Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks - III



Similar documents
CSMA/CA. Information Networks p. 1

... neither PCF nor CA used in practice

standard. Acknowledgement: Slides borrowed from Richard Y. Yale

Lecture 17: Wireless Networking"

Collision of wireless signals. The MAC layer in wireless networks. Wireless MAC protocols classification. Evolutionary perspective of distributed MAC

ECE 358: Computer Networks. Homework #3. Chapter 5 and 6 Review Questions 1

Wiereless LAN

Wireless LAN Protocol CS 571 Fall Kenneth L. Calvert All rights reserved

MAC Algorithms in Wireless Networks

CS6956: Wireless and Mobile Networks Lecture Notes: 2/11/2015. IEEE Wireless Local Area Networks (WLANs)

An Overview of Wireless LAN Standards IEEE and IEEE e

Markku Renfors. Partly based on student presentation by: Lukasz Kondrad Tomasz Augustynowicz Jaroslaw Lacki Jakub Jakubiak

IEEE Technical Tutorial. Introduction. IEEE Architecture

How To Make A Multi-User Communication Efficient

Adaptive DCF of MAC for VoIP services using IEEE networks

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction

A Technical Tutorial on the IEEE Protocol

Lecture 7 Multiple Access Protocols and Wireless

Fibonacci Backoff Algorithm for Mobile Ad Hoc Networks

Medium Access Control (MAC) and Wireless LANs

Philippe Klein. avb-phkl qos-overview

Efficient MAC Protocol for Heterogeneous Cellular Networks (HC-MAC)

Local Area Networks transmission system private speedy and secure kilometres shared transmission medium hardware & software

Video Transmission over Wireless LAN. Hang Liu

EECS 122: Introduction to Computer Networks Multiaccess Protocols. ISO OSI Reference Model for Layers

Random Access Protocols

LAN Switching Computer Networking. Switched Network Advantages. Hubs (more) Hubs. Bridges/Switches, , PPP. Interconnecting LANs

Performance Evaluation of Priority based Contention- MAC in Mobile Ad-Hoc Networks

Express Forwarding : A Distributed QoS MAC Protocol for Wireless Mesh

TCP in Wireless Networks

The MAC layer in wireless networks

Networks. Master of Science (Computer Science and Engineering), December 2004, 45 pp.,

10. Wireless Networks

Improving Throughput Performance of the IEEE MAC Layer Using Congestion Control Methods

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 5, September

A TCP-like Adaptive Contention Window Scheme for WLAN

ECE 428 Computer Networks and Security

Performance Analysis of the IEEE Wireless LAN Standard 1

SSPC and Data Transfer

LANs. Local Area Networks. via the Media Access Control (MAC) SubLayer. Networks: Local Area Networks

Medium Access Control Protocols in Mobile Ad Hoc Networks: Problems and Solutions 1

CSE331: Introduction to Networks and Security. Lecture 6 Fall 2006

IEEE Wireless LAN Standard. Updated: 5/10/2011

MEDIUM ACCESS CONTROL PROTOCOLS FOR AD-HOC WIRELESS NETWORKS: A SURVEY

Mobile Ad Hoc Networks

CS263: Wireless Communications and Sensor Networks

On Backoff Mechanisms for Wireless. Mobile Ad Hoc Networks

An Experimental Study of Throughput for UDP and VoIP Traffic in IEEE b Networks

COMP 3331/9331: Computer Networks and Applications

Chapter 6: Medium Access Control Layer

WiFi. Is for Wireless Fidelity Or IEEE Standard By Greg Goldman. WiFi 1

Chapter 7 Low-Speed Wireless Local Area Networks

Mobile Communications Exercise: Satellite Systems and Wireless LANs. Georg von Zengen, IBR, TU Braunschweig,

A Short Look on Power Saving Mechanisms in the Wireless LAN Standard Draft IEEE

IEEE WLAN (802.11) ...Copyright. Renato Lo Cigno

Wireless LAN Concepts

Arbitration. White Paper. September 2009 Version Author: Marcus Burton, CWNE #78 CWNP, Inc.

Enhanced Power Saving for IEEE WLAN with Dynamic Slot Allocation

Performance Evaluation of a Binary Exponential Code Backoff Algorithm for IEEE Kang Sun

How To Determine The Capacity Of An B Network

Can I add a VoIP call?

Final Exam. Route Computation: One reason why link state routing is preferable to distance vector style routing.

