What Does My Bone Marrow Do?

Similar documents
BLOOD-Chp. Chp.. 6 What are the functions of blood? What is the composition of blood? 3 major types of plasma proteins

KEY CHAPTER 14: BLOOD OBJECTIVES. 1. Describe blood according to its tissue type and major functions.

Blood & Marrow Transplant Glossary. Pediatric Blood and Marrow Transplant Program Patient Guide


Blood. Functions of Blood. Components of Blood. Transporting. Distributing body heat. A type of connective tissue. Formed elements.

Thibodeau: Anatomy and Physiology, 5/e. Chapter 17: Blood

Cardiovascular System. Blood Components

Functions of Blood. Collects O 2 from lungs, nutrients from digestive tract, and waste products from tissues Helps maintain homeostasis

Immune System Memory Game

37 2 Blood and the Lymphatic System Slide 1 of 34

10. T and B cells are types of a. endocrine cells. c. lymphocytes. b. platelets. d. complement cells.

Exercise 9: Blood. Readings: Silverthorn 5 th ed, , ; 6 th ed, ,

The Immune System. 2 Types of Defense Mechanisms. Lines of Defense. Line of Defense. Lines of Defense

Leukemias and Lymphomas: A primer

Acute Myeloid Leukemia

3. The Circulatory System

MANAGING ANEMIA. When You Have Kidney Disease or Kidney Failure.

Bio 20 Chapter 11 Workbook Blood and the Immune System Ms. Nyboer

The Immune System: A Tutorial

ABO-Rh Blood Typing Using Neo/BLOOD

The Circulatory System. Chapter 17 Lesson 1

White Blood Cells (WBCs) or Leukocytes

PERIPHERAL STEM CELL TRANSPLANT INTRODUCTION

Yvette Marie Miller, M.D. Executive Medical Officer American Red Cross October 20, th Annual Great Lakes Cancer Nursing Conference Troy, MI

Blood Transfusion. Red Blood Cells White Blood Cells Platelets

Granulocytes vs. Agranulocytes

Stem Cell Quick Guide: Stem Cell Basics

Blood Transfusion. There are three types of blood cells: Red blood cells. White blood cells. Platelets.

Collect and label sample according to standard protocols. Gently invert tube 8-10 times immediately after draw. DO NOT SHAKE. Do not centrifuge.

whole blood consists of two main elements: the formed elements

Introduction Hemophilia is a rare bleeding disorder in which the blood does not clot normally. About 1 in 10,000 people are born with hemophilia.

Hepatitis C. Laboratory Tests and Hepatitis C

Understanding Myelodysplastic Syndromes: A Patient Handbook

Laboratory 12 Blood Cells

CHAPTER 14: CARDIOVASCULAR SYSTEM: BLOOD. 1. Describe blood according to its tissue type and major functions.

Anemia and chronic kidney disease

UNIT 3 : MAINTAINING DYNAMIC EQUILIBRIUM

Blood, Lymphatic and Immune Systems

Immunity. Humans have three types of immunity innate, adaptive, and passive: Innate Immunity

Introduction. About 10,500 new cases of acute myelogenous leukemia are diagnosed each

Blood Questions. 8. A reduced ability to produce thrombin would cause the time required for blood clot formation to:

Acute myeloid leukemia (AML)

Blood. Blood. Blood Composition. Blood Composition. Fractionation & Hemopoesis

Blood: The Body s Vital Defense Force

Hydroxyurea Treatment for Sickle Cell Disease

CLL. Handheld record. Stockport NHS foundation trust

Essentials of Anatomy and Physiology, 9e (Marieb) Chapter 10 Blood. Short Answer. Figure 10.1

Immuno-Oncology Therapies to Treat Lung Cancer

Please list four delivery functions of blood, two regulatory functions, and two protection functions. Delivery (distribution) functions

Managing Anemia When You Are on Dialysis. Stage 5

Chapter 19 Ci C r i cula l t a i t o i n

One of the more complex systems we re looking at. An immune response (a response to a pathogen) can be of two types:

MEDICATION GUIDE POMALYST (POM-uh-list) (pomalidomide) capsules. What is the most important information I should know about POMALYST?

