier. Features. Description

Description. Table 1. Device summary

LM337. Three-terminal adjustable negative voltage regulators. Features. Description

Description. Table 1. Device summary. Order code Temperature range Package Packaging Marking

LM2901. Low-power quad voltage comparator. Features. Description

TDA2004R W stereo amplifier for car radio. Features. Description

LM833 LOW NOISE DUAL OPERATIONAL AMPLIFIER

Description SO-8. series. Furthermore, in the 8-pin configuration Very low-dropout voltage (0.2 V typ.)

Table 1. Absolute maximum ratings (T amb = 25 C) Symbol Parameter Value Unit. ISO C = 330 pf, R = 330 Ω : Contact discharge Air discharge

TDA W CAR RADIO AUDIO AMPLIFIER

Description. Table 1. Device summary. Order codes. TO-220 (single gauge) TO-220 (double gauge) D²PAK (tape and reel) TO-220FP

Order code Temperature range Package Packaging

LM2902. Low-power quad operational amplifier. Features. Description

L78MxxAB L78MxxAC. Precision 500 ma regulators. Features. Description

EN: This Datasheet is presented by the m anufacturer. Please v isit our website for pricing and availability at ore.hu.

TSV6290, TSV6290A, TSV6291, TSV6291A

TL084 TL084A - TL084B

STTH1R04-Y. Automotive ultrafast recovery diode. Features. Description

LM135-LM235-LM335. Precision temperature sensors. Features. Description

Obsolete Product(s) - Obsolete Product(s)

LM134-LM234-LM334. Three terminal adjustable current sources. Features. Description

AN4368 Application note

ULN2001, ULN2002 ULN2003, ULN2004

MC34063AB, MC34063AC, MC34063EB, MC34063EC

DDSL01. Secondary protection for DSL lines. Features. Description

BZW50. Transil, transient voltage surge suppressor (TVS) Features. Description

2STBN15D100. Low voltage NPN power Darlington transistor. Features. Application. Description

ESDLIN1524BJ. Transil, transient voltage surge suppressor diode for ESD protection. Features. Description SOD323

Single LNB supply and control IC DiSEqC 1.X compliant with EXTM based on the LNBH29 in a QFN16 (4x4) Description

Description. Table 1. Device summary. Order code Package Packing

Obsolete Product(s) - Obsolete Product(s)

ETP01-xx21. Protection for Ethernet lines. Features. Description. Applications. Benefits. Complies with the following standards

ULN2801A, ULN2802A, ULN2803A, ULN2804A

TS321 Low Power Single Operational Amplifier

BD241A BD241C. NPN power transistors. Features. Applications. Description. NPN transistors. Audio, general purpose switching and amplifier transistors

STLM20. Ultra-low current 2.4 V precision analog temperature sensor. Features. Applications

TL074 TL074A - TL074B

DSL01-xxxSC5. Secondary protection for DSL lines. Features. Description. Applications. Benefits. Complies with the following standards

TSX561, TSX562, TSX564, TSX561A, TSX562A, TSX564A

BD238. Low voltage PNP power transistor. Features. Applications. Description. Low saturation voltage PNP transistor

L6234. Three phase motor driver. Features. Description

ST High voltage fast-switching NPN power transistor. Features. Applications. Description

STCS A max constant current LED driver. Features. Applications. Description

TSV321, TSV358, TSV324, TSV321A, TSV358A, TSV324A,

BD135 - BD136 BD139 - BD140

TS555. Low-power single CMOS timer. Description. Features. The TS555 is a single CMOS timer with very low consumption:

P6KE. Transil, transient voltage surge suppressor (TVS) Features. Description. Complies with the following standards

STCS1A. 1.5 A max constant current LED driver. Features. Applications. Description

AN3353 Application note

NE555 SA555 - SE555. General-purpose single bipolar timers. Features. Description

UM1613 User manual. 16-pin smartcard interface ST8034P demonstration board. Introduction

PIN CONFIGURATION FEATURES ORDERING INFORMATION ABSOLUTE MAXIMUM RATINGS. D, F, N Packages

TDA2822 DUAL POWER AMPLIFIER SUPPLY VOLTAGE DOWN TO 3 V LOW CROSSOVER DISTORSION LOW QUIESCENT CURRENT BRIDGE OR STEREO CONFIGURATION

NE555 SA555 - SE555. General-purpose single bipolar timers. Features. Description

STLQ ma, ultra low quiescent current linear voltage regulator. Description. Features. Application

High Speed, Low Cost, Triple Op Amp ADA4861-3

STCS2A. 2 A max constant current LED driver. Features. Applications. Description

EVL185W-LEDTV. 185 W power supply with PFC and standby supply for LED TV based on the L6564, L6599A and Viper27L. Features.

STTH2R06. High efficiency ultrafast diode. Features. Description

STN3NF06L. N-channel 60 V, 0.07 Ω, 4 A, SOT-223 STripFET II Power MOSFET. Features. Application. Description

STGB10NB37LZ STGP10NB37LZ

HCF4010B HEX BUFFER/CONVERTER (NON INVERTING)

SPC5-FLASHER. Flash management tool for SPC56xx family. Description. Features

HCF4001B QUAD 2-INPUT NOR GATE

Description. Table 1. Device summary. Order code Temperature range Package Packing Marking

STP60NF06FP. N-channel 60V Ω - 30A TO-220FP STripFET II Power MOSFET. General features. Description. Internal schematic diagram.

STP60NF06. N-channel 60V Ω - 60A TO-220 STripFET II Power MOSFET. General features. Description. Internal schematic diagram.