Basic processes in IEEE networks

In this Lecture" Access method CDMA" Mobile and Sensor Systems Lecture 2: Mobile Medium Access Control Layer and Telecommunications

CSE 123A Computer Networks

TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP)

IEEE e WLANs / WMM. S.Rajesh (rajeshsweb@gmail.com) AU-KBC Research Centre, BroVis Wireless Networks, smartbridges Pte Ltd.

IEEE Wireless LAN

A MAC Protocol for Mobile Ad Hoc Networks Using Directional Antennas

How To Solve A Network Problem In An Ipa (Ipa 2) (Ipam) (Networking) (For Acedo) (Ipta) (Powerline) (Network) (Nem

Enhanced TXOP scheme for efficiency improvement of WLAN IEEE e

Fast Retransmission Mechanism for VoIP in IEEE e wireless LANs

Medium Access Control Mechanisms in Mobile Ad Hoc Networks

Selfish MAC Layer Misbehavior in Wireless Networks

ECE/CS 372 introduction to computer networks. Lecture 13

WI-FI TECHNOLOGY: SECURITY ISSUES

TCOM 370 NOTES LOCAL AREA NETWORKS AND THE ALOHA PROTOCOL

Real-Time (Paradigms) (51)

IEEE Wireless Local Area Networks

Computer Network. Interconnected collection of autonomous computers that are able to exchange information

Mustafa Ergen June 2002 Department of Electrical Engineering and Computer Science University of California Berkeley

Data Link Protocols. Link Layer Services. Framing, Addressing, link access: Error Detection:

How To Configure the WLAN with QoS

IEEE 802 Protocol Layers. IEEE Wireless LAN Standard. Protocol Architecture. Protocol Architecture. Separation of LLC and MAC.

Ph.D. Thesis. Resources optimization in multimedia communications. Luca Sanna Randaccio. Advisor: Prof. Luigi Atzori

Throughput Modeling in IEEE WLAN-based Wireless Networks

314 The International Arab Journal of Information Technology, Vol. 4, No. 4, October2007 access method in the IEEE MAC protocol is the Distribu

Data Center Networks, Link Layer Wireless (802.11)

Wireless LAN Services for Hot-Spot

Protocolo IEEE Sergio Scaglia SASE Agosto 2012

Internet Access and QoS in Ad Hoc Networks

What is it all about? Some simple solutions. Multiple Access. Contexts for the multiple access problem. Outline. Contexts

Transport Layer Protocols

A research perspective on the adaptive protocols' architectures and system infrastructures to support QoS in wireless communication systems

Algorithms for Interference Sensing in Optical CDMA Networks

MDA: An Efficient Directional MAC scheme for Wireless Ad Hoc Networks 1

PERFORMANCE ANALYSIS OF THE IEEE BASED ECG MONITORING NETWORK

1 Wireless Media Access Control

Based on Computer Networking, 4 th Edition by Kurose and Ross

A Performance Comparison of Stability, Load-Balancing and Power-Aware Routing Protocols for Mobile Ad Hoc Networks

Transcription:

Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks - III CS: 647 Advanced Topics in Wireless Networks Drs. Baruch Awerbuch & Amitabh Mishra Department of Computer Science Johns Hopkins University 2-1

Distributed MAC Protocols Most distributed MAC protocols are based on the principle of carrier sensing & collision avoidance (CSMA/CA) Hidden terminals play very dominant role in CSMA/CA based protocols Collisions that occur at the destination may not be heard by the sender Therefore receiver has to send some kind of feedback to sender 2-2

Distributed MAC - Hidden Node Problem Range of Terminal A Range of Terminal C A B C Currently Transmitting Wants to Transmit to B Will collide with Transmission from A at B In the diagram simultaneous transmission will collide at B Half duplex operation of wireless terminals -->, transmission and listening simultaneously is not possible. A and C have no knowledge of this collision, Two ways A & C can know that collision has occurred at B 1. A & C periodically stop transmission and listen for feedback from B 2. B uses out of band signaling to inform A & C 2-3

Collision Avoidance Techniques Range of Terminal A Range of Terminal C A B C Wants to Transmit to B Currently Transmitting Will collide with Transmission from A at B First option is very difficult, second option is possible but (inefficient) because it requires additional channel Two well know approaches of collision avoidance (CA) Out-of-band approach Hand shaking approach 2-4