Chapter 16: Circulation

ANIMALS FORM & FUNCTION BODY DEFENSES NONSPECIFIC DEFENSES PHYSICAL BARRIERS PHAGOCYTES. Animals Form & Function Activity #4 page 1

Page 1. Name: 1) Choose the disease that is most closely related to the given phrase. Questions 10 and 11 refer to the following:

Name (print) Name (signature) Period. (Total 30 points)

Circulatory System Review

Functions of Blood System. Blood Cells

Ground substance is the component of connective tissue between the cells and the fibers

Bone Marrow (Stem Cell) Transplant for Sickle Cell Disease

Name of Child: Date: About Blood Cells

Human Anatomy & Physiology II with Dr. Hubley

12.1: The Function of Circulation page 478

Phlebotomy Handbook Blood Collection Essentials Seventh Edition

Just as a plumbing system carries water through a series of

Supplemental Material CBE Life Sciences Education. Su et al.

Endocrine System: Practice Questions #1

Lymph capillaries, Lymphatic collecting vessels, Valves, Lymph Duct, Lymph node, Vein

Blood vessels. transport blood throughout the body

Young fetus: site of hematopoiesis together with the liver and bone marrow. Hgb WBC > < Plt Hct. Retic =

The Immune System. How your immune system works. Organs of the Immune System

Estimated New Cases of Leukemia, Lymphoma, Myeloma 2014

A.L. Wafa a sameer 2014 Circulatory system / Physiology. Physiology of blood

Bone Marrow or Blood Stem Cell Transplants in Children With Severe Forms of Autoimmune Disorders or Certain Types of Cancer

Bone Marrow or Blood Stem Cell Transplants in Children With Certain Rare Inherited Metabolic Diseases *

STEM CELL TRANSPLANTS

QUESTIONS TO ASK MY DOCTOR

MEDICATION GUIDE. PROCRIT (PRO KRIT) (epoetin alfa)

CHAPTER 2: BLOOD CIRCULATION AND TRANSPORT

ABO-Rh Blood Typing With Synthetic Blood

Red Blood Cell Transfusions for Sickle Cell Disease

UNDERSTANDING MULTIPLE MYELOMA AND YOUR TREATMENT. It is not known if REVLIMID is safe and effective in children under 18 years of age My Moment

INTRODUCTION Thrombophilia deep vein thrombosis DVT pulmonary embolism PE inherited thrombophilia

The Human Immune System

Candy Antigens and Antibodies

Multiple Myeloma. This reference summary will help you understand multiple myeloma and its treatment options.

Name Date Class. This section explains what kinds of organisms cause infectious disease and how infectious diseases are spread.

Albumin. Prothrombin time. Total protein

guides BIOLOGY OF AGING STEM CELLS An introduction to aging science brought to you by the American Federation for Aging Research

X-Plain Chemotherapy for Breast Cancer - Adriamycin, Cytoxan, and Tamoxifen Reference Summary

Stem cells possess 2 main characteristics: Sources of pluripotent stem cells: -Long-term self renewal. -The inner cell mass of the blastocyst.

The Immune System and Disease

Acute myeloid leukaemia (AML) in children

Current Issues in Stem Cell Technologies. Lance D. Trainor, MD OneBlood, Inc.

INTRODUCTION Thrombophilia deep vein thrombosis DVT pulmonary embolism PE inherited thrombophilia

Visual Acuity. Hearing. Height and Weight. Blood Pressure MEASURED VALUE

2) Macrophages function to engulf and present antigen to other immune cells.

