PROGRAMME SPECIFICATION



Similar documents
PROGRAMME SPECIFICATION

UNIVERSITY OF BRADFORD

PROGRAMME SPECIFICATION

University of Plymouth. Programme Specification. M.Eng. Mechanical Engineering

PROGRAMME SPECIFICATION UNDERGRADUATE PROGRAMMES

PROGRAMME SPECIFICATION UNDERGRADUATE PROGRAMMES

BEng Biomedical Engineering / BEng Biomedical Engineering with Placement

PROGRAMME SPECIFICATION UNDERGRADUATE PROGRAMMES. Programme name BEng Electrical & Electronic Engineering with Foundation Year

Levels and Awards Framework

value equivalent value

PROGRAMME SPECIFICATION

MSc Multimedia Systems and Communications Engineering. Programme Specification

PROGRAMME SPECIFICATION

PROGRAMME SPECIFICATION UNDERGRADUATE PROGRAMMES. Programme BEng Computer Systems Engineering/BEng Computer Systems Engineering with Placement

MEng Engineering Management

Value equivalent. ECTS equivalent. Value N/A

BIMM Course Specification

BIMM Course Specification

BIMM Course Specification

Qualifications and Credit Framework (NUQCF) - Guidance

Programme Specification

LOUGHBOROUGH UNIVERSITY

1. Programme title and designation Advanced Software Engineering

Programme Specification 2015/16

Programme Specifications

N/A. Computing, Engineering

BEng Hons Engineering Management

1. Programme title and designation Biomedical Engineering. value equivalent. 420 with 60 credits at level N/A

UNDERGRADUATE PROGRAMME SPECIFICATION

PROGRAMME SPECIFICATION UNDERGRADUATE PROGRAMMES. Programme name Mechanical Engineering with Foundation

UNDERGRADUATE PROGRAMME SPECIFICATION

BEng (Hons) Computer Engineering

MA INCLUSIVE EDUCATION

Programme Specification and Curriculum Map for BSc Honours Information Technology

BSc Hons Property Investment, Appraisal and Development F/T 6793

Birmingham City University Faculty of Technology, Engineering and the Environment. Undergraduate Programme. Programme Specification

Programme Specification: Master of Business Administration

Programme name Civil Engineering, Civil Engineering with Industrial Placement

Birmingham City University Faculty of Computing, Engineering and the Built Environment. Undergraduate Programme. Programme Specification

COURSE OR HONOURS SUBJECT TITLE: BSc Hons Information Technologies with/without DPP/DPP(I)/DIAS with CertHE and AB exit awards (FT)

continue to advance their Manufacturing Management knowledge and understanding, and develop new skills to a high level;

BSc Management with Information Technology For students entering Part 1 in 2012/3. Henley Business School at Univ of Reading

BSc Management with Information Technology For students entering Part 1 in 2015/6. Henley Business School at Univ of Reading

Birmingham City University Faculty of Technology, Engineering and the Environment. Undergraduate Programme. Programme Specification

Creative Lighting Control

Programme Specification Date amended: January 2010

University of Plymouth. Programme Specification. Doctorate in Business Administration

Programme Specification for the MSc Surgical Technology

Programme Specification 1

Programme Specification for the MSc in Computing (<Specialism>)

Guidance on scholarship and the pedagogical effectiveness of staff: Expectations for Foundation Degree-awarding powers and for taught degree-awarding

MSc in Physics Research For students entering in 2006

Programme Specification (Undergraduate) Date amended: 28 August 2015

Honours Degree (top-up) Business Abbreviated Programme Specification Containing Both Core + Supplementary Information

MSc Logistics and Supply Chain Management

PROGRAMME SPECIFICATION POSTGRADUATE PROGRAMME

Honours Degree (top-up) Computing Abbreviated Programme Specification Containing Both Core + Supplementary Information

MEng Aeronautical Engineering (H401)

BSc Business Information Technology For students entering Part 1 in 2005

BSc Business Information Technology For students entering Part 1 in 2008/9

PROGRAMME SPECIFICATION

UNIVERSITY OF ULSTER PROGRAMME SPECIFICATION COURSE / SUBJECT TITLE: BSC HONS PUBLIC RELATIONS / PUBLIC RELATIONS (MINOR)

1. Programme title and designation Biomedical Engineering. For undergraduate programmes only Single honours Joint Major/minor

Programme name Engineering with Management and Entrepreneurship

Programme Specification ( )