CA with out-of-band signaling (1) Busy Tone Multiple Access (BTMA) (Tobagi & Kleinrock, Haas) protocol uses out of band signaling to solve hidden terminal problem Any node hearing ongoing transmission, transmits busy tone All nodes hearing busy tone keep silent All nodes in 2R radius of the transmitter keep silence (R range) Avoids interference from hidden terminals Requires a separate channel for busy tone Con: Eliminates hidden nodes, increases exposed nodes 2-5

CA with out-of-band signaling (2) Receiver Initiated Busy Tone Multiple Access (RI- BTMA) (S. Wu. & V.O.K. Li, 1988) Only receiver transmits the busy tone The receiver decodes the message and verifies the address that it is indeed the receiver The nodes in the vicinity of the receiver (Radius R) are inhibited Does not eliminate hidden terminal problem completely, but reduces the exposed nodes 2-6

CA with Control Handshaking - (MACA) (1) Alternative to carrier sensing i.e. does not use CSMA Multiple access with collision avoidance (MACA) uses a three way handshake to avoid hidden terminal problem (Karn, 90) When node B wants to send a packet to node C, node B first sends a Request-to-Send (RTS) to C All nodes within one hop of the sending node hear the RTS and defer their transmissions. On receiving RTS, node C responds by sending Clear-to-Send (CTS), provided node C is able to receive the packet When a node (such as D) overhears a CTS, it keeps quiet for the duration of the transfer Transfer duration is included in RTS and CTS both A B C 2-7

Hidden Terminal Avoidance E E RTS B C A CTS D 2-8

MACA examples MACA avoids the problem of hidden terminals A and C want to send to B A sends RTS first C waits after receiving CTS from B MACA avoids the problem of exposed terminals B wants to send to A, C to another terminal now C does not have to wait for it cannot receive CTS from A RTS CTS CTS A B C RTS RTS CTS A B C 2-9

CA with Control Handshaking - (MACA) (2) Does not completely solve the hidden terminal problem but does prevent to a large extent Enhancements to RTS-CTS control hand shaking and more complete single channel solutions [(MACAW (1997), Bhargavan] [Fullmer et al, (1995, 1997)] MACA has no ACK but MACAW does In these techniques tradeoff is in the overhead of handshaking and the number of hidden nodes removed 2-10

Reliability Wireless links are prone to errors. High packet loss rate detrimental to transportlayer performance. MACA delegates packet loss recovery to transport layer Higher delays Better to perform at the MAC layer Mechanisms needed to reduce packet loss rate experienced by upper layers 2-11

A Simple Solution to Improve Reliability (MACAW) When node B receives a data packet from node A, node B sends an Acknowledgement (Ack). This approach adopted in many protocols [Bharghavan94,IEEE 802.11] If node A fails to receive an Ack, it will retransmit the packet A B C 2-12

The Incompleteness of the RTS-CTS Method (1) 2-13

The Incompleteness of the RTS- CTS Method (2) 2-14

Using a directional antenna to resolve the exposed node problem 2-15

Outline Wireless MAC Issues Hidden terminal problem Exposed terminal problem Capture MAC Performance Metrics Wireless MAC Classification Distributed Wireless MAC Protocols CSMA/CA 802.11 MAC DCF Backoff Hiper Lan MAC 2-16

IEEE 802.11 RTS = Request-to-Send RTS A B C D E F 2-17

IEEE 802.11 RTS = Request-to-Send RTS A B C D E F 2-18

IEEE 802.11 CTS = Clear-to-Send CTS A B C D E F 2-19

IEEE 802.11 CTS = Clear-to-Send CTS A B C D E F 2-20

IEEE 802.11 DATA A B C D E F 2-21

IEEE 802.11 ACK A B C D E F 2-22

Distributed Random Access Protocols - Basics The basic operation of CSMA protocol is as follows: 1. A node that has data to transmit, senses the channel for certain duration before transmitting 2. If the channel is busy, the node waits a random amount of time and tries to transmit at a later time 3. If the channel is idle, the node tries to acquire the channel 4. A successful acquisition is followed by transmission of data packet 5. If the acquisition attempt results in a collision, the colliding nodes try to resolve collision in an orderly fashion 6. Each packet transmission is acknowledged by the receiver 2-23

Distributed Random Access Protocols Two well known CSMA/CA protocols are: 1. Distributed Foundation Wireless MAC (DFWMAC) IEEE 802.11 Wireless LAN Standard 2. Elimination Yield Non Preemptive Priority Multiple Access (EY-NPMA) HIPERLAN Standard 2-24

