Pavel V. Shevchenko Quantitative Risk Management. CSIRO Mathematical & Information Sciences. Bridging to Finance



Similar documents
Fixed Income Attribution. Remco van Eeuwijk, Managing Director Wilshire Associates Incorporated 15 February 2006

Capacity Planning. Operations Planning

Selected Financial Formulae. Basic Time Value Formulae PV A FV A. FV Ad

12/7/2011. Procedures to be Covered. Time Series Analysis Using Statgraphics Centurion. Time Series Analysis. Example #1 U.S.

Levy-Grant-Schemes in Vocational Education

THE USE IN BANKS OF VALUE AT RISK METHOD IN MARKET RISK MANAGEMENT. Ioan TRENCA *

Testing techniques and forecasting ability of FX Options Implied Risk Neutral Densities. Oren Tapiero

IMES DISCUSSION PAPER SERIES

Prices of Credit Default Swaps and the Term Structure of Credit Risk

The Definition and Measurement of Productivity* Mark Rogers

Evaluation of the Stochastic Modelling on Options

Kalman filtering as a performance monitoring technique for a propensity scorecard

Analyzing Energy Use with Decomposition Methods

Estimating intrinsic currency values

Applying Stress-Testing On Value at Risk (VaR) Methodologies

A GENERALIZED FRAMEWORK FOR CREDIT RISK PORTFOLIO MODELS

Efficiency of General Insurance in Malaysia Using Stochastic Frontier Analysis (SFA)

The Virtual Machine Resource Allocation based on Service Features in Cloud Computing Environment

Managing gap risks in icppi for life insurance companies: a risk return cost analysis

Trading volume and stock market volatility: evidence from emerging stock markets

This research paper analyzes the impact of information technology (IT) in a healthcare

How To Understand The Theory Of The Power Of The Market

Linear methods for regression and classification with functional data

Proceedings of the 2008 Winter Simulation Conference S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Methodology of the CBOE S&P 500 PutWrite Index (PUT SM ) (with supplemental information regarding the CBOE S&P 500 PutWrite T-W Index (PWT SM ))

Modèles financiers en temps continu

DEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS. Exponential Smoothing for Inventory Control: Means and Variances of Lead-Time Demand

Pedro M. Castro Iiro Harjunkoski Ignacio E. Grossmann. Lisbon, Portugal Ladenburg, Germany Pittsburgh, USA

GUIDANCE STATEMENT ON CALCULATION METHODOLOGY

A Hybrid AANN-KPCA Approach to Sensor Data Validation

What influences the growth of household debt?

Searching for a Common Factor. in Public and Private Real Estate Returns

Time Series. A thesis. Submitted to the. Edith Cowan University. Perth, Western Australia. David Sheung Chi Fung. In Fulfillment of the Requirements

Return Persistence, Risk Dynamics and Momentum Exposures of Equity and Bond Mutual Funds

A Hybrid Method for Forecasting Stock Market Trend Using Soft-Thresholding De-noise Model and SVM

A New Method to Evaluate Equity-Linked Life Insurance

Retransformation bias in the adjacent art price index

Analysis of intelligent road network, paradigm shift and new applications

Market-Wide Short-Selling Restrictions

Nonlinearity or Structural Break? - Data Mining in Evolving Financial Data Sets from a Bayesian Model Combination Perspective

The Feedback from Stock Prices to Credit Spreads

HEDGING METHODOLOGIES IN EQUITY-LINKED LIFE INSURANCE. Alexander Melnikov University of Alberta, Edmonton

The Cause of Short-Term Momentum Strategies in Stock Market: Evidence from Taiwan

The Joint Cross Section of Stocks and Options *

SPC-based Inventory Control Policy to Improve Supply Chain Dynamics

MULTI-WORKDAY ERGONOMIC WORKFORCE SCHEDULING WITH DAYS OFF

FINANCIAL CONSTRAINTS, THE USER COST OF CAPITAL AND CORPORATE INVESTMENT IN AUSTRALIA

Cooperative Distributed Scheduling for Storage Devices in Microgrids using Dynamic KKT Multipliers and Consensus Networks

Forecasting Stock Prices using Sentiment Information in Annual Reports A Neural Network and Support Vector Regression Approach

A robust optimisation approach to project scheduling and resource allocation. Elodie Adida* and Pradnya Joshi

A Background Layer Model for Object Tracking through Occlusion

Performance Measurement for Traditional Investment

Information-based trading, price impact of trades, and trade autocorrelation

A New Approach For Modelling & Pricing Correlation Swaps in Equity Derivatives

An Anti-spam Filter Combination Framework for Text-and-Image s through Incremental Learning

MODEL-BASED APPROACH TO CHARACTERIZATION OF DIFFUSION PROCESSES VIA DISTRIBUTED CONTROL OF ACTUATED SENSOR NETWORKS

An Architecture to Support Distributed Data Mining Services in E-Commerce Environments

A Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation

Pricing Rainbow Options

The Sarbanes-Oxley Act and Small Public Companies

Pricing of Arithmetic Asian Quanto-Basket Options


University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

Vasicek s Model of Distribution of Losses in a Large, Homogeneous Portfolio

Financial Time Series Forecasting: Comparison of Neural Networks and ARCH Models

A Theory of the Risks of Venture Capital Financing

Anomaly Detection in Network Traffic Using Selected Methods of Time Series Analysis

Nonparametric deconvolution of hormone time-series: A state-space approach *

Stress testing French banks' income subcomponents *

DOCUMENTOS DE ECONOMIA Y FINANZAS INTERNACIONALES

International Portfolio Equilibrium and the Current Account

Developing Equity Release Markets: Risk Analysis for Reverse Mortgage and Home Reversion

Temporal and Spatial Distributed Event Correlation for Network Security

Vector Autoregressions (VARs): Operational Perspectives

FOREIGN AID AND ECONOMIC GROWTH: NEW EVIDENCE FROM PANEL COINTEGRATION

Chapter 9 Bond Prices and Yield

PARTICLE FILTER BASED VEHICLE TRACKING APPROACH WITH IMPROVED RESAMPLING STAGE

DESIGN OF OPTIMAL BONUS-MALUS SYSTEMS WITH A FREQUENCY AND A SEVERITY COMPONENT ON AN INDIVIDUAL BASIS IN AUTOMOBILE INSURANCE ABSTRACT KEYWORDS

Currency Exchange Rate Forecasting from News Headlines

Distribution Channel Strategy and Efficiency Performance of the Life insurance. Industry in Taiwan. Abstract

ANALYSIS OF SOURCE LOCATION ALGORITHMS Part I: Overview and non-iterative methods

Fundamental Analysis of Receivables and Bad Debt Reserves

DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS

Transcription:

Pavel V. Shevchenko Quanave Rsk Managemen CSIRO Mahemacal & Informaon Scences Brdgng o Fnance Conference Quanave Mehods n Invesmen and Rsk Managemen: sourcng new approaches from mahemacal heory and he real world Melbourne Cenre For Fnancal Sudes 0 h Sepember 007.

CSIRO Mahemacal & Informaon Scences Commonwealh Scenfc and Indusral Research Organzaon of Ausrala CSIRO Naonal research agency formed n 96. Approx 6500 saff Dvsons: Indusral Physcs Mnerals Mahemacal & Informaon Scences Marne and Amospherc Research ec. www.csro.au Dvson of Mahemacal and Informaon Scences CMIS over 00 researchers: Decson echnology Boechnology and Healh Informacs Envronmenal Informacs Quanave Rsk Managemen QRM group approx. 0 saff: fnancal rsk nfrasrucure envronmen rsk secury ar-ranspor. Acves/modes of engagemen: research consulng model developmen/valdaon sofware developmen. /QRM CSIRO Mahemacal & Informaon Scences

CSIRO Quanave Rsk Managemen Applcaon areas Fnancal Rsk Sraegc research Exremes sparse daa Exper elcaon Opmsaon Ar raffc Managemen Energy/commody modellng OAM Infrasrucure secury healh Real-me monorng Rsk assessmen CSIRO Mahemacal & Informaon Scences

CSIRO Mahemacal & Informaon Scences Soluons Developmen of mahemacal models and cusomsed sofware accordng o he clen mehodology and specfc needs. Asssng wh developmen of new models and her mplemenaon no sofware. Independen revew and advce on rsk models mehodology and sofware soluons. Independen valdaon of dervaves and rsk measuremen models. me-seres analyss of daa. Modes of engagemen here are many ways CSIRO can work wh you o undersand and quanfy fnancal rsks: Consulancy engagemen. Conrac research engagemen. Collaborave projecs. Sofware developmen. CSIRO Mahemacal & Informaon Scences

rack Records n Fnancal Rsk Dervave prcng: work on CSIRO opon prcng sofware Redus snce 999 consulng projecs n 005 006 007. FX opon prcng: plug-ns for Fencs launched n 005 00 users n overseas banks. Operaonal Rsk: valdaon projecs n 000 model developmen projecs n 00 003 R&D/sofware projecs 004-007. Marke Rsk: valdaon projecs n 004 005 model developmen consulng projec n 007. Cred Rsk: valdaon projecs n 999 00; valdaon and model developmen projecs 004-ongong. Underwrng rsk: consulng projecs n 999 curren proposals. Forecasng elecrcy/commodes: consulng projecs n 00 005 005-06 curren proposals. Porfolo Managemen: model developmen projecs n 007 curren proposals. Waer/Carbon radng: curren proposals. Collaboraors: Monash Un Cambrdge Un EH Zurch UNSW US Macquare Un Sascal Research Assocaes NZ Indusry clens: CBA ANZ NAB S George Inegral Energy IAG Fencs FX Edgecap Moore Capal Eser Bank Cred Swss. CSIRO Mahemacal & Informaon Scences

Fnancal Rsk Lnks Managemen Oher Rsk Areas Marke Rsk Cred Rsk Operaonal Rsk Underwrng rsk Dervave prcng Ineres Raes radng sraeges Porfolo Managemen Commody/Energy Carbon/waer radng Model rsk Lqudy rsk Exreme Value modellng Dynamc conrol Exper Elcaon Bayesan mehods Dependence Modellng Model valdaon Compuaonal mehods PDE MCMC Mone Carlo mehods me seres analyss Hgh performance compung Ar ranspor Ecology/Envronmenal Infrasrucure Secury Weaher/Clmae Healh CSIRO Mahemacal & Informaon Scences

Exreme Value Analyss/Dependence Ar-ranspor devaons from ax cenerlne Weaher ranfall wnd speed Marke Rsk al of porfolo reurn dsrbuon dervaves Cred/Operaonal Rsk al of annual loss dsrbuon Elecrcy prcng prce spkes CSIRO Mahemacal & Informaon Scences

Exreme Value Models M max X... Block maxma models for larges observaons n X X... are d e.g. daly daa grouped no quarerly blocks Lmng dsrbuon: Generalzed Exreme Value Dsrbuon GEV / exp[ ξ x / β H x exp[ exp x / β ] ξ ] ξ 0 ξ 0 X n hreshold exceedances models for large observaons exceedng some hgh level L e.g. operaonal losses exceedng mln Y X L Lmng dsrbuon: Generalzed Pareo Dsrbuon GPD / ξx / β H x exp[ x / β ]; ξ ; ξ 0 ξ 0 CSIRO Mahemacal & Informaon Scences

CSIRO Mahemacal & Informaon Scences Marke Rsk } 60 max{var Marke Rsk Regulaory Capal by s modelled ; For example : s saonary are d and... assume / ln ln 60 0 0.99 0 0.99 0 q q q q VaR k C GPD Z Z CVaR CVaR Z VaR VaR X X X Z Z Z X S S S S S X σ µ σ µ βσ µ α α σ λ µ σ µ