Transcription:

What Does My Bone Marrow Do? the myelodysplastic syndromes foundation, inc. Illustrations by Kirk Moldoff Published by The Myelodysplastic Syndromes Foundation, Inc. First Edition, 2009. 2012.

Table of Contents What is Bone Marrow? 4 Stem Cells 4-8 Importance of the Circulatory System 10 Hemoglobin 10 Iron 12 Red Blood Cells 12-14 White Blood Cells 15 Lymphocytes 15 Monocytes 15 Granulocytes 15-16 Neutrophils 16 Eosinophils 16 Basophils 16 Platelets 17 2

How Does MDS Affect My Bone Marrow? 18 Effect on Red Blood Cells - Low Red Cell Count (Anemia) 19 Effect on White Blood Cells - Low White Cell Count (Neutropenia) 20 Effect on Platelets - Low Platelet Count (Thrombocytopenia) 20 What Are the Current Drugs Approved for Treating MDS and How Do They Affect the Bone Marrow? 21 Vidaza (azacitidine) 21 Dacogen (decitabine) 21 How Do These Drugs Work? 22 Revlimid (lenalidomide) 23 Growth Factors 23 For More Information on MDS 24 3

What is Bone Marrow? Bone marrow is a nutrient-rich spongy tissue located mainly in the hollow portions of marrow: red marrow and yellow marrow. Yellow marrow has a much higher amount of fat cells than red marrow. Both types of marrow contain blood vessels. Stem Cells The bone marrow works like a factory that produces all of the cells that are found in the bone marrow and in the peripheral blood stream. This factory is dependent on the function of the pluripotent stem cells. Pluripotent refers to the ability of a cell to become many different types of cells. Did You Know? At birth, all bone marrow is is red. red. As As we we age, more and more of of the the marrow converts converts to to yellow bone bone marrow. marrow. In In adults, adults, about about half half of of the bone marrow is red and half is yellow. the bone marrow is red and half is yellow Pluripotential is derived from the Latin pluri meaning more and potential meaning power. 4

Long Bone Red Marrow Compact Bone Spongy Bone

The bone marrow has two types of stem cells, mesenchymal and hematopoietic. This process of development of different blood cells from these pluripotent stem cells is known as hematopoiesis. Pluripotent hematopoietic cells can become any type of cell in the blood system. Under the influence of tissue and hormonal factors these cells develop into specific blood cell lines. When these cells differentiate or mature they become the cells that we can recognize in the blood stream. Mesenchymal is embryonic tissue from which the connective tissue, blood vessels and lymphatic vessels are formed. Hematopoietic is the formation and development of blood cells in the bone marrow. 6

These include the erythroid or red blood cells (RBCs). RBCs are responsible for carrying oxygen from the lungs to all parts of the body. White blood cells (WBCs) include lymphocytes, the cornerstone of the immune system and myeloid cells which include granulocytes: neutrophils, monocytes, eosinophils, and basophils. WBCs involved in a variety of immune processes. Platelets are fragments of the cytoplasm of megakaryocytes, another bone marrow cell. Did You Know? Platelet cells (platelets) control bleeding by forming blood clots when your body is injured. Blood clot 8

Pluripotent Stem Cell Myeloid Stem Cell Monocyte Erythrocyte Lymphoid Stem Cell Basophil Eosinophil Neutrophil Lymphocyte Platelets

The majority of RBCs, platelets, and most of the WBCs are formed in the red marrow while only a few of them are formed in the yellow marrow. Everyone needs a continuous production cycle of blood cells from our bone marrow throughout our lives since each blood cell has a set life expectancy. Healthy bone marrow produces as many cells as your body needs. Red cell production is increased when the body needs additional oxygen, platelets increase when bleeding occurs, and white cells increase when infection threatens. Importance of the Circulatory System The circulatory system touches every organ and circulation to transport oxygen. Every cell needs access to the circulatory system in order to function since oxygen is essential for proper cell function. Did You Know? Red blood cells live an average of 120 days and platelets live 8 10 days. Some white blood cells are very short lived and live only hours, while others can live for many years. Hemoglobin Hemoglobin (Hgb) is a protein that is found within red blood cells. This protein is what makes red cells red. Hemoglobin s job is to pick up oxygen in the lungs, carry it in the RBCs, and then release oxygen to the tissues that need it like the heart, muscles, and brain. Hemoglobin also removes CO 2 or carbon dioxide and carries this waste product back to the lungs where it is exhaled. 10

