T HE F UTURE OF G RADUATE E DUCATION



Similar documents
Irish experiences of development of a new framework for PhD Education. Prof Alan Kelly, Dean of Graduate Studies University College Cork, Ireland

Structured PhD Implementation - Ireland

Professional Certificate in Asset Management

How To Make A Trinity Phd More Structure

Policy and Framework for Structured PhD Programmes. Adopted by Academic Council on 16 th February 2011

Professional Certificate in Asset Management

Framework. for. Structured PhD Programmes. at the. Dublin Institute of Technology

NOTE: the state does not currently fund non-eu PhD students, but watch in the future)

SUMMARY REPORT ON VALIDATION OF THE STRUCTURED ELEMENTS OF PhD PROGRAMME Q 3

UK Case Study: University of Edinburgh

Academic Titles in Trinity College Dublin

Responsibilities of Associate Deans and School Directors of Teaching and Learning

Handbook Postgraduate Research Degrees

Programme validation report. Validation Report BN525. Master of Business. (90 ECTS credits leading to NFQ Level 9 Award)

Programme Specification ( )

Application for a Teaching Award in the Sustained Excellence category Dr Jennifer McGaughey, School of Nursing and Midwifery

New Route PhD program in UK. Dr Tatiana Kalganova

Guide to Higher Level Apprenticeships

TRINITY COLLEGE DUBLIN AT BELFAST

Programme Review. Bachelor of Science (Honours) in Computing in Information Security and Digital Forensics BN120. Department of Informatics

SCHOOL OF ENGINEERING UNIVERSITY OF DUBLIN, TRINITY COLLEGE PhD DEGREE PROGRAMME. Eligible Level 9 Postgraduate Courses 2015/2016

/ Doctorate of Business Administration

Report on District Nurse Education in the United Kingdom

ABOUT LOUGHBOROUGH UNIVERSITY WOLFSON SCHOOL OF MECHANICAL, MANUFACTURING AND ELECTRICAL ENGINEERING LECTURER IN ENGINEERING PRODUCT DESIGN

Gender Equality GOOD PRACTICE IN SCHOOLS Examples from Athena SWAN award winners

Report to Údarás na hollscoile. Review of Research Accounting and Financial Administration Office

Royal Society of Chemistry Researcher Mobility Grant - Terms and Conditions 2015

Teaching and Learning Methods

Psychology Research Funding Opportunities in the Republic of Ireland

Management School. MRes. Business and Management Research Methods. University of Stirling Management School

Strathclyde Business School DBA Handbook 2015/16

UCD School of Information & Library Studies A Guide

Heriot-Watt University. Centrality of hospitality and tourism education Hart, Susan; O'Gorman, Kevin D; Alexander, Matthew. Heriot-Watt University

Strathclyde Business School DBA Handbook 2014/15

Psychology. Further information Admissions and Course Enquiries T: +44 (0) E: 210

Professional Certificate in Operational Risk Management (including Conduct Risk) 2015/2016

Policy on Collaborative Provision UNIVERSITY OF BIRMINGHAM COLLABORATIVE PROVISION POLICY

A PhD: WHAT, ME? UNIVERSITY OF READING. Graduate School. A PhD: WHAT, ME? A comprehensive guide to doing a PhD at Reading LIMITLESS DISCOVERY 1

POSTGRADUATE PROFESSIONAL DEVELOPMENT

Department of Process & Chemical Engineering

Workshop on JOB ANALYSIS, COMPETENCY FRAMEWORKS & PERFORMANCE MANAGEMENT SYSTEMS February 2013 Danilovgrad, Montenegro PROVISIONAL PROGRAMME

The University of Edinburgh. Teaching Programme Review. Scottish Studies. February 2010

Royal College of Physicians of Edinburgh EDUCATION, TRAINING AND STANDARDS DEPARTMENT VACANCY FOR DIRECTOR OF EDUCATION

How To Study At Newcastle University Business School

Programme Specification

UCD School of Electrical, Electronic & Communications Engineering Electricity Research Centre

MSc in Banking Practice and Management and Chartered Fellowship

Programme specification for the M Phil in Technology Policy

Roads for All. The Trunk Road Network. Disability Equality Scheme. and. Action Plan

Programme Specification for MSc Applied Sports Performance Analysis

Leadership in Action Briefing Pack: Cohorts 15 & 16

REPORT ON PROGRAMME VALIDATION/REVIEW Q 3. Master of Science in Product Management

Postgraduate study at Queen s. School of History and Anthropology

The Graduate School The Loughborough Doctoral Experience

Programme Specification

How To Get A Job At Swansea University

Training and Employment Opportunities in the Biopharma Industry

MSc in Physics Research For students entering in 2006

N/A N/A. Programme duration: 1 year full time - September (semester 1) and January (Semester 2) starts, 2 years parttime N/A.

UNIVERSITY OF WOLVERHAMPTON CONFIRMED

Procedures for Submission and Examination of Doctoral Degrees in University College Cork. October 2014

Doctor of Education - Higher Education

SCHOOL OF NURSING & MIDWIFERY

Programme Specification for the MSc in Computing Science

Skills & Demand in Industry

REPORT ON PROGRAMME VALIDATION Q 3. School of Biological Sciences, College of Sciences and Health

ROYAL HOLLOWAY University of London PROGRAMME SPECIFICATION

Developments in Supervision

onsa VISIONS AND ACTION PLAN FOR THE PHD DEGREE PROGRAMME AT THE AARHUS FACULTY OF HEALTH SCIENCES FACULTY OF HEALTH SCIENCES AARHUS UNIVERSITY

Coláiste Uí Gríofa. Faculty of Journalism and Media Communication

STUDY AT ONE OF THE WORLD S BEST UNIVERSITIES

Programme Information 2014/2015

Inside R. of experience and competence and relevant to developmental needs; and. adequate time to provide training.

National Framework for Doctoral Education

Skills required by new CHEMISTRY. graduates and their development in degree programmes

MA in International Development

Building Relationships through a Corporate Partnership Network The Dublin Institute of Technology Experience

Guidelines. for the structuring of doctoral programmes at the Graduate Academy at Friedrich Schiller University Jena of 29 January 2008

The mission of the Graduate College is embodied in the following three components.

MASTER S DEGREE IN FINE ART PROGRAMME DESCRIPTION Adopted by the Board of KHiB on 27 October 2011

(6) The supervision should ideally be carried out by a team of supervisors 1.

ABOUT LOUGHBOROUGH UNIVERSITY WOLFSON SCHOOL OF MECHANICAL, ELECTRICAL AND MANUFACTURING ENGINEERING

Course Specification

Guidelines for monitoring clinical academic training and progress. A guide for trainees, supervisors and assessors

MSc in Global Supply Chain and Logistics Management

BSc (Honours) PRODUCT DESIGN and INNOVATION

ROYAL HOLLOWAY University of London PROGRAMME SPECIFICATION

Programme Specification May 2012

Planning and Environmental Policy

The Physics of Innovation

KEELE MANAGEMENT SCHOOL

We have introduced the title of Associate Professor for our grade 9 academic staff, which is equivalent to Senior Lecturer.

2015 Entry. Research Degrees in the. Performing Arts / 1. Postgraduate Study

Develop an entrepreneurial approach to working supported by autonomous thinking and accountability.

ACADEMIC REGULATIONS FOR POSTGRADUATE DEGREES BY RESEARCH AND THESIS

Is a Graduate Degree in Your Future?

Train your staff as Accounting Technicians. Professional, Practical, Proven.

Supplementary guidance on the roles and contributions of psychology technical staff

Review of Department of Nursing and Midwifery Studies

Transcription:

T HE F UTURE OF G RADUATE E DUCATION IN C HEMISTRY AND P HYSICS R EPORT OF A D ISCUSSION M EETING HELD ON 18 NOVEMBER 2009 RA I

EXECUTIVE SUMMARY There has been extensive debate and discussion in the past few years on the nature of PhD education. A meeting held on 18 November 2009 at the Royal Irish Academy focused on PhD education in chemistry and physics, and their related interdisciplinary areas. The participants were largely those in third-level establishments who are responsible for delivering PhD education, and most chemistry and physics departments with PhD programmes in Ireland were represented. There was strong support for establishing structured PhD programmes in chemistry and physics for all PhD students. The consensus of the participants was that structured PhD programmes should be administered on a discipline-specific basis (i.e. in chemistry or in physics) and that interdisciplinary PhD programmes exist in a common framework with disciplinespecific programmes. Module sharing across programmes should be pursued to avoid duplication. Structured PhD programmes will require additional support and funding in order to maintain the excellent international reputation of PhD graduates from Irish Universities. In addition to moving to a four-year cycle for student stipends and fees, funding is required principally for academic (academic course delivery), technical (e.g running video-conference facilities) and administrative (organisational) staff. The professional skills part of the structured PhD should largely be delivered early in the PhD programme, so as to improve the efficiency of the students in their research. It should be delivered, where possible, by instructors aware of the subject areas of chemistry and physics. The academic courses of the structured PhD should be relevant for each student's PhD research, and typically could total on the order of 30 ECTS. Industry should be encouraged to engage in PhD education, for example through the IRCSET Enterprise Scheme. (1)

BACKGROUND The nature of PhD education is changing in response to the requirements of society. The traditional apprentice model of a research-only PhD is being challenged on the grounds that the skill-set that emerges is too narrow and could benefit from the inclusion of appropriately focused academic and professional skills courses. This applies equally to those seeking careers in industry and commerce or within the academic system. However, chemistry and physics PhD graduates have always been actively recruited to industry, so it is necessary to probe deeper into whether, and why, changes to the traditional model are required in these disciplines. Furthermore, although several meetings 1 have been held in Ireland in recent years to discuss potential changes, they have generally not engaged the majority of academic staff responsible for delivering change, nor have they addressed the issues specific to chemistry and physics. The Discussion Meeting held on 18 November 2009, and organised by the Chemical and Physical Sciences Committee of the Royal Irish Academy, was focused on the particular requirements of chemistry and physics PhD education. The 60 participants were largely academic staff from chemistry and physics departments in Universities and Institutes of Technology throughout Ireland. Given that the participants had collectively graduated many hundreds of PhD students in their careers, and had a wealth of experience in educating young chemists and physicists at this crucial stage of their career, it was deemed important that this constituency be actively involved in determining the future direction of PhD education in their subject area. At the same time, the participants fully recognised that others with a legitimate interest, such as educators, administrators, those working in industry and, not least, the students themselves, must be engaged in discussions of any changes that might be made. The meeting was organised around four breakout sessions followed by an extended discussion period. Prior to this, three presentations on successful structured PhD programmes were delivered, and these set the scene for the subsequent discussions. The presentations were: Dublin Chemistry, Dr Susan Quinn, UCD SUPA 2 Graduate School in Physics, Dr John Jeffers, University of Strathclyde INSPIRE Graduate School, Dr Jim Greer, Tyndall National Institute T HE FOUR BREAKOUT SESSION THEMES WERE: 1 Graduate training in chemistry (Chair: Professor John Kelly, TCD) 2 Graduate training in physics (Chair: Professor Anthony Murphy, NUIM) 3 Professional and generic skills, links to industry (Chair: Dr Eamon Judge, Eli Lilly) 4 Funding, management and resources (Chair: Professor Frank Hegarty, UCD) 1 See e.g. http://www.4thlevelireland.ie 2 Scottish Universities Physics Alliance (2)

THE MAIN POINTS S HOULD THERE BE STRUCTURED PHD PROGRAMMES? There was very strong agreement that a structured PhD was in the best interests of the PhD students. A research project must remain the principal focus of the PhD, but all students should be given the opportunity to take a number of academic courses in the discipline relevant to their PhD topic. In addition, appropriate professional skills courses (already taken by many PhD students) should be offered to all students. Since some Universities were already moving towards structured PhDs in chemistry and physics, there emerged a strong case for a national coordinated approach, and perhaps formal accreditation through, for example in physics, The Institute of Physics. S HOULD PHD PROGRAMMES BE DISCIPLINE-SPECIFIC? Historically, many PhD projects involving chemistry and physics have been interdisciplinary in nature, and in recent years interdisciplinary research has become the norm for many researchers in chemistry and physics. There is a clear need to provide the right academic basis for interdisciplinary research, and the structured PhD can provide this basis. For example, there is a nanotechnology structured PhD programme emerging in Ireland (INSPIRE 3 ) that involves both chemistry and physics as well as engineering and materials science. The consensus of the participants was that the academic course content of all structured PhD programmes involving chemistry and physics should be open to all students in chemistry and physics, and should be coordinated by discipline-specific graduate committees within schools/departments of chemistry and physics. In essence, each school/department would offer a number of academic courses open to all students, some of which would form part of specific interdisciplinary PhD programmes. W HAT KIND OF PROFESSIONAL SKILLS ARE NEEDED? A graduate who had directly joined a company immediately after their undergraduate degree would have accumulated typically four years experience during the time that another student would take to complete a PhD. The employed graduate would have acquired many skills needed to perform efficiently and successfully in a business environment. PhD postgraduates need to acquire aspects of this skill-set during their training, not only to compete within a company environment but equally to improve the quality of their PhD training and research. This particularly applies to time-management and being able to work both independently and in a team as appropriate, qualities that are required both for a PhD and for a post in a company. The ability to communicate clearly (both verbally and in writing) is also an essential skill. In most well-organised research groups, this ability is developed 3 See http://www.inspirenano.com/teaching---learning.aspx (3)

