Paraspinal Surface Electromyography (SEMG) to Evaluate and Monitor Back Pain. Original Policy Date 12:2013



Similar documents
ELECTROMYOGRAPHY (EMG), NEEDLE, NERVE CONDUCTION STUDIES (NCS) AND QUANTITATIVE SENSORY TESTING (QST)

DIFFERENTIAL DIAGNOSIS OF LOW BACK PAIN. Arnold J. Weil, M.D., M.B.A. Non-Surgical Orthopaedics, P.C. Atlanta, GA

Electrodiagnostic Testing

6/3/2011. High Prevalence and Incidence. Low back pain is 5 th most common reason for all physician office visits in the U.S.

Lumbar Disc Herniation/Bulge Protocol

CMS Imaging Efficiency Measures Included in Hospital Outpatient Quality Data Reporting Program (HOP QDRP) 2009

Health Benchmarks Program Clinical Quality Indicator Specification 2013

Ms. Jackson is the Manager of Health Finance and Reimbursement, Division of Health Policy and Practice Services, Washington, DC.

Sample Treatment Protocol

UTILIZING STRAPPING AND TAPING CODES FOR HEALTH CARE REIMBURSEMENT:

Acute Low Back Pain. North American Spine Society Public Education Series

CLINICAL PRACTICE GUIDELINES FOR MANAGEMENT OF LOW BACK PAIN

THE LUMBAR SPINE (BACK)

LOW BACK PAIN; MECHANICAL

American Chiropractic Association. Commentary on Centers for Medicare and Medicaid Services (CMS)/PART. Clinical Documentation Guidelines

Clinical guidance for MRI referral

How To Get Reimbursed For A Car Accident

a) Nerve conduction studies (NCS) test the peripheral nervous system for:

Measure Title X RAY PRIOR TO MRI OR CAT SCAN IN THE EVAULATION OF LOWER BACK PAIN Disease State Back pain Indicator Classification Utilization

How To Cover Occupational Therapy

Objective analysis of vertebral subluxations in children poses a challenge to many chiropractors.

Employees Compensation Appeals Board

Notice of Independent Review Decision DESCRIPTION OF THE SERVICE OR SERVICES IN DISPUTE:

Whiplash and Whiplash- Associated Disorders

Information on the Chiropractic Care of Lower Back Pain

.org. Herniated Disk in the Lower Back. Anatomy. Description

Preventing & Treating Low Back Pain

EMG and the Electrodiagnostic Consultation for the Family Physician

Chronic Low Back Pain

ICD-10 for the Chiropractic Procrastinator

Facet and Axial Spine Pain

.org. Cervical Spondylosis (Arthritis of the Neck) Anatomy. Cause

Low Back Pain Protocols

Careful Coding: Headaches

United States Department of Labor Employees Compensation Appeals Board DECISION AND ORDER

Nonoperative Management of Herniated Cervical Intervertebral Disc With Radiculopathy. Spine Volume 21(16) August 15, 1996, pp

Herniated Disk. This reference summary explains herniated disks. It discusses symptoms and causes of the condition, as well as treatment options.

Low Back Injury in the Industrial Athlete: An Anatomic Approach

WHEN TO ORDER; HOW TO INTERPRET

Advanced Practice Provider Academy

The information contained in these notes is for educational purposes and is not intended to be and is not legal advice.

Cervical Spondylosis (Arthritis of the Neck)

Miscellaneous Services

Chiropractic Medicine and Chronic Pain Hands-on Demonstration. Tom Arnold, DC, APC, DAAMLP UNM Pain Center & Private Practice Albuquerque, New Mexico

Lumbar Spinal Stenosis

Chiropractor Compliance Summary Documentation Compliance Criteria for Chiropractic Claims Submitted to the Funds

Coding for OMT. Rance McClain, DO Assistant Professor Family Medicine KCUMB-COM

Neck Pain Overview Causes, Diagnosis and Treatment Options

The Furcal nerve. Ronald L L Collins,MB,BS(UWI),FRCS(Edin.),FICS (Fort Lee Surgical Center, Fort Lee,NJ)

December 29, Dear Acting Administrator Tavenner:

OUTPATIENT PHYSICAL AND OCCUPATIONAL THERAPY PROTOCOL GUIDELINES

Open Discectomy. North American Spine Society Public Education Series

BOTOX Injection (Onabotulinumtoxin A) for Migraine Headaches [Preauthorization Required]

Practice Guidelines For Low Back Pain

X Stop Spinal Stenosis Decompression

Introduction: Anatomy of the spine and lower back:

Return to same game if sx s resolve within 15 minutes. Return to next game if sx s resolve within one week Return to Competition

Review the different reasons for documentation and goals for each Discuss strategies to prove medical necessity for treatment Review documentation

Clinical Reasoning The patient presents with no red flags and no indications of maladaptive behaviour in regard to fear avoidance.

