Dynamic and Adaptive Organization of Data-Collection Infrastructures in Sustainable Wireless Sensor Networks



Similar documents
QUALITY OF SERVICE METRICS FOR DATA TRANSMISSION IN MESH TOPOLOGIES

Coverage Related Issues in Networks

Routing and Transport in Wireless Sensor Networks

Load Balancing in Periodic Wireless Sensor Networks for Lifetime Maximisation

OPTIMIZED SENSOR NODES BY FAULT NODE RECOVERY ALGORITHM

Evaluation of Unlimited Storage: Towards Better Data Access Model for Sensor Network

DAG based In-Network Aggregation for Sensor Network Monitoring

Hybrid Energy Efficient Distributed Protocol for Heterogeneous Wireless Sensor Network

Multi-hop/Direct Forwarding (MDF) for Static Wireless Sensor Networks

A Secure Data Transmission for Cluster based Wireless Sensor Network Using LEACH Protocol

A Routing Method for Top-k Query Processing in Mobile Ad Hoc Networks

MAP : A Balanced Energy Consumption Routing Protocol for Wireless Sensor Networks

Energy Optimal Routing Protocol for a Wireless Data Network

Maximum Lifetime Data Gathering and Aggregation in Wireless Sensor Networks

A SECURE DATA TRANSMISSION FOR CLUSTER- BASED WIRELESS SENSOR NETWORKS IS INTRODUCED

Adaptive Multiple Metrics Routing Protocols for Heterogeneous Multi-Hop Wireless Networks

AN EFFICIENT STRATEGY OF AGGREGATE SECURE DATA TRANSMISSION

An Efficient Hybrid Data Gathering Scheme in Wireless Sensor Networks

Wireless Sensor Networks Database: Data Management and Implementation

A Survey on Lifetime Maximization of Wireless Sensor Network using Load Balancing

A Routing Algorithm Designed for Wireless Sensor Networks: Balanced Load-Latency Convergecast Tree with Dynamic Modification

Some Security Trends over Wireless Sensor Networks

CHAPTER 8 CONCLUSION AND FUTURE ENHANCEMENTS

The Monitoring of Ad Hoc Networks Based on Routing

LBN: Load-balancing Network for Data Gathering Wireless Sensor Networks

Energy Efficient Load Balancing among Heterogeneous Nodes of Wireless Sensor Network

Fuzzy Active Queue Management for Assured Forwarding Traffic in Differentiated Services Network

Security in Ad Hoc Network

Wireless Sensor Network: Improving the Network Energy Consumption

The Feasibility of SET-IBS and SET-IBOOS Protocols in Cluster-Based Wireless Sensor Network

A STUDY ON SECURE DATA TRANSMISSION IN CLUSTER BASED WIRELESS SENSOR NETWORKS

An Empirical Approach - Distributed Mobility Management for Target Tracking in MANETs

Survey on Network Lifetime Enhancement Method

Prediction of DDoS Attack Scheme

Dipak Wajgi Dept. of Computer Science and Engineering Ramdeobaba College of Engg. and Management Nagpur, India

A Distributed Monitoring Mechanism for Wireless Sensor Networks

EFFICIENT DETECTION IN DDOS ATTACK FOR TOPOLOGY GRAPH DEPENDENT PERFORMANCE IN PPM LARGE SCALE IPTRACEBACK

Congestion Control in WSN using Cluster and Adaptive Load Balanced Routing Protocol

A Graph-Center-Based Scheme for Energy-Efficient Data Collection in Wireless Sensor Networks

Load-Balancing Enhancement by a Mobile Data Collector in Wireless Sensor Networks

The Interoperability of Wireless Sensor Networks

Foundation University, Islamabad, Pakistan

Research Article CAPNet: An Enhanced Load Balancing Clustering Algorithm for Prolonging Network Lifetime in WSNs

An Efficient Energy-Aware Coverage- Preserving Hierarchical Routing Protocol for WSN

Minimum-Hop Load-Balancing Graph Routing Algorithm for Wireless HART

An Efficient QoS Routing Protocol for Mobile Ad-Hoc Networks *

Energy-Efficient Communication Protocol for Wireless Microsensor Networks

other. A B AP wired network

Power Consumption Analysis of Prominent Time Synchronization Protocols for Wireless Sensor Networks