Iron Iron is an important nutrient in the body. It combines with protein to make the hemoglobin in red blood cells and is essential in the production of red blood cells (erythropoiesis). The body stores iron in the liver, spleen, and bone marrow. The storage form of iron is known as ferritin and ferritin can be measured through a blood test. Most of the iron needed each day for making hemoglobin comes from the recycling of old red blood cells. Red Blood Cells The production of red blood cells is Did You Know? called erythropoiesis. It takes about The body has no active way to 7 days for a committed stem cell excrete unwanted iron, so little iron to mature into a fully functional red is lost from the body naturally. blood cell. Red blood cells have a limited life span of approximately 120 days and must be continuously replaced by the body. Erythropoiesis is stimulated by a lack of oxygen (hypoxia) in the body. This lack of oxygen tells the kidneys to produce a hormone, erythropoietin (EPO). EPO then stimulates the bone marrow to produce RBCs. Erythropoietin does this by entering the blood stream and traveling throughout the body. All the body s cells are exposed to erythropoietin, but only red bone marrow cells respond to this hormone. As these new red cells are produced they move into the blood stream and increase the oxygen-carrying ability of the blood. When the tissues of the body sense that oxygen levels are enough, they tell the kidneys to slow 12

Red Blood Cell Hemoglobin Oxygen

the secretion of erythropoietin. This feedback within your body ensures that the number of RBCs remains fairly constant and that enough oxygen is always available to meet the needs of your body. As RBCs age, they become less active and become more fragile. The aging red cells are removed or eaten up by white blood cells (Macrophages) in a process known as phagocytosis and the contents of these cells are released into the blood. The iron from the hemoglobin of the destroyed cells is carried by the blood stream to either the bone marrow for production of new RBCs or to the liver or other tissues for storage. Normally, a little less than 1% of the body s total RBCs are replaced every day. The number of red blood cells produced each day, in the healthy person, is about 200 billion cells. Macrophage is derived from the Ancient Greek: macro meaning big and phage meaning eat. 14

White Blood Cells The bone marrow produces many types of white blood cells, which are necessary for main types of white blood cell, or leukocytes: Lymphocytes Lymphocytes are produced in bone marrow. They make natural antibodies mouth, or cuts. They do this by recognizing foreign substances that enter the body and then sending a signal to other cells to attack those substances. The number of lymphocytes increases in response to these invasions. There are two major types; B- and T-lymphocytes. Monocytes Monocytes are also produced in the bone marrow. Mature monocytes have a life expectancy in the blood of only 3-8 hours, but when they move into the tissues, they mature into larger cells called macrophages. Macrophages can survive in the tissues for long periods of time where they engulf and destroy bacteria, some fungi, dead cells, and other material foreign to the body. Granulocytes Granulocyte is the family or collective name given to three types of white blood cells: neutrophils, eosinophils and basophils. The development of a granulocyte 15

may take two weeks, but this time is shortened when there is an increased threat like a bacterial infection. The marrow also stores a large reserve of mature granulocytes. For every granulocyte circulating within the blood, there may be 50 to 100 cells waiting in the marrow to be released into the blood stream. As a result, half the granulocytes in the recognizing that an infection exists! Once a granulocyte has left the blood it does not return. but it only survives for a few hours in the circulation. Neutrophils Neutrophils are the most common granulocyte. They can attack and destroy bacteria and viruses. Eosinophils infections and against the larvae of parasitic worms and other organisms. They are also involved in some allergic reactions. Basophils Basophils are the least common of the white blood cells and respond to various allergens that cause the release of histamines and other substances. an effort to dilute the irritant. This reaction is seen in hay fever, some forms of asthma, hives, and in its most serious form, anaphylactic shock. 16