by giving regular oral presentations and written reports. The submission of a substantial written report (and its viva voce defence) after the first year are also means of assessing that these skills are being attained. Because they have the potential to improve the research of the student, such professional skills courses should mainly be provided towards the start of the PhD. However, other courses such as those in entrepreneurship are possibly best taken closer to the end of the period of study. W HAT SHOULD BE THE NATURE AND NUMBER OF ACADEMIC COURSES? The consensus of the participants was that we should not be prescriptive on an all-ireland basis, but encourage local diversity, both as regards the content and assigned number of courses. Each PhD awarding institution will, in any case, have its own local requirements for PhD students. On the basis that a 5 ECTS 4 course (125 hours student effort) would involve an order of 20 hours of formal lectures and some form of assessment (oral exam, written exam, project and/or class work), the figure of 30 ECTS the equivalent of 6 such courses was suggested as being a non-prescriptive guideline, being concentrated in the earlier years of the PhD. These should be academic courses, specifically at the PhD-level, and not, in general, merely advanced undergraduate courses offered to PhD students. Depending on the needs of the students, it may be required to undertake a few core courses, followed by optional subjects or preceded by lower-level preparatory courses. A blend of delivery formats was considered the best approach, with continuous assessment rather than formal exams appropriate in some subjects. While many courses can be delivered by staff in the home university, there is much to be gained by sharing courses between the various schools/departments across Ireland. This is especially the case for specialist courses, where the number of interested students in a particular University may be small. One approach to effective delivery of such courses is video-conferencing (as has been successfully achieved within SUPA). Another is through the organisation of workshops or multi-day summer schools. These allow the participation of invited international experts, as well as local academics or industrialists, and have already been successfully run within the Dublin Regional Higher Education Alliance. Consideration should be given to organising these master-classes/workshops as satellite events to annual all-ireland postgraduate meetings. W HAT IS THE ROLE OF INDUSTRY? Many research areas in chemistry and physics involve industry, either directly or indirectly, and many PhD supervisors in chemistry and physics have good connections to industry. Physics (and engineering) industry in Ireland are increasingly involved in the IRCSET Enterprise PhD funding scheme, and currently about 60 physics/engineering PhD students are involved in IRCSET collaborative industry projects. In contrast, there are relatively few chemistry PhD students (about 20) engaged in such schemes. This issue needs to be urgently addressed by chemistry schools/departments and the chemistry-based industry in Ireland: there is a clear benefit both for industry and researchers in such interaction. The importance of the IRCSET Enterprise Scheme was also highlighted in the recent report by the Advisory Council for Science, Technology and Innovation (ACSTI): The Role of PhDs in the Smart Economy. Industry might also be a source of guest lecturers, both for research and business topics. 4 ECTS = European Credit Transfer System (4)

OTHER ISSUES Given the specialist nature of advanced PhD-level courses and the widely-distributed community of potential participants, it was strongly recommended that video-conferencing be used to deliver many of the formal courses, in addition to intensive schools and workshops. Both would help to create a sense of community amongst PhD students in each discipline in Ireland. The SUPA Graduate School in Scotland uses video-conferencing regularly and this is regarded as very successful. The key issue here (apart from the initial set-up cost) is that it is essential to have dedicated technical support to ensure the VC facility works seamlessly, so that the lecturer and students can focus on the science. There is also a scheduling issue that requires administrative support. The issue of current PhD oral examination procedures was also raised. Whilst the private, in-depth oral exam is still preferred, many participants strongly recommended preceding this with a public talk, as is already done at some universities. W HAT ARE THE SUPPORT AND FUNDING IMPLICATIONS? It is accepted that Irish PhD graduates in chemistry and physics are well-regarded internationally, and that the quality of research apprenticeship offered is high. Maintaining and enhancing this high-quality training for a four year structured PhD will require significant support. There was considerable concern expressed over the possibility that the adoption of a structured PhD programme without adequate funding, in particular for high-level academic courses, would damage our international reputation and be a disservice to future PhD students. Graduate courses need to be properly resourced, bearing in mind that the smaller numbers of students for these courses (even with the pooling of students via video-conferencing) requires a larger staff-to-student ratio than for undergraduate courses. The issue of staff resources was felt to be the main barrier to the success of structured PhD programmes: a structured PhD programme based on volunteer effort from a few dedicated PhD supervisors is not sustainable in the longer term. A second resource issue is the provision, and more importantly the maintenance, of video-conference facilities at each university/iot. Experience from the SUPA Graduate School shows that it is essential to have dedicated technical support at each site, so that lecturers and participants can focus on the learning process rather than getting bogged down in technical/communication problems. A third essential resource for structured PhDs is the need for high-level, subject-specific, administrative support, not only to maintain proper records and provide coordination services (e.g. VC scheduling) but also to provide a collegiate focus and accessible advice service for PhD students. An indicative staffing appointment of one high-level administrator for every one hundred PhD students was suggested. The above requirements are of course additional to the extra funding needed to provide a minimum of four years support (stipends and fees) for PhD students. At present, only SFI has committed to the provision of four-year support, with IRCSET retrenching to three-year support in 2009/2010. (5)

CONCLUSIONS All schools/departments of chemistry and physics involved in PhD education in Ireland should establish a structured PhD programme for all their students. They should engage their University Management (including Deans of Graduate Studies) to ensure that adequate resources are made available and to ascertain that inter nationally recognised standards are achieved and main tained. The sharing of specialist academic courses using video- con ferencing and joint intensive schools is encouraged. ACKNOWLEDGEMENTS This report was prepared by the Chemical and Physical Sciences Committee of the Royal Irish Academy. We are grateful to The Institute of Physics in Ireland and the Royal Society of Chemistry for co-sponsoring the meeting. (6)

VENUE ROYAL IRISH ACADEMY, 19 DAWSON STREET, DUBLIN 2 T HE F UTURE OF G RADUATE E DUCATION IN C HEMISTRY AND P HYSICS Wednesday 18th November 2009 10:00 ARRIVAL (Coffee) 10:30 INTRODUCTION AND WELCOME 10:45 EXAMPLES OF GRADUATE SCHOOLS Dublin Chemistry; Dr Susan Quinn, SUPA* Grad School in Physics; Dr John Jeffers, University of Strathclyde INSPIRE Grad School; Dr Jim Greer, Tyndall National Institute 12:00 BREAKOUT SESSIONS A. Chemistry Core B. Physics Core C. Professional & generic skills, links to industry D. Funding, management and resources 13:00 LUNCH (in-house) 14:00 DISCUSSION FORUM Reports by spokespersons of breakout groups Open discussion 15.45 CLOSE AGENDA * SUPA: Scottish Universities Physics Alliance RA I (7)

DAVID BARR STEPHEN BELL ENDA BERGIN CARMEL BRESLIN NOEL BUCKLEY EAMONN CASHELL JOHN CASSIDY STEPHEN CONNON SEÁN CORISH CHRIS DAINTY REBEKAH D ARCY AP DESILVA JOHN DONEGAN JOHN DORAN PETER DUFFY PATRICIA ENNIS ANDREA ERXLEBEN STEPHEN FAHY NICK FLETCHER WESTLEY FORSYTH PETER GALLAGHER SHEILA GILHEANY DAVID GRAYSON JIM GREER ALISON HACKETT FRANK HEGARTY GRAEME HORLEY JOHN JEFFERS LEIGH JONES EAMON JUDGE JOHN KELLY TIA KEYES MARTIN LEAHY DONAL LEECH LUIS LEON CONOR LONG LIAM MCDONNELL MICHAEL MCGLINCHEY JOHN MCINERNEY EILISH MCLOUGHLIN TERRY MCMASTER PETER MITCHELL RORY MORE O'FERRALL PAUL MURPHY ANTHONY MURPHY GERARD O'CONNOR COLM O'DWYER CREIDHE O'SULLIVAN STEPHEN O'SULLIVAN DEIRDRE POWELL SUSAN QUINN SONIA RAMIREZ TOM RAY DENISE ROONEY MICHAEL RYAN OLIVER RYAN KEVIN RYAN JUSTIN SYNNOTT NEIL TRAPPE BRIAN VOHNSEN BLAINAID WHITE JOHN WOOD Royal Society of Chemistry, UK Queen s University Belfast University of Limerick Cork Institute of Technology Dublin Institute of Technology Queen's University Belfast Dublin Institute of Technology Dublin Institute of Technology University College Cork Queen s University Belfast Irish Universities Association Institute of Physics in Ireland Tyndall National Institute Institute of Physics in Ireland Science Foundation Ireland University of Strathclyde Eli Lilly Dublin City University University of Limerick Dublin City University Cork Institute of Technology University College Cork Dublin City University (Director of CASTeL) Bristol Centre for Functional Nanomaterials University of Limerick Dublin City University General participant Dublin Institute for Advanced Studies Science Foundation Ireland University of Limerick Irish Research Council for Science, Engineering & Technology Dublin City University Cork Institute of Technology PARTICIPANTS LIST (8)