Minimal Frame Exchange Protocol Two frames Frame sent from source to destination Acknowledgement sent from destination back to source The exchange of this pair of frames is atomic in the MAC protocol -- cannot be interrupted If an acknowledgement is not received, the MAC will retransmit Reduces latency compared to letting a higher layer protocol (e.g., TCP detect the error and retransmit 2-25

RTS-CTS Exchange Protocol (1) Minimal frame exchange protocol does not address the hidden terminal problem IEEE 802.11 supports an RTS-CTS extension Support is mandatory Use is optional Cleared by RTS Cleared by CTS A B C 2-26

RTS-CTS Exchange Protocol (2) RTS-CTS used for frames longer than a Threshold RTS-CTS overhead not efficient for short frames Some environments may not find RTS-CTS useful, e.g. many infrastructure networks Threshold variable can be tuned Virtual carrier sensing Duration field in all frames, including RTS and CTS, monitored by every station Duration field used to construct a network access vector (NAV) Inhibits transmission, even if no carrier detected 2-27

Retry Counters Counter and timer for each frame Short or long retry counter Lifetime timer Retry counter Incremented for each transmission attempt Use of short versus long retry counter based on Threshold variable Threshold limit ShortRetryLimit for short retry counter LongRetryLimit for long retry counter If threshold exceeded, frame is discarded and upper layer is notified via MAC interface 2-28

Basic Access Mechanism Basic access mechanism CSMA/CA with collision avoidance Listen before talk -- defers if medium is busy Carrier sensing from PHY layer Virtual carrier sensing based on NAV entries Deferral based on a binary exponential back-off scheme Random value selected from a contention window, starting with a PHY-defined minimum Contention window doubles with each deferral up to a PHY-defined maximum Back-off timer decrements only when the medium is idle Retry counter incremented for each deferral 2-29

802.11 - MAC layer Priorities defined through different inter frame spaces no guaranteed, hard priorities SIFS (Short Inter Frame Spacing) highest priority, for ACK, CTS, polling response PIFS (PCF IFS) medium priority, for time-bounded service using PCF DIFS (DCF, Distributed Coordination Function IFS) DIFS lowest priority, for asynchronous data service DIFS medium busy PIFS SIFS contention next frame direct access if medium is free DIFS t 2-30

Timing Intervals (1) Timing intervals are defined that control a station s access to the medium Slot time (SlotTime) Specific value depends on PMD layer Derived from propagation delay, transmitter delay, etc. (20micro-sec for DSSS and 50 for FHSS) Basic unit of time for MAC, e.g. for backoff time is a multiple of slot time Short Inter-Frame Space (SIFS) Shortest interval -- SIF < SlotTime e.g. 10 microsec for FHSS Used for highest priority access to the medium, e.g., for ACK and CTS Allows Data-ACK and RTS-CST to be atomic transactions 2-31

Timing Intervals (2) Priority (or PCF) Inter-Frame Space (PIFS) PIFS = SIFS + SlotTime Used for Point Coordination Function (PCF) access to the medium Allows priority based access to the medium after ACKs but before contention based access Distributed (or DCF) Inter-Frame Space (DIFS) DIFS = SIFS + 2 SlotTime Used for Distributed Control Function (DCF) access to the medium Results in lower priority access than using SIFS or PIFS 2-32

Timing Intervals (3) Extended Inter-Frame Space (EIFS) EIFS = SIFS + (8 ACK) + PreambleLength + PLCPHeaderLength + DIFS Used in the event that the MAC receives a frame with an error Provides an opportunity for a fast retransmit of the error frame In summary SIFS < SlotTime < PIFS < DIFS << EIFS 2-33

Outline Wireless MAC Issues Hidden terminal problem Exposed terminal problem Capture MAC Performance Metrics Wireless MAC Classification Distributed Wireless MAC Protocols CSMA/CA 802.11 MAC DCF Backoff Hiper Lan MAC 2-34

DFWMAC/IEEE 802.11 It s a derivative of MACA protocol -> (MACAW) It consists of four way exchange, RTS-CTS-DATA-ACK 1. When a sender has a data to transmit, it picks a random wait period. The wait period is decremented if the channel is idle 2. When this period expires, the node tries to acquire the channel by sending a RTS packet 3. The Receiving node (destination) responds with a CTS packet indicating that its ready to receive the data 4. The sender then completes the packet transmission 5. If the packet is received without errors, the destination node responds with an ACK 2-35