TDA CHANNEL VOLUME CONTROLLER 1 FEATURES 2 DESCRIPTION. Figure 1. Package

TN0023 Technical note

STOD2540. PMOLED display power supply. Features. Application. Description

AN2389 Application note

High Common-Mode Rejection. Differential Line Receiver SSM2141. Fax: 781/ FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection

VN5R003H-E. 3 mω reverse battery protection switch. Features. Description. Application

STP55NF06L STB55NF06L - STB55NF06L-1

CLASS-D VERTICAL DEFLECTION AMPLIFIER FOR TV AND MONITOR APPLICATION OUT CFLY + CFLY - BOOT VREG FEEDCAP FREQ. July /8

AN2866 Application note

Rail-to-Rail, High Output Current Amplifier AD8397

ADJUSTABLE VOLTAGE AND CURRENT REGULATOR

AN3332 Application note

High Speed, Low Power Monolithic Op Amp AD847

Features. Ordering Information. * Underbar marking may not be to scale. Part Identification

AN3110 Application note

ST202 5V POWERED MULTI-CHANNEL RS-232 DRIVERS AND RECEIVERS

VN05N. High side smart power solid state relay PENTAWATT. Features. Description

Wide Bandwidth, Fast Settling Difet OPERATIONAL AMPLIFIER

L78. Positive voltage regulator ICs. Description. Features

L6219. Stepper motor driver. Features. Description

PowerAmp Design. PowerAmp Design PAD135 COMPACT HIGH VOLATGE OP AMP

Description SO-8. Table 1. Device summary. Order codes. SO-8 (tape and reel) TO-92 (Bag) TO-92 (Ammopack) TO-92 (tape and reel)


LM217M, LM317M. Medium current 1.2 to 37 V adjustable voltage regulator. Description. Features

STB75NF75 STP75NF75 - STP75NF75FP

STTH110. High voltage ultrafast rectifier. Description. Features

AN2680 Application note

Precision, Unity-Gain Differential Amplifier AMP03

HA-5104/883. Low Noise, High Performance, Quad Operational Amplifier. Features. Description. Applications. Ordering Information. Pinout.

STM6315. Open drain microprocessor reset. Features

STIEC45-xxAS, STIEC45-xxACS

L5970D. Up to 1A step down switching regulator. Features. Description. Applications L5970D

Transcription:

TSH7, TSH7, TSH72, TSH73, TSH74, TSH7 Rail-to-rail, wide-band, low-power operational amplifiers Datasheet - production data Output VCC - 2 - Non-Inv. In. 3 TSH7 : SOT23-/SO8 TSH7 : SO8/TSSOP8 NC 8 STANDBY Inverting Input 2 _ 7 VCC Non Inverting Input 3 6 Output VCC - 4 NC TSH72 : SO8/TSSOP8 Output 8 VCC Inverting Input 2 _ 7 Output2 Non Inverting Input 3 _ 6 Inverting Input2 VCC - 4 Non Inverting Input2 TSH73 : SO4/TSSOP4 STANDBY STANDBY2 STANDBY3 VCC 2 3 4 _ 4 Output3 3 Inverting Input3 2 Non Inverting Input3 VCC - Non Inverting Input Inverting Input 6 Non Inverting Input2 9 Inverting Input2 Output 7 8 Output2 TSH74 : SO4/TSSOP4 Output 4 Output4 Inverting Input 2 3 Inverting Input4 Non Inverting Input 3 2 Non Inverting Input4 VCC 4 VCC - Non Inverting Input2 Non Inverting Input3 Inverting Input2 6 9 Inverting Input3 Output2 7 8 Output3 TSH7 : SO6/TSSOP6 Output Inverting Input 2 Non Inverting Input 3 6 Output4 Inverting Input4 4 Non Inverting Input4 VCC 4 3 VCC - Non Inverting Input2 Inverting Input2 6 NC VCC Inv. In. 2 Non-Inv. In. 3 4 Inv. In. VCC - 4 2 Non Inverting Input3 Inverting Input3 Output2 7 Output3 STANDBY 8 9 STANDBY 8 NC _ 7 VCC 6 Output NC Features 3 V, V, ± V specifications 3 db bandwidth: 9 MHz Gain bandwidth product: 7 MHz Slew rate: V/µs (typical for V) Output current: up to ma Input single supply voltage Output rail-to-rail Specified for Ω loads Low distortion, THD:. % SOT23-, TSSOP, and SO packages Applications Video buffers ADC driver Hi-fi applications Description The TSH7x series offers single, dual, triple, and quad operational amplifiers featuring high video performances with large bandwidth, low distortion, and excellent supply voltage rejection. Running with a single supply voltage from 3 V to 2 V, these amplifiers feature a large output voltage swing and high output current capable of driving standard Ω loads. A low operating voltage makes TSH7x amplifiers ideal for use in portable equipment. The TSH7, TSH73, and TSH7 also feature standby inputs, each of which allows the op-amp to be put into a standby mode with low-power consumption and high-output impedance. This function allows power saving or signal switching/multiplexing for high-speed applications and video applications. To economize both board space and weight, the TSH7x series is proposed in SOT23-, SO, and TSSOP packages. December 23 DocID72 Rev 4 /36 This is information on a product in full production. www.st.com

Contents TSH7x Contents Typical application: video driver............................... 3 2 Absolute maximum ratings and operating conditions............. 4 3 Electrical characteristics.................................... 3. Standby mode.............................................. 3.2 Characteristic curves for V CC = 3 V............................. 2 3.3 Characteristic curves for V CC = V............................. 3.4 Characteristic curves for V CC = V............................ 8 4 Testing conditions.......................................... 2 4. Layout precautions.......................................... 2 4.2 Maximum input level......................................... 22 4.3 Video capabilities........................................... 22 4.4 Precautions when operating on an asymmetrical supply............. 24 Package information........................................ 26. SOT23- package information................................. 27.2 SO8 package information..................................... 28.3 TSSOP8 package information................................. 29.4 SO4 package information.................................... 3. TSSOP4 package information................................ 3.6 SO6 package information.................................... 32.7 TSSOP6 package information................................ 33 6 Order information.......................................... 34 7 Revision history........................................... 3 2/36 DocID72 Rev 4

TSH7x Typical application: video driver Typical application: video driver A typical application for the TSH7x family is that of a video driver for driving STi7xxx DAC outputs on 7-ohm lines. Figure show the benefits of the TSH7x family as single supply drivers. Figure. Benefits of TSH7x family: 3 V or V single supply solution Video DAC s outputs: Bottom of synchronization tip around mv Vcc=V Vcc=3V V 3V VOH=4.2Vmin. (Tested) VOH=2.4Vmin. (Tested) 2.V 2.V Vp-p GND mv Gain=2 _ GND 2Vp-p GND mv VOL=4mVmax. (Tested) 2Vp-p GND mv VOL=3mVmax. (Tested) kω GND kω -V Video DAC Y,G Reconstruction Filtering LPF V 7Ω 7Ω Cable Vpp 7Ω TV 2Vpp Video DAC Pb,B Reconstruction Filtering LPF 7Ω 7Ω Cable.7Vpp 7Ω.4Vpp Video DAC Pr,R Reconstruction Filtering LPF 7Ω 7Ω Cable.7Vpp 7Ω TSH73.4Vpp GND DocID72 Rev 4 3/36 36