Recent advances in microelectromechanical

Implementation of Energy Efficient Adaptive Load Balancing Algorithm by Rainbow Mechanism in Wireless Sensor Networks

Detecting Multiple Selfish Attack Nodes Using Replica Allocation in Cognitive Radio Ad-Hoc Networks

3-12 Autonomous Access Control among Nodes in Sensor Networks with Security Policies

Development of cloud computing system based on wireless sensor network protocol and routing

A NOVEL OVERLAY IDS FOR WIRELESS SENSOR NETWORKS

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November ISSN

MAXIMIZING THE LIFETIME OF NETWORK SECURITY BY DSDV PROTOCOL USING GAME THEORY TECHNIQUES IN WIRELESS SENSOR NETWORK

Node Degree based Clustering for WSN

Mobile Security Wireless Mesh Network Security. Sascha Alexander Jopen

Design of a Web-based Application for Wireless Sensor Networks

Task-based Self-Organization in Large Smart Spaces: Issues and Challenges 1

Mobile data collector strategy for delay-sensitive applications over wireless sensor networks q

Secure Cluster Formation and Certificate Revocation Of Adversary Nodes In Mobile Adhoc Network

A Network Stability Monitoring Mechanism of Cluster-Oriented

Research Article ISSN Copyright by the authors - Licensee IJACIT- Under Creative Commons license 3.0

DEVELOPMENT OF SMART FIREWALL LOAD BALANCING FRAMEWORK FOR MULTIPLE FIREWALLS WITH AN EFFICIENT HEURISTIC FIREWALL RULE SET

A Cross-Layered Communication Protocol for Load Balancing in Large Scale Multi-sink Wireless Sensor Networks

Design of Remote data acquisition system based on Internet of Things

Access Control And Intrusion Detection For Security In Wireless Sensor Network

Routing Protocols for Wireless Sensor Networks

Design and Evaluation of Scalable Ubiquitous Discovery System

LOAD BALANCING AND EFFICIENT CLUSTERING FOR IMPROVING NETWORK PERFORMANCE IN AD-HOC NETWORKS

Literature Synthesis on Wireless Networks Management. Veenesh Jeena (JNXVEE001) CSC4000W 2010

Adaptive Medium Access Control (MAC) for Heterogeneous Mobile Wireless Sensor Networks (WSNs).

Mobile Network Analysis - Hole Healing

DoS Attack and Its Countermeasure in Energy-Constrained Wireless Networks

MAXIMIZING RESTORABLE THROUGHPUT IN MPLS NETWORKS

A Topology-Aware Relay Lookup Scheme for P2P VoIP System

Survey on different attacks in Wireless Sensor Networks and their prevention system

Monitoring Large-Scale Wireless Sensor Networks

Performance Analysis of QoS Multicast Routing in Mobile Ad Hoc Networks Using Directional Antennas

Delay-Aware Big Data Collection Strategies for Sensor Cloud Services Dr. Chi-Tsun (Ben), Cheng

Evaluating Mobility Support in ZigBee Networks

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS)

Energy Aware Load Balancing in Secure Heterogeneous Wireless Sensor Network

Power Efficiency Metrics for Geographical Routing In Multihop Wireless Networks

Entropy-Based Collaborative Detection of DDoS Attacks on Community Networks

About the Authors Preface Acknowledgements List of Acronyms

CHAPTER 1 INTRODUCTION

CHARACTERIZING OF INFRASTRUCTURE BY KNOWLEDGE OF MOBILE HYBRID SYSTEM

An Efficient Interactive Model for On-Demand Sensing-As-A-Servicesof Sensor-Cloud

PERFORMANCE ANALYSIS OF AD-HOC ON DEMAND DISTANCE VECTOR FOR MOBILE AD- HOC NETWORK

Alessia Garofalo. Critical Infrastructure Protection Cyber Security for Wireless Sensor Networks. Fai della Paganella, 10-12/02/2014

SPY AGENT BASED SECURE DATA AGGREGATION IN WSN

A Two-Tier Heterogeneous Mobile Ad Hoc Network Architecture and Its Load-Balance Routing Problem

Efficient File Sharing Scheme in Mobile Adhoc Network

Varalakshmi.T #1, Arul Murugan.R #2 # Department of Information Technology, Bannari Amman Institute of Technology, Sathyamangalam

ADV-MAC: Advertisement-based MAC Protocol for Wireless Sensor Networks

Deployment Adviser tool for Wireless Sensor Networks

Transcription:

928 Dynamic and Adaptive Organization of Data-Collection Infrastructures in Sustainable Wireless Sensor Networks Rui Teng, Shirazi N. Mehdad and Bing Zhang National institute of information and communications technology, Japan Sensor networks are associated with the natural complex networks (such as biological networks and social networks) in the aspect of cooperative organizations of small sensor nodes into various functional patterns of network structures so as to perform ubiquitous sensing and control. A specific feature of communication in sensor networks is the many to one model of data collections, which is subject to the problem of energy overuse at some particular nodes near the sink. To enable balanced energy consumption among sensor nodes, the desirable infrastructures should organize sensor nodes to fairly share the role of data collection. In this paper, we study the construction of both dynamic and adaptive network infrastructures for data collections in a static wireless sensor network. The organization of sensor nodes in data collections is adaptive to the data aggregation capacity at sensor nodes, leading to both energy saving and balanced energy consumption.

929 Introduction Compared with conventional communication networks such as the Internet, sensor networks enable the distributed and collective sensing of physical phenomena in wide application areas such as precision agriculture and industry automation. A wireless sensor networks are required to be sustainable for long-time sensing and data reporting with battery powered sensor nodes. A specific feature of communication in sensor networks is the many to one model of data collections that are triggered by on-demand queries from users [Intanagonwiwat 2002, Kulik 2006]. In the on-demand data collection, conventional schemes such as, the cluster, chain, and optimized tree based data collections are both costly and complex [Heinzelman 2002, Zou 2004 ]. A prevailing organization pattern of nodes for on-demand data collection is the reversed tree built by the query broadcast from the sink node, which is the root of the tree [Intanagonwiwat 2002]. However, the many to one traffic model of data collection leads to the unbalanced communication connectivity, in which many data packets are delivered and relayed towards nodes near the sink. Due to the multi-hop relay features of wireless sensor networks, the nodes near the sink deplete their energy much faster than nodes far away from sink, resulting unbalanced energy consumption among sensor nodes. When the nodes near the sink drain their energy, data packets from other nodes can not be relayed to the sink [Wu 2008]. Therefore, alleviating the overused energy consumption near the sink is a significant issue to maintain the network sustainability for data collection. To achieve balanced energy consumption among sensor nodes, the desirable infrastructures should organize sensor nodes to fairly share the role of data collection. A basic idea is to utilize the sink proxy in the network, which collects and aggregate sensing data on behalf of the sink node [teng 2007]. With adjustment of sink proxy selection in each round of the data collection corresponding to a user query, network infrastructure can be reconfigured and be dynamic changed. In this paper, we specially discuss the organization of network infrastructures that are adaptive and dynamic according to the data aggregation capability of sensor nodes. The data aggregation capability has an essential impact on the effectiveness of network infrastructures for data collection. The adaptive selection of sink proxy according to the data aggregation capability controls the formation of network infrastructure and enables both energy saving and energy balance in the wireless sensor networks. 2 Motivation Note that the sink-proxy based dynamic infrastructure can lead to the alleviation of the bottleneck problem in sensor networks that have static topologies and data aggregation capabilities. However, the effectiveness of dynamic infrastructures is influenced by the data aggregation capability of sensor nodes. Here, we use the term of data aggregation

930 degree to describe the ratio of the total size of data packet after aggregation to the total data packet size before aggregation. Due to the indirect delivery of data packets to the sink in the sink-proxy based data collection, we observe that in case data aggregation can not reduce the size of sensing data packets, the dynamic infrastructure may introduce not only the same amount of packet traffic to the sink, but also more energy consumption in sensor network compared with direct collection of sensing data packets by the sink without utilizing sink proxies. From this observation, we find that there should be an adaptive construction of network infrastructure for data collections with regard to the data aggregation degree. This requires the adaptive selection of appropriate sink proxies in each query. The following features are envisioned to be realized in the sink proxy selection. (a) As for an appropriate sink proxy, the total energy consumption of data collection is not larger than that of without using sink proxies. (b) If there are no appropriate sink proxies that satisfy the condition of (a), sink proxy is identical to the sink node. (c) A sink proxy is randomly selected among the candidates of appropriate sink proxies in each query. 3 Dynamic and Adaptive Organization of Data-Collection Infrastructures Dynamic and adaptive construction of network infrastructure requires appropriate decision rules for the selection of sink proxy. At first we define the term of energy benefit, which refers to the amount of energy saving in the data collection by sink-proxy based approach in comparison with those do not use sink proxies. The energy benefit B (i) at a sensor node i depends on the route length R( from node i to the sink proxy (, the route length R( sp, from the sink proxy ( to the sink (, the route length R( from the sink proxy (i) to the sink (and the data aggregation degreeα. B(i) is represented as follows. B(i) = R( R( α * R( sp,. () where, E 0 is the average energy consumption of a one-hop transmission of a packet. The total energy benefit of sensor nodes in the network is given by: n B( i) = ( R( R( α * R( sp, ) (2) Where n is total number of sensors that should report their sensing data to the sink according to the user query.

93 Now we can give basic criterion of the judgement of an appropriate sink proxy by utilizing the rule of B ( i) > 0 (3) In the data collection operation, if a sensor node satisfies the condition of (3), the sensor node is appropriate sink proxy. In case the aggregation degree α is, there is no energy saving after the data aggregation is performed at the sink proxy. Given a selected sink proxy and a known query, the aggregation degreeα has an essential impact on the amount total energy benefit. The adaptive and dynamic sink proxy can be selected according to (3). At first the sink node calculates which sensor nodes satisfy (3), those nodes forms a group of appropriate candidates of sink proxy. A sink proxy is randomly selected among the nodes in the candidate group. If there is no candidate of sink proxy in the network, the sink node then directly query and collect sensing data without utilizing a sensor node as the sink proxy. We summarize the basic adaptive selection of sink proxy in equation (4). SP(ID)= L=the ID of an randomly selected sink proxy B ( i) > 0 M=the ID of the sink B ( i) 0 Where SP(ID) is the ID of selected appropriate sink proxy. Equation (4) illustrates the integration of adaptive selection of the sink proxy in various cases of data aggregation capability. In case that B ( i) 0, the sink proxy is identical to the sink node. We can know observe that the more appropriate sink proxy candidates, the more nodes are able to share the role of sink with energy saving. (4) 4 Conclusion This paper introduces the adaptive and dynamic utilization of sink proxies for the infrastructure construction of sensor network. We discussed the adaptive selection of sink proxy according to the energy saving and the impact of data aggregation degree. The adaptive and dynamic network infrastructure alleviates the energy bottleneck problem in many-to-one data collection by enabling more nodes sharing the role of sink proxy with energy saving.

932 Bibliography [] Intanagonwiwat, C., & Govindan, R. (ed.), 2002, Directed Diffusion for Wireless Sensor Networking, ACM/IEEE Trans. Networking,, 2-6. [2] Kulik, L., & Tanin, E.(ed.), 2006, Efficient data collection and selective queries in sensor networks, Proceedings of 2nd Int. Conf. on GeoSensor Networks (Boston), 25-44. [3] Heinzelman, W., & Chandrakasan, A. (ed.), 2002, An application-specific protocol architecture for wireless microsensor networks, IEEE Trans. Wireless Commun.,, 660-670. [4] Zou, S., & Nikolaidis, I. (ed.), 2004, Efficient data collection trees in sensor networks with redundancy removal, Proceedings of the 3rd Int Conf on AD-HOC Networks and Wireless (Vancouver), 252-265. [5] Wu, X., & Chen, G.(ed.), 2008, Avoiding Energy Holes in Wireless Sensor Networks with Nonuniform Node Distribution. IEEE Trans. Parallel Distrib. Syst, 9, 70-720. [6] Teng, R., & Zhang, B. (ed.), 2007, A Study of Localized On-Demand Data Collection in Sensor Networks, Proceeding of 5th IEEE Int. Conf. on Networks (Adelaide), 43-436.