DFWMAC/IEEE 802.11 6. If an ACK is not received, the packet is assumed to be lost and the packet is retransmitted 7. If RTS fails, the node attempts to resolve the collision by doubling the wait period. (This is known as binary exponential back-off (BEB)). 8. Station trying to send an ACK is given preference over a station that is acquiring a channel (Different waiting intervals are specified) 9. A node needs to sense channel for Distributed Inter- Frame Space (DIFS) interval before making an RTS attempt and a Short Inter Frame Space (SIFS) interval before sending an ACK packet 2-36

DFWMAC/IEEE 802.11 Because SIFS is shorter than the DIFS interval, the station sending an ACK attempts transmission before a station sending a data packet In addition to physical channel sensing, virtual carrier sensing is achieved due to NAV (Network allocation vector) field in the packets NAV indicates the duration of current transmission Nodes listening to RTS, or CTS messages back off NAV amount of time before sensing the channel again Several papers describe this protocol and even suggest enhancements 2-37

802.11 - CSMA/CA basic access method (DCF) without RTS/CTS DIFS DIFS contention window (randomized back-off mechanism) medium busy direct access if medium is free DIFS slot time next frame t station ready to send starts sensing the medium (Carrier Sense based on CCA, Clear Channel Assessment) if the medium is free for the duration of an Inter-Frame Space (IFS), the station can start sending (IFS depends on service type) if the medium is busy, the station has to wait for a free IFS, then the station must additionally wait a random back-off time (collision avoidance, multiple of slot-time) if another station occupies the medium during the backoff time of the station, the back-off timer stops (fairness) 2-38

802.11 - CSMA/CA basic access method (DCF) without RTS/CTS Sending unicast packets sender receiver other stations station has to wait for DIFS before sending data receivers acknowledge at once (after waiting for SIFS) if the packet was received correctly (CRC) automatic retransmission of data packets in case of transmission errors DIFS data SIFS waiting time ACK DIFS contention data t 2-39

802.11 DFWMAC with RTS/CTS Sending unicast packets station can send RTS with reservation parameter after waiting for DIFS (reservation determines amount of time the data packet needs the medium) acknowledgement via CTS after SIFS by receiver (if ready to receive) sender can now send data at once, acknowledgement via ACK other stations store medium reservations distributed via RTS and CTS sender receiver DIFS RTS SIFS CTS SIFS data SIFS ACK other stations NAV (RTS) NAV (CTS) defer access DIFS contention data t 2-40

IEEE 802.11 MAC Operation 2-41

Exponential Backoff Algorithm Select random number of slot times to defer transmission, keep as a state variable After channel has been idle for specified interval, decrement variable after each idle slot passes If carrier is sensed, freeze variable countdown, wait for channel to become idle again and resume countdown 2-42

802.11 - competing stations - simple version station 1 DIFS DIFS bo e bo r DIFS bo e bo r DIFS bo e busy station 2 bo e busy station 3 busy station 4 bo e busy bo e bo r station 5 bo e bo r bo e busy bo e bo r t busy medium not idle (frame, ack etc.) bo e elapsed backoff time packet arrival at MAC bo r residual backoff time 2-43

Exponential Backoff Algorithm No response from RTS or lost ACKs necessitates retransmission Contention window is doubled, until reaching CWmax After successful transmissions Contention window reset to CWmin 2-44

MAC Summary Designing MAC protocols for ad hoc networks is very difficult Issues to consider: Hidden/exposed terminal Collision avoidance Congestion control Fairness Reliability Energy efficiency IEEE 802.11 DCF (RTS/CTS/DATA/ACK) widely used, but many other protocols are proposed 2-45

What you should know (1) Wireless Mac issues Half Duplex operation, Time Varying Channel, Burst Errors Performance parameters for MAC Hidden Nodes Exposed Nodes Captured Nodes MACA Mac Protocol RTS-CTS Mechanisms Limitations of RTS-CTS mechanisms 2-46

What you should know (2) Functions and operation of the MAC layer Minimum frame exchange protocol RTS-CTS extension Frame formats Basic types and formats Role of address fields Operation of access mechanisms Operation of basic access mechanism Role of timing intervals Operation of DCF, DCF with RTS-CTS and PCF 2-47