Absolute maximum ratings and operating conditions TSH7x 2 Absolute maximum ratings and operating conditions Table. Absolute maximum ratings (AMR) Symbol Parameter Value Unit V CC Supply Voltage () V id Differential Input Voltage (2) V i Input Voltage (3) 4 ±2 ±6 V T oper Operating Free Air Temperature Range to 7 T stg Storage Temperature -6 to C T j Maximum Junction Temperature Thermal resistance junction to case (4) R thjc R thja SOT23- SO8 TSSOPO8 SO4 TSSOP4 SO6 TSSOP6 Thermal resistance junction to ambient area SOT23- SO8 TSSOPO8 SO4 TSSOP4 SO6 TSSOP6 8 28 37 22 32 3 3 2 7 3 2 C/W ESD Human body model 2 kv. All voltages values, except differential voltage are with respect to the network ground terminal 2. Differential voltages are the non-inverting input terminal with respect to the inverting terminal 3. The magnitude of the input and output must never exceed V CC.3V 4. Short-circuits can cause excessive heating Table 2. Operating conditions Symbol Parameter Value Unit V CC Supply voltage 3 to 2 V IC Common mode input voltage range V CC - to (V CC -.) V Standby (V CC - ) to (V CC ) 4/36 DocID72 Rev 4

TSH7x Electrical characteristics 3 Electrical characteristics Table 3. V CC = 3 V, V CC - = GND, V IC =. V, T amb = 2 C (unless otherwise specified) Symbol Parameter Test conditions Min. Typ. Max. Unit T V io Input offset voltage amb = 2 C.2 mv T min. < T amb < T max. 2 ΔV io Input offset voltage drift vs. temp. T min. < T amb < T max. 4 μv/ C I io Input offset current T amb = 2 C. 3. T min. < T amb < T max. I ib Input bias current T amb = 2 C 6 T min. < T amb < T max. 2 C in Input capacitance.2 pf I CC CMRR SVRR PSRR A vd I o Supply current per operator Common mode rejection ratio (δv IC /δvio) Supply voltage rejection ratio (δvcc/δvio) Power supply rejection ratio (δvcc/δv out ) Large signal voltage gain Output short circuit current source T amb = 2 C 7.2 9.8 T min. < T amb < T max.. < V IC <.9 V and V out =. V T amb = 2 C 6 T min. < T amb < T max. 64 T amb = 2 C 66 T min. < T amb < T max. 6 9 74 Positive and negative rail 7 R L = Ω to. V, V out = V to 2 V T amb = 2 C 7 T min. < T amb < T max. 6 T amb =2 C, V id =, V out to. V, V id = -, V out to. V Source Sink T min. < T amb < T max. V id =, V out to. V V id = -, V out to. V Source Sink T amb = 2 C R L = Ω to GND R L = 6 Ω to GND R L = 2 kω to GND R L = kω to GND 3 2 22 9 2.4 8 43 33 2.6 2.87 2.9 2.93 μa ma db ma V OH High level output voltage R L = Ω to. V R L = 6 Ω to. V R L = 2 kω to. V R L = kω to. V 2.6 2.77 2.9 2.92 2.93 V T min. < T amb < T max. R L = Ω to GND R L = Ω to.v 2.4 2.6 DocID72 Rev 4 /36 36

Electrical characteristics TSH7x Table 3. V CC = 3 V, V CC - = GND, V IC =. V, T amb = 2 C (unless otherwise specified) (continued) Symbol Parameter Test conditions Min. Typ. Max. Unit T amb = 2 C R L = Ω to GND R L = 6 Ω to GND R L = 2 kω to GND R L = kω to GND 3 V OL Low level output voltage R L = Ω to. V R L = 6 Ω to. V R L = 2 kω to. V R L = kω to. V 4 9 68 7 3 mv GBP Gain bandwidth product T min. < T amb < T max. R L = Ω to GND R L = Ω to. V F = MHz A VCL = A VCL = - Bw Bandwidth @-3dB A VCL =, R L = Ω to. V 87 SR Slew rate A VCL =2, R L = Ω // C L to. V C L = pf C L = 3 pf 4 φm Phase margin R L = Ω // 3 pf to. V 4 en Equivalent input noise voltage F= khz nv/ Hz THD IM2 IM3 ΔG Total harmonic distortion Second order intermodulation product Third order inter modulation product Differential gain A VCL = 2, F = 4 MHz, R L = Ω // 3pF to. V V out = Vpp V out = 2 Vpp A VCL = 2, V out = 2 Vpp R L = Ω to. V Fin = 8 khz, Fin2 = 28 khz spurious measurements @ khz A VCL = 2, V out = 2 Vpp R L = Ω to. V Fin = 8kHz, Fin2 = 28 khz spurious measurements @4 khz A VCL =2, R L = Ω to. V F = 4. MHz, V out = 2 Vpp 6 8 8-6 -4-76 -68 4 3 MHz V/μs db dbc. % A Df Differential phase VCL = 2, R L = Ω to. V. F = 4. MHz, V out = 2 Vpp Gf Gain flatness F = DC to 6 MHz, A VCL = 2.2 db Vo/Vo2 Channel separation F = MHz to MHz 6 6/36 DocID72 Rev 4

TSH7x Electrical characteristics Table 4. V CC = V, V CC - = GND, V IC = 2. V, T amb = 2 C (unless otherwise specified) Symbol Parameter Test conditions Min. Typ. Max. Unit T V io Input offset voltage amb = 2 C. mv T min. < T amb < T max. 2 ΔV io Input offset voltage drift vs. temp. T min. < T amb < T max. 3 μv/ C I io Input offset current T amb = 2 C. 3. T min. < T amb < T max. I ib Input bias current T amb = 2 C 6 T min. < T amb < T max. 2 C in Input capacitance.3 pf I CC CMRR SVRR PSRR A vd I o Supply current per operator Common mode rejection ratio (δv IC /δvio) Supply voltage rejection ratio (δv CC /δvio) Power supply rejection ratio (δv CC /δv out ) Large signal voltage gain Output short circuit current source T amb = 2 C 8.2. T min. < T amb < T max... < V IC < 3.9 V and V out = 2. V T amb = 2 C 72 T min. < T amb < T max. 7 T amb = 2 C 68 T min. < T amb < T max. 67 97 7 Positive and negative rail 7 R L = Ω to. V, V out = V to 4 V T amb = 2 C 7 T min. < T amb < T max. 7 T amb = 2 C, V id =, V out to. V, V id = -, V out to. V Source Sink T min. < T amb < T max. V id =, V out to. V V id = -, V out to. V Source Sink T amb = 2 C R L = Ω to GND R L = 6 Ω to GND R L = 2 kω to GND R L = kω to GND 3 33 34 32 4.2 84 4.36 4.8 4.9 4.93 μa ma db ma V OH High level output voltage R L = Ω to 2. V R L = 6 Ω to 2. V R L = 2 kω to 2. V R L = kω to 2. V 4. 4.66 4.9 4.92 4.93 V T min. < T amb < T max. R L = Ω to GND R L = Ω to 2. V 4. 4.4 DocID72 Rev 4 7/36 36

Electrical characteristics TSH7x Table 4. V CC = V, V CC - = GND, V IC = 2. V, T amb = 2 C (unless otherwise specified) (continued) Symbol Parameter Test conditions Min. Typ. Max. Unit T amb =2 C R L = Ω to GND R L = 6 Ω to GND R L = 2 kω to GND R L = kω to GND 2 23 23 23 4 V OL Low level output voltage R L = Ω to 2. V R L = 6 Ω to 2. V R L = 2 kω to 2. V R L = kω to 2. V 22 76 6 4 mv GBP Gain bandwidth product T min. < T amb < T max. R L = Ω to GND R L = Ω to 2. V F = MHz A VCL = A VCL = - Bw Bandwidth @-3 db A VCL =, R L = Ω to 2. V 87 SR Slew rate A VCL = 2, R L = Ω // C L to 2. V C L = pf C L = 3 pf 6 φm Phase margin R L = Ω // 3 pf to 2. V 4 en Equivalent input noise voltage F = khz nv/ Hz THD IM2 IM3 ΔG Total harmonic distortion Second order intermodulation product Third order inter modulation product Differential gain A VCL = 2, F = 4 MHz R L = Ω // 3 pf to 2. V V out = Vpp V out = 2 Vpp A VCL = 2, V out = 2Vpp R L = Ω to 2. V Fin = 8 khz, Fin2 = 28 khz spurious measurements @ khz A VCL = 2, V out = 2 Vpp R L = Ω to 2. V Fin = 8 khz, Fin2 = 28 khz spurious measurements @4 khz A VCL = 2, R L = Ω to 2. V F = 4. MHz, V out = 2 Vpp 6 4-6 -4-76 -68 6 4 MHz V/μs db dbc. % A Df Differential phase VCL = 2, R L = Ω to 2. V. F = 4. MHz, V out = 2 Vpp Gf Gain flatness F = DC to 6 MHz, A VCL = 2.2 db Vo/Vo2 Channel separation F = MHz to MHz 6 8/36 DocID72 Rev 4

TSH7x Electrical characteristics Table. V CC = V, V CC - = -V, V IC = GND, T amb = 2 C (unless otherwise specified) Symbol Parameter Test conditions Min. Typ. Max. Unit T V io Input offset voltage amb = 2 C.8 mv T min. < T amb < T max. 2 ΔV io Input offset voltage drift vs. temp. T min. < T amb < T max. 2 μv/ C I io Input offset current T amb = 2 C. 3. T min. < T amb < T max. I ib Input bias current T amb = 2 C 6 T min. < T amb < T max. 2 C in Input capacitance.7 pf I CC CMRR SVRR PSRR A vd I o V OH Supply current per operator Common mode rejection ratio (δv IC /δvio) Supply voltage rejection ratio (δv CC /δvio) Power supply rejection ratio (δv CC /δv out ) Large signal voltage gain Output short circuit current source High level output voltage T amb = 2 C 9.8 2.3 T min. < T amb < T max. 3.4-4.9 < V IC < 3.9 V and V out = GND T amb = 2 C 8 T min. < T amb < T max. 8 T amb = 2 C 7 T min. < T amb < T max. 7 6 77 Positive and negative rail 7 R L = Ω to GND V out = -4 to 4 T amb = 2 C 7 T min. < T amb < T max. 7 T amb = 2 C V id =, V out to. V V id = -, V out to. V Source Sink T min. < T amb < T max. V id =, V out to. V V id = -, V out to. V Source Sink T amb = 2 C R L = Ω to GND R L = 6 Ω to GND R L = 2 kω to GND R L = kω to GND 3 3 34 29 4.2 86 4.36 4.8 4.9 4.93 μa ma db ma V T min. < T amb < T max. R L = Ω to GND 4. V OL Low level output voltage T amb = 2 C R L = Ω to GND R L = 6 Ω to GND R L = 2 kω to GND R L = kω to GND -4.63-4.86-4.9-4.93-4.4 V T min. < T amb < T max. R L = Ω to GND -4.3 DocID72 Rev 4 9/36 36

Electrical characteristics TSH7x Table. V CC = V, V CC - = -V, V IC = GND, T amb = 2 C (unless otherwise specified) (continued) Symbol Parameter Test conditions Min. Typ. Max. Unit GBP Bw SR Gain bandwidth product Bandwidth @-3dB Slew rate F = MHz A VCL = A VCL = - A VCL = R L = Ω // 3 pf to GND A VCL = 2, R L = Ω // C L to GND C L = pf C L = 3 pf 68 6 MHz MHz φm Phase margin R L = Ω to GND 4 en Equivalent input noise voltage F = khz nv/ Hz THD IM2 IM3 ΔG Total harmonic distortion Second order intermodulation product Third order intermodulation product Differential gain A VCL = 2, F = 4 MHz R L = Ω // 3 pf to GND V out = Vpp V out = 2 Vpp A VCL = 2, V out = 2 Vpp R L = Ω to GND Fin = 8 khz, Fin2 = 28 khz spurious measurements @ khz A VCL = 2, V out = 2 Vpp R L = Ω to GND Fin = 8 khz, Fin2 = 28 khz spurious measurements @4 khz A VCL = 2, R L = Ω to GND F = 4. MHz, V out = 2 Vpp 7 8-6 -4-76 -68 V/μs db dbc. % A Df Differential phase VCL = 2, R L = Ω to GND. F = 4. MHz, V out = 2 Vpp Gf Gain flatness F = DC to 6 MHz, A VCL = 2.2 db Vo/Vo2 Channel separation F = MHz to MHz 6 /36 DocID72 Rev 4

TSH7x Electrical characteristics 3. Standby mode Table 6. V CC, V CC -, T amb = 2 C (unless otherwise specified) Symbol Parameter Test conditions Min. Typ. Max. Unit - V low Standby low level V - (V CC CC.8) V V high Standby high level (V - CC 2) (V CC ) I CC STBY Current consumption per operator when STANDBY is active Z out Output impedance (R out //C out ) T on T off Time from standby mode to active mode Time from active mode to standby mode Pin 8 (TSH7) to V CC - Pin, 2 or 3 (TSH73) to V CC - Pin 8 (TSH7) to V CC Pin 9 (TSH7) to V CC - R out C out 7 Down to I CC STBY = μa 2 μa 2 MΩ pf μs Table 7. TSH7 standby function table TSH7 standby control pin 8 (STBY) V low V high Operator status Standby Active Table 8. TSH73 standby function table TSH73 standby control Operator status Pin (STBY OP) Pin 2 (STBY OP2) Pin 3 (STBY OP3) OP OP OP3 V low x x Standby x x V high x x Active x x x V low x x Standby x x V high x Active x x x V low x x Standby x x V high x x Active DocID72 Rev 4 /36 36

Electrical characteristics TSH7x Table 9. TSH7 standby function table TSH7 standby control Operator status Pin 8 (STBY OP2) Pin 9 (STBY OP3) OP OP2 OP3 OP4 V high V low Standby Standby V high V high Active Active V low V low Standby Active V low V high Active Active 3.2 Characteristic curves for V CC = 3 V Figure 2. Closed loop gain and phase vs. frequency (gain = 2, V CC = ±. V, R L = Ω, T amb = 2 C) Figure 3. Overshoot function of output capacitance (gain = 2, V CC = ±. V, T amb = 2 C) 2 Ω//33pF Gain Ω//22pF Ω//pF Gain (db) - - Phase Phase ( ) - Gain (db) Ω - -2-2 E4 E E6 E7 E8 E9 Frequency (Hz) - E6 E7 E8 E9 Frequency (Hz) Figure 4. Closed loop gain and phase vs. frequency (gain = -, V CC = ±. V, R L = Ω, T amb = 2 C) Figure. Closed loop gain and phase vs. frequency (gain =, V CC = ±. V, R L = Ω, T amb = 2 C) 3 2 3 Phase Phase Gain (db) 2 Gain Phase ( ) Gain (db) 2 Gain - Phase ( ) - - - - E4 E E6 E7 E8 E9 Frequency (Hz) - - E4 E E6 E7 E8 E9 Frequency (Hz) 2/36 DocID72 Rev 4

TSH7x Electrical characteristics Figure 6. Large signal measurement - positive slew rate (gain = 2, V CC = ±. V, Z L = Ω //.6 pf Figure 7. Large signal measurement - negative slew rate (gain = 2, V CC = ±. V, Z L = Ω //.6 pf).. Vout (V) Vout (V) -. -. - - 2 3 4 6 2 3 4 Time (ns) Time (ns) Figure 8. Small signal measurement - rise time (gain = 2, V CC = ±. V, Z L = Ω).6 Figure 9. Small signal measurement - fall time (gain = 2, V CC = ±. V, Z L = Ω).6.4.4 Vin, Vout (V).2 -.2 Vin Vout Vin, Vout (V).2 -.2 Vin Vout -.4 -.4 -.6 2 3 4 6 Time (ns) -.6 2 3 4 6 Time (ns) Figure. Channel separation (Xtalk) vs. frequency (measurement configuration: Xtalk = 2 log (V/V)) VIN Figure. Channel separation (Xtalk) vs. frequency (gain =, V CC =. V, Z L = Ω // 27 pf) -2 49.9Ω - Ω kω 49.9Ω - Ω V VO Xtalk (db) -3-4 - -6-7 -8-9 - 3/output 2/output 4/output Ω kω Ω - E4 E E6 E7 Frequency (Hz) DocID72 Rev 4 3/36 36

Electrical characteristics TSH7x Figure 2. Equivalent noise voltage (gain =, V CC = ±. V, No load) 3 Figure 3. Maximum output swing (gain =, V CC = ± V, R L = Ω 2 _ k 4 3 Vout 2 en (nv/ Hz) 2 Vin, Vout (V) - -2 Vin -3-4. Frequency (khz) -.E.E-2.E-.E- 2.E- Time (ms) Figure 4. Standby mode - T on, T off (V CC = ±. V, open loop) Figure. Group delay gain = 2 (V CC = ±. V, Z L = Ω // 27 pf, T amb = 2 C) 2 Vin Gain Vin, Vout (V) - Vout Group Delay.87ns -2 Ton Standby Toff 2E-6 4E-6 6E-6 8E-6 E- Time (s) Figure 6. Third order intermodulation (gain = 2, V CC = ±. V, Z L = Ω // 27 pf, T amb = 2 C) - -2-3 IM3 (dbc) -4 - -6 8kHz 74kHz -7-8 64kHz -9 38kHz - 2 3 4 Vout peak(v). Note on intermodulation products: The IFR226 synthesizer generates a two tone signal (F = 8 khz, F2 = 28 khz); each tone has the same amplitude level. The HP38 spectrum analyzer measures the intermodulation products function of the output voltage. The generator and the spectrum analyzer are phase locked for precision considerations. 4/36 DocID72 Rev 4

TSH7x Electrical characteristics 3.3 Characteristic curves for V CC = V Figure 7. Closed loop gain and phase vs. frequency (gain = 2, V CC = ±2. V, R L = Ω, T amb = 2 C) Figure 8. Overshoot function of output capacitance (gain = 2, V CC = ±2. V, T amb = 2 C) 2 Gain (db) - Gain Phase Phase ( ) Gain (db) Ω Ω//33pF Ω//22pF Ω//pF - - - -2 E4 E E6 E7 E8 E9 Frequency (Hz) - E6 E7 E8 E9 Frequency (Hz) Figure 9. Closed loop gain and phase vs. frequency (gain = -, V CC = ±2. V, R L = Ω, T amb = 2 C) 3 2 Figure 2. Closed loop gain and phase vs. frequency (gain =, V CC = ±2. V, R L = Ω, T amb = 2 C) 3 Phase Phase 2 2 Gain (db) Gain Phase ( ) Gain (db) Gain - Phase ( ) - - - - E4 E E6 E7 E8 E9 Frequency (Hz) - - E4 E E6 E7 E8 E9 Frequency (Hz) Figure 2. Large signal measurement - positive slew rate (gain = 2, V CC = ±2. V, Z L = Ω //.6 pf) 3 Figure 22. Large signal measurement - negative slew rate (gain = 2, V CC = ±2. V, Z L = Ω //.6 pf) 3 2 2 Vout (V) Vout (V) - - -2-2 -3 2 3 4 6 7 8 Time (ns) -3 2 3 4 6 7 Time (ns) DocID72 Rev 4 /36 36

Electrical characteristics TSH7x Figure 23. Small signal measurement - rise time (gain = 2, V CC = ±2. V, Z L = Ω).6 Figure 24. Small signal measurement - fall time (gain = 2, V CC = ±2. V, Z L = Ω).6.4.4 Vin, Vout (V).2 -.2 Vin Vout Vin Vout (V).2 -.2 Vin Vout -.4 -.4 -.6 2 3 4 6 Time (ns) -.6 2 3 4 6 Time (ns) Figure 2. Channel separation (Xtalk) vs. frequency (measurement configuration: Xtalk = 2 log (V/V)) VIN Figure 26. Channel separation (Xtalk) vs. frequency (gain =, V CC = ±2. V, Z L = Ω // 27 pf) -2 49.9Ω - Ω kω Ω V Xtalk (db) -3-4 - -6-7 3/output 4/output 49.9Ω - VO -8-9 - 2/output Ω kω Ω - E4 E E6 E7 Frequency (Hz) Figure 27. Equivalent noise voltage (gain =, V CC = ±2. V, no load) 3 Figure 28. Maximum output swing (gain =, V CC = ±2. V, R L = Ω) 3 2 _ 2 Vout k en (nv/ Hz) 2 Vin, Vout (V) - Vin -2. Frequency (khz) -3.E.E-2.E-.E- 2.E- Time (ms) 6/36 DocID72 Rev 4

TSH7x Electrical characteristics Figure 29. Standby mode - T on, T off (V CC = ±2. V, open loop) Figure 3. Group delay (gain = 2, V CC = ±2. V, Z L = Ω // 27 pf, T amb = 2 C) 3 Vin 2 Vin, Vout (V) - Vout Gain -2-3 Ton Standby Toff.32ns Group Delay 2E-6 4E-6 6E-6 8E-6 E- Time (s) Figure 3. Third order intermodulation (gain = 2, V CC = ±2. V, Z L = Ω // 27 pf, T amb = 2 C) - -2-3 IM3 (dbc) -4 - -6 8kHz 74kHz -7-8 -9-38kHz 64kHz 2 3 4 Vout peak(v). Note on intermodulation products: The IFR226 synthesizer generates a two tone signal (F = 8 khz, F2 = 28 khz); each tone has the same amplitude level. The HP38 spectrum analyzer measures the intermodulation products function of the output voltage. The generator and the spectrum analyzer are phase locked for precision considerations. DocID72 Rev 4 7/36 36

Electrical characteristics TSH7x 3.4 Characteristic curves for V CC = V Figure 32. Closed loop gain and phase vs. frequency (gain = 2, V CC = ± V, R L = Ω, T amb = 2 C) Figure 33. Overshoot function of output capacitance (gain = 2, V CC = ± V, T amb = 2 C) 2 Gain (db) - Gain Phase ( ) Gain (db) Ω Ω//33pF Ω//22pF Ω//pF - Phase - - -2 E4 E E6 E7 E8 E9 Frequency (Hz) - E6 E7 E8 E9 Frequency (Hz) Figure 34. Closed loop gain and phase vs. frequency (gain = -, V CC = ± V, R L = Ω, T amb = 2 C) Figure 3. Closed loop gain and phase vs. frequency (gain =, V CC = ± V, R L = Ω, T amb = 2 C) 3 2 3 2 Phase 2 Phase Gain (db) Gain Phase ( ) Gain (db) Gain - Phase ( ) - - - E4 E E6 E7 E8 E9 Frequency (Hz) - - E4 E E6 E7 E8 E9 Frequency (Hz) Figure 36. Large signal measurement - positive slew rate (gain = 2,V CC = ± V, Z L = Ω //.6 pf) 4 3 2 Figure 37. Large signal measurement - negative slew rate (gain = 2 V CC = ± V, Z L = Ω //.6 pf) 4 3 2 Vout (V) - Vout (V) - -2-2 -3-3 -4-4 - - 2 4 6 8 2 4 6 8 Time (ns) Time (ns) 8/36 DocID72 Rev 4