Platelets Platelets are produced in bone marrow by a process known as thrombopoiesis. Platelets are critical to blood coagulation and the formation of clots to stop bleeding. Sudden blood loss triggers platelet activity at the site of an injury or wound. Here the platelets clump together and combine with other. Blood may not clot well at an open wound, and there may be a greater risk for internal bleeding if the platelet count is very low. Did You Know? Healthy bone marrow normally manufactures between 150,000 and 450,000 platelets per microllter of blood, an amount of blood that fits on the head of a pin. 17

How Does MDS Affect My Bone Marrow? In people with Myelodysplastic Syndromes (MDS) the bone marrow cannot produce enough healthy blood cells. It may affect only one of the cell lines or it may affect all three cell lines produced in the bone marrow. RBCs, WBCs, and platelets may not mature and all or some of them may not be released into the blood stream but accumulate in the bone marrow. These cells may have a shortened life span, resulting in fewer than normal mature blood cells in circulation. The cells may actually die in the bone marrow before they mature. This results in a higher than normal number of immature cells or blasts in the bone marrow and fewer than normal mature blood cells in the circulation. Low blood cell counts in any of these three cell lines (red cells, white cells, or platelets) are the hallmark feature of MDS. Low blood counts are responsible for some of the problems that MDS patients experience such as infection, anemia, easy bruising, or an increased chance of bleeding. In addition to the lower number of blood cells in the circulation, the cells may be myelodysplasia simply means that the mature blood cells found in the bone marrow or circulating in the blood look funny. Dysplastic cells cannot function properly. In addition to the dysplasia, 50% of patients have an increase in very immature cells called blasts. 18

Effect on Red Blood Cells Low Red Cell Count (Anemia) The bone marrow normally produces mature red blood cells and the hemoglobin in these cells carry oxygen to the tissues in your body. The percentage of red blood cells in the total blood volume is called the hematocrit. In healthy women the hematocrit is 36% to 46% while in healthy men the hematocrit is 40% to 52%. When the hematocrit falls, mature red blood cells to effectively supply oxygen to all tissues of the body. This condition of belownormal numbers of red blood cells, low hemoglobin levels and low oxygen is called anemia, which can be relatively mild (hematocrit of 30% to 35%), moderate (25% to oxygen by dysplastic (mature but misshapen) red blood cells. Healthy, mature red blood cells Abnormal ( dysplastic ) red blood cells 19

Effect on White Blood Cells Low White Cell Count (Neutropenia) The bone marrow normally makes between 4,000 and 10,000 white blood cells per microliter of blood; in African-Americans the range is lower, between 3,200 and 9,000 white cells per microliter. Some MDS patients develop neutropenia or a low white cell count. MDS patients with neutropenia usually have too few neutrophils. With fewer numbers of neutrophils, the risk of contracting bacterial infections such as pneumonia and urinary tract infections increases. Fever may accompany these infections. Sometimes infections occur despite adequate numbers of neutrophils because the WBCs are not able to function as well as they do in a person without MDS. Effect on Platelets Low Platelet Cell Count (Thrombocytopenia) MDS can also cause a low platelet count, or thrombocytopenia. People with abnormal or low platelet counts may suffer from bruising or bleeding even after minor bumps, scrapes, or cuts. 20,000 and is associated with more serious bleeding problems. 20