UNDERGRADUATE PROGRAMME SPECIFICATION

The University s course specification template has been developed to fulfil three main functions; it shall act:

Programme Specification and Curriculum Map for the MA in the Theory and Practice of Translation

The University s course specification template has been developed to fulfil three main functions; it shall act:

UNDERGRADUATE PROGRAMME SPECIFICATION

PROGRAMME SPECIFICATION KEY FACTS. Programme name Journalism AND Psychology. Department or equivalent Journalism. Total UK credits 360 Total ECTS 180

Programme Specification: BSc (Hons) Sound Engineering and Production

Programme Specification and Curriculum Map for MA TESOL

Programme Duration Full-Time: 3 Years, Part-Time: 5 Years, Sandwich Thick: 4 Years. All LJMU programmes are delivered and assessed in English

PROGRAMME SPECIFICATION UNDERGRADUATE PROGRAMMES. Cass Business School Department or equivalent UG Programme (Cass Business School) UCAS Code

Programme Specification 2015/16

UNDERGRADUATE PROGRAMME SPECIFICATION

MA Design for Digital Media

How To Be Successful At Benha University

UNIVERSITY OF ULSTER: COLERAINE PROGRAMME SPECIFICATION. COURSE TITLE: B.Sc. (HONS) SOCIAL PSYCHOLOGY/ B.Sc. (HONS) SOCIAL PSYCHOLOGY with DPP

Any special criteria equivalent MA Public Policy N/A 3. Nested award Award Title Credit value ECTS

Arts, Humanities and Social Science Faculty

Birmingham City University Faculty of Technology, Engineering and the Environment. Undergraduate Programme. Programme Specification

BSc Robotics with Industrial Year For students entering Part 1 in 2015/6

Electrical and Electronic Engineering

2. Basis for computing design and implementation at all levels through OS, distributed systems, human interface and computer graphics.

Henley Business School. Henley Business School at Univ of Reading. Henley Business School Board of Studies for

Programme name Mathematical Science with Computer Science Mathematical Science with Computer Science with Placement

PROGRAMME SPECIFICATION POSTGRADUATE PROGRAMMES

PROGRAMME SPECIFICATION AND CURRICULUM MAP FOR MEng / BEng Biomedical Engineering

Henley Business School. Henley Business School at Univ of Reading. Henley Business School Board of Studies for

Final Award. (exit route if applicable for Postgraduate Taught Programmes) GN51 JACS Code. The entry qualifications are:

Faculty of Health & Human Sciences School of Psychology

Banking and International Finance

LOUGHBOROUGH UNIVERSITY Programme Specification Digital Imaging, Computer Graphics and Vision

This programme is only offered at: AKMI Metropolitan College (AMC)

Programme Specifications

Relevant QAA subject benchmarking group(s):

1. Awarding Institution: Imperial College London. 2. Teaching Institution: Imperial College London

Transcription:

PROGRAMME SPECIFICATION PROGRAMME SPECIFICATION Programme title: Final award (BSc, MA etc): (where stopping off points exist they should be detailed here and defined later in the document) UCAS code: (where applicable) Cohort(s) to which this programme specification is applicable: (e.g. from 2008 intake onwards) Awarding institution/body: Teaching institution: Faculty: Parent Department: (the department responsible for the administration of the programme) Departmental web page address: (if applicable) Method of study: Full-time/Part-time/Other Criteria for admission to the programme: Length of the programme: (please note any periods spent away from UCL, such as study abroad or placements in industry) Level on Framework for Higher Education Qualifications (FHEQ) (see Guidance notes) BEng (Hons) Engineering (Electronic & Electrical) BEng (Hons), if students do not successfully complete sufficient modules then they may be awarded a BEng (Ord). The details of this are given at the end of this document H600 (UCL internal code UBNEENSEEE14) 2014 intake onwards University College London University College London Engineering Sciences Electronic & Electrical Engineering http://www.ee.ucl.ac.uk/ Full-time As stated on the UCAS website, e.g, currently A-level offers AAA although this is subject to change Three years 6

Relevant subject benchmark statement (SBS) (see Guidance notes) http://www.qaa.ac.uk/publications/informationandguidance/docume nts/engineering10.pdf Engineering is concerned with developing, providing and maintaining infrastructure, products, processes and services for society. Engineering addresses the complete life-cycle of a product, process or service, from conception, through design and manufacture, to decommissioning and disposal, within the constraints imposed by economic, legal, social, cultural and environmental considerations. Engineering relies on three core elements, namely scientific principles, mathematics and 'realisation'. Scientific principles clearly underpin all engineering, while mathematics is the language used to communicate parameters, model and optimise solutions. Realisation encapsulates the whole range of creative abilities which distinguish the engineer from the scientist; to conceive, make and actually bring to fruition something which has never existed before. This creativity and innovation to develop economically viable and ethically sound sustainable solutions is an essential and distinguishing characteristic of engineering, shared by the many diverse, established and emerging disciplines within engineering. www.engc.org.uk/ecukdocuments/internet/document%20library/uk- SPEC.pdf The UK Standard for Professional Engineering Competence (2010) sets out five main areas of competence expected for Chartered Engineers, each covering a number of different aspects: A Use of general and specialist engineering knowledge and understanding B Application of appropriate theoretical and practical methods C Technical and commercial leadership and management D Effective interpersonal and communication skills E Commitment to professional standards and recognition of obligations to society, the profession and the environment. Brief outline of the structure of the programme and its assessment methods: (see guidance notes) The first and second year cover the fundamentals of the subject, including key professional skills, and are mandatory and common to all programmes. The programmes are therefore interchangeable until the end of the second year at which point transfer to an MEng program may be possible. A tutorial system is operated in Years 1 and 2, with personal tutors offering academic and pastoral support. In the third year there is a major individual project and a choice of six further modules in subjects ranging from electronic circuits, to machines to electronic devices. Assessment is based on a combination of end-of-year written exams, project work, programming assignments, laboratory work and coursework. Board of Examiners: i) Name of Board of Examiners: Electronic & Electrical Engineering

Professional body accreditation (if applicable): Institution of Engineering and Technology (IET) Date of next scheduled accreditation visit: 2018 EDUCATIONAL AIMS OF THE PROGRAMME: Electronic and electrical engineering permeates most aspects of modern life, from electricity power generation and transmission industries, the computer revolution, global telecommunications, and the modern entertainment industries. It is also key to the technologies and solutions needed for future energy requirements. Electronic and electrical Engineers are critical to systems that sense, transmit and process information, and to the generation, control and application of power. The specific aims of our programme include: 1. To provide students with a knowledge and understanding of core principles of electronic and electrical engineering and of the underlying scientific principles and the context within which electronic engineers have to function. 2. To promote and develop thinking and problem-solving skills. 3. To provide an awareness of the context in which engineering operates in terms of safety, environmental and economic aspects. 4. To provide a range of intellectual, practical and transferable skills that will allow students to develop careers in research, industry and other professional areas of the economy. 5. To provide technical awareness in appropriate specialist applications of technology in the electronic and electrical engineering field. 6. To develop the student's mathematical rigour, accuracy and numeracy skills appropriate for professional engineering. 7. To present and develop professional, ethical, economic and management skills relevant to the electronics industry. 8. To offer an integrated, multidisciplinary programme of study that will provide the student with knowledge and understanding of electronic and electrical engineering. 9. To provide an enhanced preparation for professional practice by means of specialist skills and industriallyrelevant group-working opportunities that will allow students to develop careers in industries related to electronic and electrical engineering. 10. To enable the degree programme to be seen as a desirable and important route to careers other than electronic & electrical engineering as well as for those who wish to follow careers in this field.

INTENDED LEARNING OUTCOMES: The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas. Knowledge and understanding - Graduates will be able to Use their knowledge of underlying principles, physics and mathematics on which modern electronics is based, including complex numbers, matrix algebra, differential equations, transform theory, semiconductor physics and optics, to tackle a wide range of tasks, including analysis and design of devices, circuits and systems. Understand and apply the fundamental principles that underpin electronic circuits, including Ohm s Law, Kirchhoff s Laws, Fourier and Laplace Equations, Maxwell s Equations, control theory (e.g. using z- transforms for digital control). Analyse and design complex electronic systems e.g. device and integrated circuit fabrication, advanced analogue and digital electronics, programming of embedded devices such as FPGAs using Verilog/VHDL, hybrid digital/analogue systems, such as PLL frequency synthesizers and the principles of power systems. Explain the role of electronics in society and the constraints within which their engineering judgement will be exercised. Understand the professional and ethical responsibilities of electronic and electrical engineers. Appreciate the national and international role of the electronic and electrical engineer and the impact of engineering solutions in a global context. Demonstrate a systematic understanding of key aspects of their field fo study, including acquisition of coherent and detailed knowledge, at least some of which is informed by, the forefront of defined aspects of electronic and electrical engineering, Skills and other attributes Graduates will be able to Demonstrate an appreciation of the uncertainty, ambiguity and limits of knowledge. Manage their own learning, and to make use of scholarly reviews and primary sources (for example, refereed research articles and/or original materials appropriate to electronic and electrical engineering. Apply the methods and techniques that they have learned to review, consolidate, extend and apply their knowledge and understanding, and to initiate and carry out projects. Critically evaluate arguments, assumptions, abstract concepts and data (that may be incomplete), to make judgments, and to frame appropriate questions to achieve a solution or to identify a range of solutions to a given problem. Communicate information, ideas, problems and solutions to both specialist and non-specialist audiences. Have the qualities and transferrable skills necessary for employment in circumstances requiring the learning ability needed to undertake appropriate further training of a professional or equivalent nature, the exercise of initiative and personal responsibility, and decision-making and sound judgment in complex and unpredictable contexts. Use software necessary for engineering analysis and design, including Matlab, Spice and ADS and specific software, such as PCB layout software, if required in projects or labs. Demonstrate practical transferrable engineering skills such as programming, system design and development, through the range of labs, scenarios and projects that permeate the programme. Apply advanced knowledge in certain areas as appropriate to the third and fourth year options chosen, Undertake a large-scale supervised research project in academia or industry and present the results of this work in a written report and oral presentation to peers and staff. Work effectively in both individual and group projects. Interpret specifications and document their solutions to Electronics and Electrical Engineering problems so that others can follow and validate their work. Apply professional engineering practice and judgement in project work. Appreciate and practice professional skills, including appreciation of sustainability, commercial risk and ethics and understanding of electronic and electrical engineering in the wider context of engineering in general, in accordance with the ethos of the Integrated Engineering Program.

Intellectual skills Graduates will be able to Deploy accurately established techniques of analysis and enquiry within electronic and electrical engineering. Demonstrate a conceptual understanding that enables the student to evaluate critically current research and advanced scholarship in electronic and electrical engineering. Demonstrate a conceptual understanding that enables the student to evaluate methodologies and develop critiques of them and, where appropriate, to propose new hypotheses. Apply appropriate quantitative mathematical, scientific and engineering tools to the analysis of problems; Analyse and solve engineering problems, applying rigour in any related mathematics. Design an Electronic and Electrical Engineering system, component or process to meet a need. Be creative in the solution of problems and in the development of designs. Integrate knowledge and understanding of other scientific, mathematical, computational or engineering disciplines in order to support their engineering specialisation. Take a holistic approach in solving problems and designing systems, applying professional judgements to balance risks, costs, benefits, safety, reliability, aesthetics and environmental impact. Characteristics Engineering Graduates will Be rational and pragmatic, interested in the practical steps necessary for a concept to become reality. Strive to achieve sustainable solutions to problems and have strategies for being creative, innovative and overcoming difficulties by employing their knowledge in a flexible manner. Be numerate and highly computer literate, and capable of attention to detail. Be cost and value-conscious, and aware of the social, cultural, environmental, health and safety, and wider professional responsibilities they should exercise. Appreciate the international dimension to engineering, commerce and communication. When faced with an ethical issue be able to formulate and operate within appropriate codes of conduct. Adopt a professional outlook, be capable of team working, effective communicators, and able to exercise responsibility. The detailed differences between the various specialised degree programs can be found in the Program Structure section at the end of this document.

A: Knowledge and understanding Knowledge and understanding of: Fundamental principles of electronics including field theory, semiconductor materials Circuit theory, both analogue and digital Analytic and modelling techniques relevant to electronic devices, circuits and systems Teaching/learning methods and strategies: Taught courses, including tailor-made mathematics courses Laboratory experiments Scenario weeks (group project based learning) Computer program assignments Coursework Exercise sheets Tutorial system for pastoral and technical support The design process, including practical examples of design Mathematical techniques relevant to the discipline Application of theory to address realworld problems, needs and requirements B: Skills and other attributes Assessment: Written exams Mid-sessional exams Laboratory reports Scenario reports and presentations Project reports Project vivas and presentations Intellectual (thinking) skills: Ability to identify and solve problems, to analyse and interpret and use critical thinking to approach an engineering problem Teaching/learning methods and strategies: Taught lectures Laboratory work Project work including Grand Challenges Ability to use design tools, e.g. Matlab, relevant to the discipline and understand their limitations Assessment: Written assignments and laboratory/project reports

C: Skills and other attributes Practical skills (able to): Develop circuits and systems, e.g. involving soldering and/or breadboarding Program effectively, e.g. using Java/C, VHDL Teaching/learning methods and strategies: Laboratories Key skills lectures Computer programming exercises Project work, particularly the major individual third year project and group fourth year project Mange and execute projects, including a major Fourth Year group project Assessment: D: Skills and other attributes Laboratory reports, project reports Computer programming assignments Project reports, project vivas and project presentations Transferable skills (able to): Effectively deliver public presentations Managing learning and development, including time management and organisational skills, including within group projects To understand and communicate intellectually challenging ideas in writing To communicate effectively and clearly in discussions and oral presentations To assess the relevance and importance of initially unfamiliar ideas and to exercise critical judgment To work independently; and also as a member of a team, recognising the different roles within a team and its organisation To have a good appreciation of professional practice including commercial, moral and ethical issues involved in the exploitation of technology Appreciation of the need for continuing professional development, adaptability and the ability to learn Teaching/learning methods and strategies: Transferable skills are developed throughout the teaching and learning programme outlined above and thus distributed throughout the programme. Where appropriate, certain courses will aim particularly to develop specific areas, for example the Good Professional Practice and Engineering Toolbox lectures that address areas of professional practice that are separate from the technical aspects of the programme Assessment: The various assessment methods employed (see above) cover most of the transferable skills which this programme intends to develop

The following reference points were used in designing the programme: the Framework for Higher Education Qualifications (http://www.qaa.ac.uk/publications/informationandguidance/pages/quality-code-a1.aspx); the relevant Subject Benchmark Statements (http://www.qaa.ac.uk/publications/informationandguidance/pages/quality-code-a2.aspx) the programme specifications for UCL degree programmes in relevant subjects (where applicable); UCL teaching and learning policies; staff research. Please note: This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. More detailed information on the learning outcomes, content and teaching, learning and assessment methods of each course unit/module can be found in the departmental course handbook. The accuracy of the information contained in this document is reviewed annually by UCL and may be checked by the Quality Assurance Agency. Programme Organiser(s) Name(s): Prof. Paul Brennan Date of Production: November 2013 Date of Review: January 2019 Date approved by Head of Department: Date approved by Chair of Departmental Teaching Committee: Date approved by Faculty Teaching Committee November 2013 November 2013

BEng ENGINEERING (ELECTRONIC & ELECTRICAL) PROGRAMME STRUCTURE 2014-15 YEAR 1 Introduction to Electronic Engineering Modelling & Analysis Design & Professional Practice Integrated Engineering Analogue and Power Electronics Digital Electronics Physics of Electronics and Nanotechnology Signals & Systems Programming YEAR 2 Modelling & Analysis II Design & Professional Practice II Analogue and Power Electronics Digital Electronics II Physics of Electronics and Nanotechnology II Signals & Systems II Programming II Minor Element I YEAR 3 MANDATORY: Project I Weight 0.25 cu 0.25 cu 1 cu CHOOSE AT LEAST 1.5 CU FROM THE FOLLOWING LIST (EACH WORTH 0.5 CU): Control Systems ELEC3003 Digital Signal Processing ELEC3005 Optoelectronics ELEC3006 Electronic Circuits ELEC3016 Advanced Digital Design ELEC3027 Electronic Devices and Nanotechnology ELEC3029 Numerical Methods ELEC3030 Renewable Energy ELEC3915 PLUS A SELECTION OF THE FOLLOWING (EACH WORTH 0.5 CUs) TO A TOTAL OF 4 CUs: Software Engineering COMP2009 Networked Systems COMP3035 Image Processing COMP3072 Electrical Machines & Power Electronic Systems MECHGR11 Physiological Monitoring MPHY3012 Medical Electronics and Neural Engineering MPHY3013 Accounting for Business MSIN6004

PROGRESSION CONDITIONS AND SCHEME OF AWARD From First to Second year: at least 3.5 Course Units. From Second to Third year of BEng/MEng: at least 7 Course Units (plus at least 50% average mark for MEng candidates). To graduate with a BEng: at least 10 Course Units for an ordinary degree, at least 11 Course Units for an honours degree. Pass marks: 40% in all courses. Referral band: 35-39%, except in final year courses. Weightings Year 1: 1 Year 2: 3 Year 3: 5