Example: API reurns emprcal quanle emprcal quanle GARCH-Normal Asse resdual Q-Q plo 5 4 3 0-5 -4-3 - - - - 0 3 4 5-3 -4-5 heorecal quanle GARCH-Generalzed Pareo Asse resdual Q-Q plo 5 4 3 0-5 -4-3 - - - - 0 3 4 5-3 -4-5 heorecal quanle CSIRO Mahemacal & Informaon Scences emprcal quanle GARCH-Suden Asse resdual Q-Q plo 5 4 3 0-5 -4-3 - - - - 0 3 4 5-3 -4-5 heorecal quanle 0.0 0.090 0.070 0.050 0.030 0.00 GARCH-volaly volaly 8/07/0 0//0 3/04/04 05/09/05 8/0/07

Dervave Prcng Opon prcng : Q E[ Payoff S S ] Modellng volaly skew: e.g. local volaly models - ds / S r q d σ S dw sochasc volaly models jump dffuson Numercal Mehods: Fne Elemen Fne Dfference Mone Carlo mehods. CSIRO Mahemacal & Informaon Scences

Dependence modellng Dependence modellng va Copula mehod Consderrvs X... X wh F x Prob X x d F U ~ F X F U U ~ U0 F X U ~ U 0 F x x... x Prob[ X x X x... X d d x d ] s jon cdf F x x... x d margnal behavor F copula C u. u d Copula s mulvarae jon dsrbuon of unform random varables C u u... u d F F u F u... F u d d C F x F x... F d x d F x x... x d CSIRO Mahemacal & Informaon Scences

Dependence modellng va copula Y Gumble Copula 4 3 0-4 -3 - - - 0 3 4 - X ~ Normal 0; Y corr X Y 0.7 Copula 4 3 ~ Normal 0 Gaussan Copula -3-4 X 4 3 Y -4-3 - - 0-3 4 - -3-4 X CSIRO Mahemacal & Informaon Scences 0 Y -4-3 - - 0-3 4 - -3-4 X 0

Exper Elcaon/Bayesan mehods combnng nernal & exernal daa wh exper opnon Ecology esmaon of fsh densy from gllne caches Operaonal Rsk esmaon of loss frequency and severy Ar-ranspor ndvdual&collecve rsk of ar-collsons Insurance prcng of polcy premum Markov Chan Mone Carlo mehods sgnal processng Recen Publcaons: D. D. Lambrgger EH P.V. Shevchenko CSIRO and M. V. Wührch EH 007. he Quanfcaon of Operaonal Rsk usng Inernal Daa Relevan Exernal Daa and Exper Opnons. he Journal of Operaonal Rsk. Hans Bühlmann EH P.V. Shevchenko CSIRO and M. Wührch EH 006. A oy Model for Operaonal Rsk Quanfcaon usng Credbly heory. he Journal of Operaonal Rsk. P.V. Shevchenko CSIRO and M. Wührch EH 006. Srucural Modellng of Operaonal Rsk usng Bayesan Inference: combnng loss daa wh exper opnons. he Journal of Operaonal Rsk 3 pp.3-6. CSIRO Mahemacal & Informaon Scences

Combnng nernal daa ndusry daa and exper opnons observaons CSIRO Mahemacal & Informaon Scences Bayesan nference X X X... X n θ θ θ... θk h X θ h X θ π θ ˆ π θ X h X ˆ π θ X h X θ π θ π θ h X θ ϕ parameers pror dsrbuon s esmaed by exper/ndusry daa lkelhood of nernal observaons g X n θ X n X π θ X dθ Combnng nernal daa exernal daa ˆ π θ X υ h X θ h υ θ π θ π θ h X θ h υ θ ˆ predcve dsrbuon and exper opnons pror dsrbuon s esmaed by ndusry daa lkelhood of nernal observaons lkelhood of exper opnons

Example: combnng exper opnon and nernal daa Annual couns N0 0 0 0 0 0 0 from Posson λ 0.6 exper opnons E[ ] 0.5 Pr[0.5 0.75] / 3 3.4 0. 5 ˆ λ ˆ α ˆ β ~ λ k k k k k k N λ λ α β he Bayesan esmaor wh Gamma pror he Maxmum Lkelhood esmaor α 3.4 β 0.5 arrval rae j 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0. 0. 0 esmae of he arrval rae vs year Bayesan esmae maxmum lkelhood esmae 0 3 6 9 5 year CSIRO Mahemacal & Informaon Scences

Parameer Rsk uncerany of parameers ϕ Z Qˆ Qˆ θˆ N Z X B 0.999 0.999 annual loss; Y g Z θ ˆ π θ Y dθ predcve dsrbuon ˆ π θ Y h Y θ π θ B 0.999 Qˆ 0.999 quanle of 0.999 quanle of 0.999 ϕ Z s pon esmaor e.g. maxmum lkelhood esmaor bas E[ Qˆ Normal approxmaon : ˆˆ π θ Y s ] Y X N pas g Z Y θˆ observaons Markov Chan Mone Carlo mehods Normal mean θˆcov I ln ˆ π θ Y ln ˆˆ π θ Y I j j θ ˆ θ θ j ˆ θ ; j I j ln ˆ π θ Y θ θ j θ ˆ θ P.V. Shevchenko 007. Esmaon of operaonal Rsk Capal Charge under Parameer Uncerany submed o he Rsk Magazne. CSIRO Mahemacal & Informaon Scences

Parameer Rsk uncerany of parameers 6000 0.999 quanle 5000 4000 3000 000 000 0 4 6 8 0 4 6 8 0 year MLE Bayesan RUE Comparson of he 0.999 quanle esmaors. Parameer uncerany s gnored by MLE bu s aken no accoun by Bayesan. MLE - maxmum lkelhood esmaor Bayesan - quanle of predcve dsrbuon Losses were smulaed from Posson0 and LN. Non-nformave consan pror were used. % bas 50% 00% 50% 00% 50% Lognormal Pareo Relave bas n he 0.999 quanle esmaor nduced by he parameer uncerany vs number of observaon years. Lognormal - losses were smulaed from Posson0 and LN. Pareo losses were smulaed from Posson0 and Pareo wh L. 0% 5 0 5 0 5 30 35 40 Year CSIRO Mahemacal & Informaon Scences

Kalman/Parcle fler echnques sae-space models On-lne monorng of waer qualy Healh survellance Modellng commodes/neres raes CSIRO Mahemacal & Informaon Scences

CSIRO Mahemacal & Informaon Scences Sae-space models: Kalman Fler Measuremen Equaon ranson Equaon C S B A F S S E F d dw dw E dw d X d dw d S d F S δ δ ρ σ κ κ δ α δ σ σ δ µ δ ln ln ] [ ] [ ; ] [ ] [ ln fuures prces yeld convenence spo prce; Commody spo models:e.g. -facor convenence yeld Ineres rae spo models:e.g. Vascek model r B A P r B A P dw d r dr P r ln ln ] exp[ ] [ bond prce - erm rae; shor σ γ α e X B A F r r r r ˆ ε r r r r X M X ˆ

Emergng over-archng research opcs Mxng nernal & exernal daa wh exper opnons credbly heory Bayesan echnques Dependence beween rsks: copula mehods srucural models Compound pon processes Modellng dsrbuon al: EV mxed dsrbuons splces Effcen Markov Chan Mone Carlo Mone Carlo fne elemen/fne dfference mehods Sae-space models sequenal Mone Carlo Kalman fler me seres analyss va chaos heory mehods Modellng runcaed/censored daa Nonlnear opmzaon wh consrans CSIRO Mahemacal & Informaon Scences

CSIRO Mahemacal & Informaon Scences Pavel Shevchenko Phone: 0 935 38 Emal: Pavel.Shevchenko@csro.au /Pavel.Shevchenko hank you