What Are the Current Drugs Approved for Treating MDS and How Do They Affect the Bone Marrow? At the present, three drugs have been approved by the U.S. Food & Drug Administration (FDA) for the treatment of MDS: Vidaza (azacitidine), Dacogen (decitabine), and Revlimid (lenolidamide). Vidaza has been approved for authorized use as a prescription medicine by the European drug regulatory agency (European Agency for the Evaluation of Medicinal Products, or EMEA). The other two drugs are still under review in Europe but may programs. Vidaza (azacitidine) to treat MDS. Vidaza may be appropriate for any MDS subtype. It is administered by subcutaneous (under the skin) injection or intravenously (into the vein). In Europe it is only approved for subcutaneous injections. choked with weeds. You have to kill the weeds Dacogen (decitabine) Dacogen is approved in the U.S. for use in all MDS subtypes. Dacogen is administered intravenously. 21

How Do These Drugs Work? Both Vidaza and Dacogen work by preventing a cellular process called methylation that silences the genes involved in controlling the development of cancer. In MDS, the genes have excessive methylation (Fig. 1) and these drugs may be able to alter the Unmethylated methylation pattern DNA(Fig. 2) so the MDS cells cannot continue to grow. The stem cells in the bone marrow begin to function normally and to make healthier, functioning RBCs, WBCs, and platelets. Initially, treatment with Vidaza or Dacogen often causes a further decrease in the white blood cell and platelet count; however, by the 4 th or 5 th cycle of treatment this effect should begin to reverse itself and the levels of platelets and white blood cells increase. Low WBCs and/or platelets can be managed with platelet transfusions and medications to boost counts or help prevent infection. In some cases patients may be taken off the medication for a period of time, allowing their blood counts to recover. Treatment may be restarted at a reduced dose. AT C G C TA G C T G C G C G AT T G ACGGTCGTCGC C C G C AT A C T G C C A G C A G C G G G C G G A T G A C G G T C G T CGCC C G C AT TA G C G AT C G A C G C G C TA A C T GCCAGCAGCG G G C G TA Figure 1 Figure 2 Fully Methylated DNA AT C G C TA G C T G C G C G AT T G ACGGTCGTCGC C C G C AT A C T G C C A G C A G C G G G C G TA Unmethylated DNA AT C G C TA G C T G C G C G AT T G ACGGTCGTCGC C C G C AT A C T G C C A G C A G C G G G C G G A T G A C G G T C G T CGCC C G C AT TA G C G AT C G A C G C G C TA A C T GCCAGCAGCG G G C G TA T G A C G G T C G T CGCC C G C AT TA G C G AT C G A C G C G C TA A C T GCCAGCAGCG G G C G TA 22 Fully Methylated DNA A C AT

Revlimid (lenalidomide) Revlimid is approved in the United States for MDS patients who Two Structures TGTTCTTCG G GCCTATCAACA ATTTCGTACAG GGGGTCCCAGT CCGGGATTT T TCGGCTGTT TCGGGCCTA T AAATTTCGT A AGGGGGTCC with the Same Genetics need red blood cell transfusions and have a special chromosome abnormality, called 5q minus (5q-). Revlimid is taken orally and is available in capsule form. Revlimid works by stimulating the immune system and it also inhibits new blood vessel growth (anti-angiogenesis). Starting treatment with Revlimid may be associated with the treatment is usually stopped so that the blood counts can increase. When the blood counts are at a safe level, the treatment is restarted, but usually with a lower dosage of the drug. Normally, the blood counts do not decrease with the reduced dose. Growth Factors In addition, it is common practice to administer an erythroid stimulating agent (ESA) for low risk MDS patients with a low endogenous (produced within the patient s body) erythropoietin level (<500) and a minimal transfusion burden. On occasion, another 23

For More Information on MDS, Referral to a Center of Excellence, or for a Second Opinion Contact: US Patient Liaison The MDS Foundation, Inc. 4573 South Broad St. Suite 150 Yardville, NJ 08620 Tel: 800-MDS-0839 (within US only) 609-298-1035 (outside US) Fax: 609-298-0590 patientliaison@mds-foundation.org Website: www.mds-foundation.org 24

Supported by Funding from: