The value of Modified Early Warning Score (MEWS) in surgical in-patients: a prospective observational study



Similar documents
Retrospective review of the Modified Early Warning Score in critically ill surgical inpatients at a Canadian Hospital

Validation of a Modified Early Warning Score (MEWS) in emergency department observation ward patients

Early Warning Scores (EWS) Clinical Sessions 2011 By Bhavin Doshi

A National Early Warning Score for the NHS

Ruchika D. Husa, MD, MS Assistant t Professor of Medicine in the Division of Cardiology The Ohio State University Wexner Medical Center

Poor performance of the modified early warning score for predicting mortality in critically ill patients presenting to an emergency department

Adoption of the National Early Warning Score: a survey of hospital trusts in England, Northern Ireland and Wales

Summary of EWS Policy for NHSP Staff

Document Details Title. Early Warning Score Protocol for Community Hospitals and Prisons to detect the Deteriorating Patient

Rapid Response Teams and Early Warning Scores. Dawn Edwards

Acute care toolkit 2

Trust Guideline for the use of the Modified Early Obstetric Warning Score (MEOWS) in detecting the seriously ill and deteriorating woman.

The Newcastle upon Tyne Hospitals NHS Foundation Trust. National Early Warning Score (NEWS) Policy

Intro Who should read this document 2 Key Messages 2 Background 2

Value of Modified Early Warning Score Among Critically Ill Patients

Anaesthetics, Pain Relief & Critical Care Services Follow-Up Study REGIONAL REPORT. Performance Review Unit

Quality and Safety Programme Fractured neck of femur services

Unless this copy has been taken directly from the Trust intranet site (Pandora) there is no assurance that this is the most up to date version

CROSS HEALTH CARE BOUNDARIES MATERNITY CLINICAL GUIDELINE

National Early Warning Score. National Clinical Guideline No. 1

Evaluation of the threshold value for the Early Warning Score on general wards

SE5h, Sepsis Education.pdf. Surviving Sepsis

Early Warning Systems

Results of streamlined regional ambulance transport and subsequent treatment of acute abdominal aortic aneurysm

National Early Warning Score

Acutely ill patients in hospital. Recognition of and response to acute illness in adults in hospital

Sepsis: Identification and Treatment

The Sepsis Puzzle: Identification, Monitoring and Early Goal Directed Therapy

Guide to Abdominal or Gastroenterological Surgery Claims

Effective Approaches in Urgent and Emergency Care. Priorities within Acute Hospitals

National Clinical Programmes

Board of Directors. 28 January 2015

Teena Robinson NZRN, MN,FCNA (NZ) NP Nurse Practitioner: adult elective perioperative

Case Study: Using Predictive Analytics to Reduce Sepsis Mortality

Solution Title: Predicting Care Using Informatics/MEWS (Modified Early Warning System)

Clinical Governance Development Committee October 2007 Dr Foster RTM Alerts Progress Report

Specialised Services. National Network for Burn Care (NNBC) National Burn Care Referral Guidance

RGN JOY LAUDE WATFORD GENERAL HOSPITAL, ENGLAND

Application of Engineering Principles to Patient Flow & Healthcare Delivery

Acutely ill patients in hospital

Data Management, Audit and Outcomes of the NHS

Certificate of Equivalence of Core Surgical Training

THE ROYAL CORNWALL HOSPITALS NHS TRUST RESPONSE TO INFORMATION REQUEST. Date Request Received: 20 October 2014 FOI Ref: 567

The Good NEWS for Wales. Implementation by NHS Wales of the National Early Warning Score (NEWS)

adult services between 1 January and 31 December 2013 had an operation where the

National Clinical Programme in Surgery (NCPS) Care Pathway for the Management of Day Case Laparoscopic Cholecystectomy

The Brighton Paediatric Early Warning Score. Alan Monaghan Lecturer Practitioner Brighton and Sussex University Hospitals NHS Trust

Community health care services Alternatives to acute admission & Facilitated discharge options. Directory

Acute abdominal conditions Key Points

This document contains four General Surgery placement descriptions:

The use of text messaging to improve asthma control: a pilot study using the mobile phone short messaging service (SMS)

Quality Improvement Project Enhanced Recovery and Rehabilitation for Fracture Neck of Femur

The Initial and 24 h (After the Patient Rehabilitation) Deficit of Arterial Blood Gases as Predictors of Patients Outcome

What is it? Why do I need it? Key features. Main benefits. REAL Support. Peace of mind cancer care:

Investigation into the death of Mr George Joseph, a prisoner at HMP Belmarsh, in April 2015

Early Warning Score - An Evaluation of the Network Marketing Case Study

Paediatric Early Warning Scoring Policy

Service Specification Template Department of Health, updated June 2015

WITHDRAWAL OF LIFE SUPPORT BACKGROUND

Criteria Led Discharge

Colonoscopy Data Collection Form

Value of triage early warning score for trauma patients in an emergency department

Guide to Claims against General Practitioners (GPs)

Paediatric Advanced Warning Score (PAWS)

There are many different types of cancer and sometimes cancer is diagnosed when in fact you are not suffering from the disease at all.

PREPARING FOR YOUR STOMA REVERSAL

This document contains three General Surgery placement descriptions:

Integrated Performance Report

Colocutaneous Fistula. Disclosures

NSQHS Standard 1 Governance

Access to over 53,000 of the world s leading medical experts, from your first day of cover.

CEM Clinical Audits 2013

Emergency Department Short Stay Units

3M Health Information Systems. Potentially Preventable Readmissions Classification System. Methodology Overview GRP /08

Critical care outreach services and early warning scoring systems: a review of the literature

TIME TO ACT Severe sepsis: rapid diagnosis and treatment saves lives

The ovaries are part of a woman s reproductive system. There are two ovaries, the size and shape of almonds, one on either side of the womb.

Measuring quality along care pathways

Decreasing Sepsis Mortality at the University of Colorado Hospital

Surgical and Ambulatory Service Orthopaedic RMO Staffing Increase and Roster Impact

Policy & Procedure Manual Administration - Role and Expectations of the Most Responsible Physician (MRP)

!!!!!!!!!!!! Liaison Psychiatry Services - Guidance

Mar. 31, 2011 (202) Improving Quality of Care for Medicare Patients: Accountable Care Organizations

AMERICAN BURN ASSOCIATION BURN CENTER VERIFICATION REVIEW PROGRAM Verificatoin Criterea EFFECTIVE JANUARY 1, Criterion. Level (1 or 2) Number

Physician and other health professional services

Patient Electronic Alert to Key-worker System (PEAKS) Guidelines

Pain Management in the Critically ill Patient

How To Prepare A Meeting For A Health Care Conference

Supplemental Technical Information

Hip replacements: Getting it right first time

AA Life Insurance providing access to Best Doctors. AA Life Insurance is provided by Friends Life and Pensions Limited

Session Number 312 FAILURE TO RESCUE: BE PROACTIVE NOT REACTIVE

Day to day medical care of patients on the in-patient unit and day hospice. Advice and support to Trinity Clinical Nurse Specialists as needed

Your Guide to Express Critical Illness Insurance Definitions

CARDIOLOGY ROTATION GOALS AND OBJECTIVES

AA Life Insurance providing access to Best Doctors. AA Life Insurance is provided by Friends Life Limited

Specific Standards of Accreditation for Residency Programs in Orthopedic Surgery

Implementation of a high volume, complex clinical pathway for cardiothoracic surgery patients in the intensive care unit.

Transcription:

The Royal College of Surgeons of England GENERAL SURGERY doi 10.1308/003588406X130615 The value of Modified Early Warning Score (MEWS) in surgical in-patients: a prospective observational study J GARDNER-THORPE 1, N LOVE 2, J WRIGHTSON 2, S WALSH 1, N KEELING 2 1 Department of Surgery, Addenbrooke s Hospital, Cambridge, UK 2 Department of Surgery, West Suffolk Hospital, Bury St Edmunds, UK ABSTRACT INTRODUCTION The Modified Early Warning Score (MEWS) is a simple, physiological score that may allow improvement in the quality and safety of management provided to surgical ward patients. The primary purpose is to prevent delay in intervention or transfer of critically ill patients. PATIENTS AND METHODS A total of 334 consecutive ward patients were prospectively studied. MEWS were recorded on all patients and the primary end-point was transfer to ITU or HDU. RESULTS Fifty-seven (17%) ward patients triggered the call-out algorithm by scoring four or more on MEWS. Emergency patients were more likely to trigger the system than elective patients. Sixteen (5% of the total) patients were admitted to the ITU or HDU. MEWS with a threshold of four or more was 75% sensitive and 83% specific for patients who required transfer to ITU or HDU. CONCLUSIONS The MEWS in association with a call-out algorithm is a useful and appropriate risk-management tool that should be implemented for all surgical in-patients. KEYWORDS Modified Early Warning Score MEWS Surgical in-patients Management CORRESPONDENCE TO Mr J Gardner-Thorpe, Department of Surgery, Addenbrooke s Hospital, Hills Road, Cambridge CB2 2QQ, UK T: +44 (0)1223 245151; F: +44 (0)1223 586553; E: jamesgt@doctors.org.uk In 1999, the Audit Commission reported that the effectiveness of critical care services varied between hospitals and recommended the development of early warning systems (EWSs) to help ward staff identify when to call for specialist advice. 1 In 1999, Stenhouse et al. 2 proposed a modification of Morgan s Early Warning Score. 3 This Modified Early Warning Score (MEWS) was evaluated in 206 surgical patients over 9 months. The score was used selectively but there was some evidence that its use may result in earlier admission to intensive care. The components, which are recorded every time a set of observations are made, are aggregated to yield the score (Table 1). The purpose of the MEWS is to facilitate prompt communication between nursing and medical staff when deterioration in a ward patient s condition first becomes apparent on the observations chart. The authors intended this system to result in earlier intervention on the ward so that transfer to a critical care facility is either prevented or occurs without unnecessary delay. The feasibility of introducing the MEWS into an acute surgical service has been demonstrated in Lanarkshire. Carberry et al. 4 implemented the MEWS in a selected group which amounted to 35% of their patients. All acute admissions, postoperative patients for the first 24 h and any patient causing concern were included. They introduced a clear call-out algorithm so that the house officer or SHO was called out to review any patient scoring four or more. This study retrospectively demonstrated that of 332 audited patients, 14 (4%) were admitted to ITU and HDU. Eleven (79%) of these had been monitored using the MEWS prior to admission but three (21%) had not had their MEWS recorded. The MEWS has been implemented for surgical patients at the West Suffolk Hospital. The MEWS is recorded on the observation chart every time a set of observations is made for all patients. The call-out algorithm is shown in Figure 1. We believe that the MEWS should be used routinely on all in-patients. This approach should remove the element of subjectivity in selecting patients and for the first time has allowed us to calculate the sensitivity and specificity of the MEWS for its purpose. 571

