Not just Python, but the scientific stack as well: https://www.continuum.io/downloads



Similar documents
Introduction to Python for Econometrics, Statistics and Data Analysis. Kevin Sheppard University of Oxford

ANACONDA. Open Source Modern Analytics Platform Powered by Python ANACONDA DELIVERS OPEN ENTERPRISE PYTHON KEY FEATURES WHY YOU LL LOVE ANACONDA

Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) Final Report

Unlocking the True Value of Hadoop with Open Data Science

Big Data Paradigms in Python

CME 193: Introduction to Scientific Python Lecture 8: Unit testing, more modules, wrap up

building software with ease

Exercise 0. Although Python(x,y) comes already with a great variety of scientic Python packages, we might have to install additional dependencies:

SUNPY: PYTHON FOR SOLAR PHYSICS. AN IMPLEMENTATION FOR LOCAL CORRELATION TRACKING

Session 85 IF, Predictive Analytics for Actuaries: Free Tools for Life and Health Care Analytics--R and Python: A New Paradigm!

Scientific Visualization

AuShadha Documentation

Koalix ERP. Release 0.2

Python and Google App Engine

Postprocessing with Python

CRASH COURSE PYTHON. Het begint met een idee

Scientific Programming, Analysis, and Visualization with Python. Mteor 227 Fall 2015

GR.jl Plotting for Julia based on GR

Scientific Programming in Python

Data Mining with Python (Working draft)

Theorist HT Induc0on Course Lesson 1: Se6ng up your new computer (Mac OS X >= 10.6) As of 9/27/2012

DATA SCIENCE CURRICULUM WEEK 1 ONLINE PRE-WORK INSTALLING PACKAGES COMMAND LINE CODE EDITOR PYTHON STATISTICS PROJECT O5 PROJECT O3 PROJECT O2

Introduction Our choice Example Problem Final slide :-) Python + FEM. Introduction to SFE. Robert Cimrman

A Conceptual Map of Open Source Software for Image Processing

depl Documentation Release depl contributors

Microsoft Research Windows Azure for Research Training

An introduction to Python Programming for Research

Survey of Unit-Testing Frameworks. by John Szakmeister and Tim Woods

Tutorial: Packaging your server build

Microsoft Research Microsoft Azure for Research Training

Data Analytics at NERSC. Joaquin Correa NERSC Data and Analytics Services

An Introduction to Using Python with Microsoft Azure

Availability of the Program A free version is available of each (see individual programs for links).

Detailed installation process for each library is described below.

Introduction to Python

GUI application set up using QT designer. Sana Siddique. Team 5

OpenCobolIDE Documentation

Prepared for: How to Become Cloud Backup Provider

Testing Python. Applying Unit Testing, TDD, BDD and Acceptance Testing

AN INTRODUCTION TO BACKTESTING WITH PYTHON AND PANDAS

Data-Intensive Applications on HPC Using Hadoop, Spark and RADICAL-Cybertools

Python for Data Analysis and Visualiza4on. Fang (Cherry) Liu, Ph.D PACE Gatech July 2013

socketio Documentation

An Android based Quantum GIS prototype. Ramon Carrillo, Daniel Ochoa

Python Documentation & Startup


Getting more out of Matplotlib with GR

Main Bullet #1 Main Bullet #2 Main Bullet #3

Intro to scientific programming (with Python) Pietro Berkes, Brandeis University

Data Management So,ware Stack Intro

Rapid GUI Application Development with Python

GTk+ and GTkGLExt Build Process for Windows 32- bit

Introduction to Python

Mastering pandas. Mastering pandas. Mastering pandas. Femi Anthony. Master the features and capabilities of pandas, a data analysis toolkit for Python

R YOU READY FOR PYTHON? Sunday 19th April, 2015

Flash and Python. Dynamic Object oriented Rapid development. Flash and Python. Dave Thompson

cloud-kepler Documentation

TAACO Quick Start Guide: Windows 7 Kristopher Kyle and Scott Crossley

Writing robust scientific code with testing (and Python) Pietro Berkes, Enthought UK

Python programming Testing

HOSTING PYTHON WEB APPLICATIONS. Graham Dumpleton PyCon Australia Sydney 2011

Introduction Installation Comparison. Department of Computer Science, Yazd University. SageMath. A.Rahiminasab. October9, / 17

Analytic Modeling in Python

B&K Precision 1785B, 1786B, 1787B, 1788 Power supply Python Library

Release: August Gluster Filesystem Unified File and Object Storage Beta 2

Journal of Statistical Software

An Introduction to Open Source Geospatial Tools

CSE 6040 Computing for Data Analytics: Methods and Tools. Lecture 1 Course Overview

Simple big data, in Python. Gaël Varoquaux

Satchmo Documentation

Performance Monitoring using Pecos Release 0.1

Python programming guide for Earth Scientists. Maarten J. Waterloo and Vincent E.A. Post

Chemical and Biological Engineering Calculations using Python 3. Jeffrey J. Heys

Django Two-Factor Authentication Documentation

Machine Learning in Python with scikit-learn. O Reilly Webcast Aug. 2014

Problems and Measures Regarding Waste 1 Management and 3R Era of public health improvement Situation subsequent to the Meiji Restoration

i5k_doc Documentation

pylinac Documentation

Python for Scientific Computing.

Parallel Visualization of Petascale Simulation Results from GROMACS, NAMD and CP2K on IBM Blue Gene/P using VisIt Visualization Toolkit

CS Matters in Maryland CS Principles Course

Programming with the Dev C++ IDE

MACHINE LEARNING IN HIGH ENERGY PHYSICS

Joshua G. Mausolf Curriculum Vitae 2015

Transcription:

Not just Python, but the scientific stack as well: https://www.continuum.io/downloads Anaconda is better than other Python Distributions because of its package manager conda.* * Python s own package manager pip requires compilation.

The differences between 2 and 3 are small. Python 3 has many exciting new features. Python 2 is maintained for legacy applications only. No new features are backported. Some libraries have not been updated for seven years, and thus do not support Python 3.

New projects should use Python*. * The most current version of Python But there is legacy Python that still supports your seven year old application if you need it.

PyCharm Community Edition (free) Full IDE: Refactoring Projects Navigation Debugging

Spyder Comes with Anaconda Open Source Matlab-Like: Interactive Console Data Views Debugging

Atom & IPython Text Editor and Command Line Choose your own text editor Choose IPython as a great command line

pip install <package> installs packages.

pip install <package> installs packages. But there is a problem If the package includes C code, pip needs a compiler. And compilers are a BIG BAG OF PAIN.

pip install <package> conda install <package> installs packages. binaries. pythons. languages. but only if it s one of these*: abstract-rendering affine alabaster ansi2html appscript argcomplete astroid astropy azure babel basemap bcolz beautiful-soup binstar binstar-build biopython bitarray blaze blaze blist blockspring blz bokeh boost boto bottleneck bsdiff4 btrees certifi cffi chameleon chest chrpath click cligj cloudpickle clyent cmake colorama conda conda-api conda-build con configobj coverage cryptography cssselect csvkit cubes curl cvxopt cymem cython cytoolz dask datashape datrie dbf decorator dill django docopt docutils dynd-python ecdsa ephe execnet fastcache feedparser fiona flake8 flask flask-login flask-wtf fontconfig freeglut freetype future futures gdal gensim geos greenlet gunicorn h5py hdf5 heapdict holoviews h icu idna iopro ipython itsdangerous jdcal jedi jinja2 joblib jpeg jsonschema lancet-ioam launcher ldap3 libconda libdynd libffi libgdal libnetcdf libpng libsodium libtiff libxml2 libxslt line_profiler llvmlite locket lockfile logilab-common lxml markdown markdown2 markupsafe mathjax matplotlib mccabe mdp meld3 menuinst mingw mistune mock mpmath msg python multimethods multipledispatch murmurhash mysql-connector-python nano natsort ncurses netcdf4 networkx nltk node-webkit nose numba numexpr numpy numpydoc o openpyxl openssl pandas param paramiko partd passlib pastedeploy patchelf patsy pep8 persistent pexpect pillow pip plac ply preshed psutil psycopg2 ptyprocess py pyasn1 pyco pycparser pycrypto pycurl pyflakes pygments pylint pymc pymongo pymysql pyodbc pyopengl pyopengl-accelerate pyopenssl pyparsing pyqt pyramid pyreadline pyserial pysnmp pytables pytest pytest-cache pytest-pep8 python python-dateutil pytz pywget pywin32 pyyaml pyzmq qt quandl queuelib rasterio readline redis redis-py reportlab requests rope sas7bdat scikit-bio scikit-image scikit-learn scipy seaborn semantic_version setuptools sh shapely sip six snowballstemmer snuggs sockjs-tornado spacy sphinx sphinx_rtd_theme s sqlalchemy sqlite sqlparse statsmodels stripe sympy terminado theano thinc tk toolz tornado translationstring twisted ujson unidecode unixodbc unxutils util-linux venusian virtua * it s not that big a deal in practice

conda install <package> installs most packages. pip install <package> installs all other packages. On Windows, if you re desperate, there s also www.lfd.uci.edu/~gohlke/pythonlibs/

For Python: https://www.python.org/ For Numpy/Scipy: https://scipy.org/ For Matplotlib: http://matplotlib.org/ you get the idea. Every package has its own website.

The Python Tutorial https://docs.python.org/3/tutorial/ Dive Into Python 3 http://www.diveintopython3.net/ A Byte of Python (Python 2*) http://www.swaroopch.com/notes/python/ * the differences between 2 and 3 are small