TSH7x Electrical characteristics Figure 38. Small signal measurement - rise time (gain = 2, V CC = ± V, Z L = Ω).6 Figure 39. Small signal measurement - fall time (gain = 2, V CC = ± V, Z L = Ω).6.4.4 Vin, Vout (V).2 -.2 Vin Vout Vin, Vout (V).2 -.2 Vin Vout -.4 -.4 -.6 2 3 4 6 Time (ns) -.6 2 3 4 6 Time (ns) Figure 4. Channel separation (Xtalk) vs. frequency (measurement configuration: Xtalk = 2 log(v/v)) VIN 49.9Ω - 49.9Ω Ω kω - Ω V VO Figure 4. Channel separation (Xtalk) vs. frequency (gain =, V CC = ± V, Z L = Ω // 27 pf) Xtalk (db) -2-3 -4 - -6-7 -8-9 - 3/output 2/output 4/output Ω kω Ω - E4 E E6 Frequency (Hz) E7 Figure 42. Equivalent noise voltage (gain =, V CC = ± V, no load) 3 Figure 43. Maximum output swing (gain =, V CC = ± V, R L = Ω) en (nv/ Hz) 2 2 _ k Vin, Vout (V) 4 3 2 - -2 Vout Vin -3-4. Frequency (khz) -.E.E-2.E-.E- 2.E- Time (ms) DocID72 Rev 4 9/36 36

Electrical characteristics TSH7x Figure 44. Standby mode - T on, T off (V CC = ± V, open loop) Figure 4. Group delay (gain = 2, V CC = ± V Z L = Ω // 27 pf, T amb = 2 C) Vin Vin, Vout (V) Vout Gain - Ton Standby Toff Group Delay.ns 2E-6 4E-6 6E-6 8E-6 Time (s) Figure 46. Third order intermodulation (gain = 2, V CC = ± V, Z L = Ω // 27 pf, T amb = 2 C - -2-3 IM3 (dbc) -4 - -6 74kHz 8kHz -7-8 -9-64kHz 38kHz 2 3 4 Vout peak(v). Note on intermodulation products: The IFR226 synthesizer generates a two tone signal (F = 8 khz, F2 = 28 khz); each tone has the same amplitude level. The HP38 spectrum analyzer measures the intermodulation products function of the output voltage. The generator and the spectrum analyzer are phase locked for precision considerations. 2/36 DocID72 Rev 4

TSH7x Testing conditions 4 Testing conditions 4. Layout precautions To use the TSH7X circuits in the best manner at high frequencies, some precautions have to be taken for power supplies: First of all, the implementation of a proper ground plane on both sides of the PCB is mandatory for high-speed circuit applications to provide low inductance and low resistance common return. Power supply bypass capacitors (4.7 µf and ceramic pf) should be placed as close as possible to the IC pins in order to improve high frequency bypassing and reduce harmonic distortion. The power supply capacitors must be incorporated for both the negative and the positive pins. Proper termination of all inputs and outputs must be in accordance with output termination resistors. In this way, the amplifier load is resistive only, and the stability of the amplifier is improved. All leads must be wide and as short as possible (especially for op-amp inputs and outputs) in order to decrease parasitic capacitance and inductance. For lower gain applications, care should be taken to avoid large feedback resistance (> kω) in order to reduce the time constant of parasitic capacitances. Choose component sizes as small as possible (SMD) Finally, on output, the load capacitance must be negligible to maintain good stability. You can put a serial resistance as close as possible to the output pin to minimize capacitance. DocID72 Rev 4 2/36 36

Testing conditions TSH7x 4.2 Maximum input level Figure 47. CCIR33 video line The input level must not exceed the following values: Negative peak: must be greater than -V CC 4 mv Positive peak value: must be lower than V CC -4 mv The electrical characteristics show the influence of the load on this parameter. 4.3 Video capabilities To characterize the differential phase and differential gain, a CCIR33 video line is used. The video line contains five (flat) levels of luma on which is superimposed a chroma signal. The first level contains no luma. The luma gives various amplitudes which define the saturation of the signal. The chrominance gives various phases which define the color of the signal. Differential phase (respectively differential gain) distortion is present if a signal chrominance phase (gain) is affected by luminance level. They represent the ability to uniformly process the high frequency information at all luminance levels. When differential gain is present, color saturation is not correctly reproduced. The input generator is the Rohde and Schwarz CCVS. The output measurement was made by the Rohde and Schwarz VSA. 22/36 DocID72 Rev 4

TSH7x Testing conditions Figure 48. Measurement on Rohde and Schwarz VSA Table. Video results Parameter Value V CC = ±2. V Value V CC = ± V Unit Lum NL..3 Lum NL step Lum NL step 2 99.9 Lum NL step 3 99.9 99.8 Lum NL step 4 99.9 99.9 Lum NL step 99.9 99.7 Diff gain pos Diff gain neg -.7 -.6 Diff gain pp.7.6 Diff gain step -. -.3 Diff gain step2 -.7 -.6 Diff gain step3 -.3 -. Diff gain step4 -. -.3 Diff gain step -.4 -. Diff phase pos. Diff phase neg -.2 -.4 Diff phase pp.2. Diff phase step -.2 -.4 Diff phase step2 -. -.4 Diff phase step3 -. -.3 Diff phase step4. Diff phase step -.2 -. % deg DocID72 Rev 4 23/36 36

Testing conditions TSH7x 4.4 Precautions when operating on an asymmetrical supply The TSH7X can be used with either a dual or a single supply. If a single supply is used, the inputs are biased to the mid-supply voltage (V CC /2). This bias network must be carefully designed, in order to reject any noise present on the supply rail. As the bias current is µa, you must carefully choose the resistance R so as not to introduce an offset mismatch at the amplifier inputs. Figure 49. Schematic of asymmetrical (single) supply IN C in R R2 Vcc C3 - R C out OUT R L R3 C C2 Cf R4 R = kω is a typical and convenient value. C, C2, C3 are bypass capacitors that filter perturbations on V CC, as well as for the input and output signals. We choose C = nf and C2 = C3 = µf. R2, R3 are such that the current through them must be greater than times the bias current. Therefore, we set R2 = R3 = 4.7 kω. C in, as C out, is chosen to filter the DC signal by the low-pass filters (R,C in and R out, C out ). By taking R = kω, R L = Ω, and C in = 2 µf, C out = 22 µf we provide a cut-off frequency below Hz. Figure. Use of the TSH7x in gain = - configuration C f IN C in k k - C out OUT R R2 Vcc C3 R L R3 C C2 Some precautions must be taken, especially for low-power supply applications. 24/36 DocID72 Rev 4

TSH7x Testing conditions A feedback capacitance, C f, should be added for better stability. Table summarizes the impact of the capacitance C f on the phase margin of the circuit. Table. Impact capacitance C f Parameter C f (pf) V CC = ±. V V CC = ±2. V V CC = ± V Unit Phase margin 28 43 6 deg f-3 db 4 39.3 38.3 MHz Phase margin 3 43 6 deg.6 f-3 db 4 39.3 38.3 MHz Phase margin 37 2 67 deg 22 f-3 db 37 34 32 MHz Phase margin 48 6 78 deg 33 f-3 db 33.7 3.7 27.6 MHz DocID72 Rev 4 2/36 36

Package information TSH7x Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 26/36 DocID72 Rev 4

TSH7x Package information. SOT23- package information Figure. SOT23- package mechanical drawing Table 2. SOT23- package mechanical data Dimensions Symbol Millimeters Inches Min Typ Max Min Typ Max A.9.4.3.7 A....6 A2.9.3.3. b.3..4.2 C.9.2.4.8 D 2.8 3...8 E 2.6 3..2.8 E..7.9.69 e.9.37 e.9.7 L.3..4.22 DocID72 Rev 4 27/36 36

Package information TSH7x.2 SO8 package information Figure 2. SO8 package mechanical drawing 623/C Symbol Table 3. SO8 package mechanical data Millimeters Dimensions Inches Min Typ Max Min Typ Max A.3.7.3.69 A..2.4. A2..6.43.6 B.33..3.2 C.9.2.7. D 4.8..89.97 E 3.8 4...7 e.27. H.8 6.2.228.244 h.2...2 L.4.27.6. k 8 8 ddd..4 28/36 DocID72 Rev 4

TSH7x Package information.3 TSSOP8 package information Figure 3. TSSOP8 package mechanical drawing 79397/D Table 4. TSSOP8 package mechanical data Dimensions Symbol Millimeters Inches Min Typ Max Min Typ Max A.2.47 A...2.6 A2.8...3.39.4 b.9.3.7.2 c.9.2.4.8 D 2.9 3. 3..4.8.22 E 6.2 6.4 6.6.244.22.26 E 4.3 4.4 4..69.73.77 e.6.26 K 8 8 L.4.6.7.8.24.3 L.39 DocID72 Rev 4 29/36 36

Package information TSH7x.4 SO4 package information Figure 4. SO4 package mechanical drawing PO3G Symbol Table. SO4 package mechanical data Millimeters Dimensions Inches Min Typ Max Min Typ Max A.7.68 a..2.3.7 a2.6.64 b.3.46.3.8 b.9.2.7. C..9 c 4 4 D 8. 8.7.336.344 E.8 6.2.228.244 e.27. e3 7.62.3 F 3.8 4..49.7 G 4.6.3.8.28 L..27.9. M.68.26 S 8 8 3/36 DocID72 Rev 4

TSH7x Package information. TSSOP4 package information Figure. TSSOP4 package mechanical drawing A A2 A b e c K L E D E PIN IDENTIFICATION 8337D Table 6. TSSOP4 package mechanical data Dimensions Symbol Millimeters Inches Min Typ Max Min Typ Max A.2.47 A...2.4.6 A2.8..3.39.4 b.9.3.7.2 c.9.2.4.89 D 4.9..93.97.2 E 6.2 6.4 6.6.244.22.26 E 4.3 4.4 4.48.69.73.76 e.6.26 K 8 8 L.4.6.7.8.24.3 DocID72 Rev 4 3/36 36

Package information TSH7x.6 SO6 package information Figure 6. SO6 package mechanical drawing PO3H Symbol Table 7. SO6 package mechanical data Millimeters Dimensions Inches Min Typ Max Min Typ Max A.7.68 a..2.4.8 a2.6.64 b.3.46.3.8 b.9.2.7. C..9 c 4 4 D 9.8.38.393 E.8.228.244 e.27 6.2. e3 8.89.3 F 3.8 4..49.7 G 4.6.3.8.28 L..27.9. M.62.24 S 8 8 32/36 DocID72 Rev 4

TSH7x Package information.7 TSSOP6 package information Figure 7. TSSOP6 package mechanical drawing A A2 A b e c K L E D E PIN IDENTIFICATION 8338D Table 8. TSSOP6 package mechanical data Dimensions Symbol Millimeters Inches Min Typ Max Min Typ Max A.2.47 A...2.6 A2.8..3.39.4 b.9.3.7.2 c.9.2.4.79 D 4.9..93.97.2 E 6.2 6.4 6.6.244.22.26 E 4.3 4.4 4.48.69.73.76 e.6.26 K 8 8 L.4.6.7.8.24.3 DocID72 Rev 4 33/36 36

Order information TSH7x 6 Order information Table 9. Order codes Part number Temperature range Package Packing Marking TSH7CLT SOT23- Tape and reel K3 TSH7CD/CDT 7C SO8 Tube or tape and reel TSH7CD/CDT 7C TSH7CPT TSSOP8 Tape and reel TSH72CD/CDT SO8 Tube or tape and reel 72C TSH72CPT TSSOP8 Tape and reel C to 7 C TSH73CD/CDT SO4 Tube or tape and reel 73C TSH73CPT TSSOP4 Tape and reel TSH74CD/CDT SO4 Tube or tape and reel TSH74CPT TSSOP4 Tape and reel 74C TSH7CD/CDT SO6 Tube or tape and reel TSH7CPT TSSOP6 Tape and reel 7C 34/36 DocID72 Rev 4

TSH7x Revision history 7 Revision history Table 2. Document revision history Date Revision Changes Nov. 2 First Release. Aug. 22 2 May 26 3 -Dec-23 4 Limit min. of I sink from 24mA to 2mA (only on 3V power supply). Reason: yield improvement. Improvement of VOL max. at 3V and V power supply on - ohm load connected to GND (pages 6 and 8). Reason: TSH7x can drive video signals from DACs to lines in single supply (3V or V) without any DC level change of the video signals. Grammatical and typographical changes throughout. Package mechanical data updated. Updated slew rate in Features Table 2: SOT23- package mechanical data: added information for inches. DocID72 Rev 4 3/36 36

TSH7x Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ( ST ) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. 23 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 36/36 DocID72 Rev 4