Table 1 Modified Early Warning Score Score 3 2 1 0 1 2 3 Respiratory rate (min 1 ) 8 9 14 15 20 21 29 > 29 Heart rate (min 1 ) 40 41 50 51 100 101 110 111 129 > 129 Systolic BP (mmhg) 70 71 80 81 100 101 199 200 Urine output (ml/kg/h) Nil < 0.5 Temperature ( C) 35 35.1 36 36.1 38 38.1 38.5 38.6 Neurological Alert Reacting to voice Reacting to pain Unresponsive The scores for each parameter are recorded at the time that observations are taken. If the total is 4 or more then the ward doctor is informed. Patients and Methods Patients A total of 334 consecutive emergency and elective patients were admitted under the colorectal team between 16 May and 23 September 2003. Children admitted to the paediatric ward, day cases, and urological emergencies admitted initially under general surgeons but which were handed on to the care of the urologists within 24 h were excluded. Patients subject to DNAR orders were included because knowledge of their physiological state may be valuable with respect to the timing of discussion with their families. 5 analysed using ANOVA. Length of stay and ASA grade were considered as ordinal data. These were analysed for significance using the Mann-Whitney U-test. Gender, Prospective data collection Patient age, gender, ASA, operation, presence of malignancy, and the length of stay were recorded. The primary end-point was admission to a critical care facility (ITU or HDU). Every weekday, the MEWS for each observation time-point was recorded from the observation charts. The component factors that made up the highest MEWS for the 24-h period were recorded. The MEWS was in use clinically on weekends. For the study, these weekend scores were collated on Mondays. In order to provide benchmarks to compare the sensitivity of the MEWS as a predictor of critical care admission, the white cell count and CRP were recorded if these had been measured as part of the patient s management. For the same reason, if any patient had the criteria of systemic inflammatory response syndrome (SIRS), this was documented prospectively. SIRS was defined using the definition of the Society of Critical Care Consensus Conference, 6 which requires two or more of: (i) temperature > 38 C or < 36 C; (ii) heart rate > 90 bpm; (iii) respiratory rate > 20 min 1 or pco 2 < 4.2 kpa; and (iv) white cell count > 12.0 x 10 9 l 1 or < 4.0 x 10 9 l 1. Data analysis and statistics Age and daily patient count were considered as parametric data. These data are presented as mean ±SD and were Figure 1 Call-out algorithm in use on surgical wards. 572

Table 2 Comparison between the group of patients who triggered the call-out algorithm with the group that did not MEWS < 4 MEWS 4 Statistical test Significance Age (years mean ± SD) 57 ± 19.4 66 ± 16.7 ANOVA P < 0.01 Gender ratio (M:F) 140:136 25:33 Chi-square N/S Percentage that were emergency admissions 59% 82% Chi-square P < 0.001 ASA grade (median and range) 2 (1 4) 2 (1 4) Not applicable Not applicable Anastomosis during this admission 7.9% 34.5% Chi-square P < 0.001 Diagnosis of bowel obstruction 5.8% 23.6% Chi-square P < 0.001 Diagnosis of malignancy 12.6% 38.2% Chi-square P < 0.001 Death 0% 7.2% Chi-square P < 0.001 Length of hospital stay (median and range) 3 (1 41) 10 (2 41) Mann-Whitney U-test P < 0.05 N/S, not significant. emergency or elective status, death, diagnosis of obstruction or malignancy, and existence of bowel anastomosis (categorical data) were analysed using the chisquared statistic comparing the actual values to those that would be expected if each variable was evenly distributed between the high and low MEWS groups. Sensitivity for ITU or HDU admission was calculated by number of patients triggering system who were transferred divided by all patients transferred. Specificity was calculated by true negative divided by the total number of patients. Positive predictive value (PPV) was calculated by number transferred divided by the number triggering system. Negative predictive value (NPV) was calculated by true negative divided by the number that did not trigger the system. Results Patients The mean age of the population was 58.6 years (SD ±19.2 years). The male:female ratio was 1:1.02. Of the admissions, 123 (37%) were elective and 211 (63%) were emergency. Trigger of early warning system Fifty-seven (17%) of the 334 consecutive unselected ward patients triggered the call-out algorithm by scoring four or more on the MEWS. Elective patients were less likely to trigger the system than emergency patients. Compared to 22% of emergency patients, 8% of elective patients scored four or more. The group of patients that triggered the MEWS were older, more likely to have a diagnosis of malignancy or bowel obstruction, and to have a bowel anastomosis (see Table 2). This group had a higher mortality and longer hospital stay. Transfer to ITU or HDU Sixteen (5% of the total) patients were admitted to the ITU or HDU. Twelve of these were transferred from theatre immediately after an emergency operation. Three emergency patients had conditions which required supportive care in ITU or HDU but did not require surgery. Only one elective case required critical care. Mortality There were four deaths. Two patients were admitted to ITU immediately after emergency surgery but died after support was withdrawn. The remaining two patients had advanced malignancy and were treated palliatively on the ward. None of these patients were considered to have died as a result of delayed referral to critical care. Validation of the MEWS threshold The value of the MEWS as a test to identify patients requiring transfer from the surgical ward to a critical care facility is shown in Table 3. For purposes of comparison, the sensitivity and specificity of a known abnormal white cell count or CRP > 100 mg/l when the patient s notes would have been reviewed are shown. The effect of using other threshold values is also shown. Using the threshold of four or more, 75% of patients who actually went to critical care had triggered the early warning system. Of those who were reviewed because of the early warning system, 22% were admitted to ITU or HDU for supportive care. This is equivalent to an NNT of 5. As expected, raising the threshold would increase the specificity but also decrease the sensitivity to unacceptable levels. Conversely, lowering the threshold would increase the sensitivity but the PPV would become unacceptably low. Findings of abnormal white cell count or CRP > 100 mg/l on 573

Table 3 Sensitivity and specificity of the MEWS as a predictor of admission to a critical care unit and comparison with the test results apparent on chart review Sensitivity Specificity PPV NPV Abnormal WCC 14/16 (88%) 202/334 (60%) 14/130 (11%) 202/204 (99%) CRP > 100 mg/l 11/16 (69%) 200/334 (60%) 11/103 (11%) 200/231 (87%) Documented SIRS 10/16 (63%) 287/334 (86%) 10/45 (22%) 287/289 (99%) MEWS 3 or more 14/16 (88%) 228/334 (68%) 14/103 (14%) 228/231 (99%) MEWS 4 or more 12/16 (75%) 276/334 (83%) 12/55 (22%) 276/279 (99%) MEWS 5 or more 6/16 (38%) 298/334 (89%) 6/27 (22%) 298/307 (96%) MEWS 6 or more 3/16 (19%) 311/334 (93%) 3/9 (33%) 311/325 (96%) MEWS 7 or more 1/16 (6%) 314/334 (94%) 1/2 (50%) 314/332 (95%) review of the records were not valuable for identifying patients requiring ITU admission. However, the negative predictive value of a normal white cell count was high (99%). The MEWS showed better sensitivity than the presence of SIRS. Four patients were transferred to ITU without triggering the early warning system. The first had necrotising fasciitis and required haemofiltration postoperatively (peak MEWS 0). The second was admitted postoperatively after anterior resection of rectum (peak score 3). The third required splenectomy for bleeding splenic artery aneurysm (peak score 2) and the fourth required a laparotomy for penetrating abdominal trauma (peak score 1). The last two cases were given aggressive fluid resuscitation before any MEWS was recorded and the decision for surgery and postoperative intensive care was easy. Management of critically ill patients on the ward The majority (79%) of patients who triggered the early warning system were managed successfully on the general ward. These patients are summarised in Table 4. Effect of early warning system on junior doctors daily workload The junior doctor team were responsible for an average of 18 (SD ±7.5) ward patients per day. The range was 4 35 patients. On 58 out of the 131 days (44%), there was one or more patient scoring 4 or more on the MEWS. The maximum number of patients on any one day with a MEWS of 4 or more was five. In accordance with the protocol, the nursing staff requested review by junior doctors in all these patients. Discussion It can be difficult to identify ward patients who are in danger of deterioration. According to McQuillan et al., 7 at least 39% of acute emergency patients admitted to the ITU are referred late in the clinical course of the illness. Major causes of suboptimal care prior to transfer from the ward in their study included failure of organisation, lack of knowledge, failure to appreciate clinical urgency, lack of supervision and failure to seek advice. Initially, only the least experienced members of the surgical team may be available to assess these patients. These doctors may be responsible for a large number of in-patients with a corresponding routine workload. The MEWS is intended to improve communication between nursing staff and junior doctors and to flag-up patients who need to be given immediate priority. The call-out algorithm is intended to ensure that appropriate immediate management is started and that the need for critical care expertise should be considered at an early stage. The MEWS is an important part of a risk management strategy that is simple to implement. To our knowledge, there is no published sensitivity or specificity data because in previous studies the MEWS has been applied selectively. This information is important in order to convince junior surgical staff that the MEWS will genuinely help them to prioritise patients and to give them confidence to call for advice when they are dealing with these patients. In this study, the sensitivity of the MEWS used with a threshold score of four was 75% for ITU or HDU admission. The specificity was 83%. As expected, increasing the threshold resulted in increased specificity at the expense of sensitivity. The positive predictive value was 22%. That is, one out of every five patients who triggered the mechanism were in fact transferred from the ward to ITU or HDU. The remaining four out of five patients with deranged physiological observations undoubtedly needed review in order to optimise their management on the ward. When any patient scores a MEWS of four or more, the surgical team should be informed immediately. The responsible junior doctor should immediately review the patient to optimise fluid balance, examine for atrial fibrillation and to reevaluate the definitive management plan. Patients managed on the ward scoring four or more should be discussed during the junior doctor s hand-over. The critical care team should be 574

Table 4 Patients scoring four or more on the MEWS who were managed successfully on the ward Cause for raised Number Diagnosis Benefits of MEWS (%) EWS call-out Surgical disease (prior to 4 Bleeding DU Opportunity for optimisation of fluid definitive treatment) (9.3 %) Appendiceal abscess resuscitation Perianal abscess Recognition of urgency of surgical or Small bowel intussusception endoscopic treatment of the underlying cause Surgical disease (non- 12 Small bowel obstruction Review of non-operative management operative plan established) (28 %) (adhesions; 4 cases) plan Pancreatitis (2 cases) Optimise fluid and antimicrobial Colitis management Retroperitoneal haemorrhage Diverticulitis Peptic ulcer disease Sealed perforation Ischaemic toe Peri-operative complications 4 Fluid balance problems Early recognition and correction of (9.3 %) postoperative fluid overload or dehydration 2 Uncontrolled atrial fibrillation Medical treatment of AF (4.6 %) 12 Postoperative pyrexia/tachycardia Consideration of septic screen, (28 %) emergency chest physiotherapy Non-surgical diagnosis 7 Brain tumour Changes in the vital signs can lead made after admission (16.2 %) Ovarian cancer to early recognition of the true DVT diagnosis (e.g. PUO as presentation Alcohol withdrawal of brain tumour) Gastroenteritis (3 cases) Terminal disease 2 (4.6 %) Advanced malignancy Palliative care for patient and informed discussion with families informed about many of these patients because appropriate care for about one in five is provided on ITU or HDU. Conclusion An early warning system is an important risk management tool that should be implemented for all surgical in-patients. References 1. Audit Commission. Critical to Success: The Place of Efficient and Effective Critical Care Services Within the Acute Hospital. London: Audit Commission, 1999. 2. Stenhouse C, Coates S, Tivey M, Allsop P, Parker T. Prospective evaluation of a modified Early Warning Score to aid earlier detection of patients developing critical illness on a general surgical ward [Abstract]. Br J Anaesth 1999; 84: 663P. 3. Morgan RJM, Williams F, Wright MM. An early warning scoring system for detecting developing critical illness. Clin Intensive Care 1997; 8 : 100. 4. Carberry M. Implementing the modified early warning system: our experiences. Nurs Crit Care 2002; 7 : 220 6. 5. Subbe CP, Kruger M, Rutherford P, Gemmel L. Validation of a modified Early Warning Score in medical admissions. Q J Med 2001; 94: 507 10. 6. American College of Chest Physicians Society of Critical Care Medicine Consensus Conference. Definitions of sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 1992; 20: 864 75. 7. McQuillan P, Pilkington S, Allan A, Taylor B, Short A, Morgan G et al. Confidential inquiry into quality of care before admission to intensive care. BMJ 1998; 316: 1853 8. 575