Diagnosis and Management for Chronic Back Pain: Critical for your Recovery

Back & Neck Pain Survival Guide

Electrodiagnostic Testing

Discogenic Low Backache A clinical and MRI correlative study A DISSERTATION SUBMITTED TO UNIVERSITY OF SEYCHELLES AMERICAN INSTITUTE OF MEDICINE

NON SURGICAL SPINAL DECOMPRESSION. Dr. Douglas A. VanderPloeg

ICD-9 Basics Study Guide

Aetna Nerve Conduction Study Policy

33 % of whiplash patients develop. headaches originating from the upper. cervical spine

Change is Coming in 2014! ICD-10 will replace ICD-9 for Diagnosis Coding

Spinal Decompression

Name of Policy: Medical Criteria for Physical/Occupational Therapy and Osteopathic/Chiropractic Manipulative Treatment

Temple Physical Therapy

Clinic Director and Chiropractic Physician, Hiler Chiropractic, PA, Naples, Florida, January 2002 to present

INFORMATION FOR YOU. Lower Back Pain

Transmittal 55 Date: MAY 5, SUBJECT: Changes Conforming to CR3648 for Therapy Services

Webinar title: Know Your Options for Treating Severe Spasticity

Coding and Payment Guide for Behavioral Health Services

University of Evansville Doctor of Physical Therapy Program

Clinical Guideline. Low Back Pain Orthopaedics. Princess Alexandra Hospital Emergency Department. 1 Purpose. 2 Background

Seven Myths About Back Pain

Update: The Care of the Patient with Amyotrophic Lateral Sclerosis

How To Get An Mri Of The Lumbar Spine W/O Contrast

Physical Medicine and Rehabilitation - Physical Therapy and Medical Massage Therapy

SPINAL STENOSIS Information for Patients WHAT IS SPINAL STENOSIS?

BACK PAIN MEASURES GROUP OVERVIEW

LUMBAR. Hips R L B R L B LUMBAR. Hips R L B R L B LUMBAR. Hips R L B R L B

Al-Eisa E, Egan D, Deluzio K, & Wassersug R (2006). Spine; 31(3): E71-79.

Osteopathic Manipulative Treatment is a distinct and separate procedure,

Standard of Care: Cervical Radiculopathy

Test Request Tip Sheet

eglobaltech CBR Electrodiagnostic Testing Moderator: Molly Wesley July 09, :00 p.m. ET

Spinal Injections. North American Spine Society Public Education Series

Disc herniation or muscle spasm Lethal diseases. Lethal diseases. Usually sudden in onset; and sometimes rapid or gradual

Spinal Surgery Functional Status and Quality of Life Outcome Specifications 2015 (01/01/2013 to 12/31/2013 Dates of Procedure) September 2014

Billing and Coding Guidelines: NEURO-005 Nerve Conduction Studies and Electromyography. Contractor Name Wisconsin Physicians Service (WPS)

Occupational Therapy

Herniated Lumbar Disc

How To Treat Pain With Pain Management

National Medical Policy

QUESTIONABLE BILLING FOR MEDICARE ELECTRODIAGNOSTIC TESTS

Low back pain. Quick reference guide. Issue date: May Early management of persistent non-specific low back pain

Transcription:

MP 2.01.25 Paraspinal Surface Electromyography (SEMG) to Evaluate and Monitor Back Pain Medical Policy Section Medicine Issue 11:201212:2013 Original Policy Date 12:2013 Last Review Status/Date Reviewed with literature search/12:2013 Return to Medical Policy Index Disclaimer Our medical policies are designed for informational purposes only and are not an authorization, or an explanation of benefits, or a contract. Receipt of benefits is subject to satisfaction of all terms and conditions of the coverage. Medical technology is constantly changing, and we reserve the right to review and update our policies periodically. Description Surface electromyography (SEMG), a noninvasive procedure that records the summation of muscle electrical activity, has been investigated as a technique to evaluate the physiologic functioning of the back. In addition, this procedure has been studied as a technique to evaluate abnormal patterns of electrical activity in the paraspinal muscles in patients with back pain symptoms, such as spasm, tenderness, limited range of motion (ROM), or postural disorders. Identifying the pathogenesis of back pain is a challenging task, in part due to the complex anatomy of the back, which includes vertebrae, intervertebral discs, facet joints, spinal nerve roots, and numerous muscles. For example, back pain may be related to osteoarthritis, disc disease, subluxation, or muscular pathology, such as muscle strain or spasm. Moreover, due to referred pain patterns, the location of the pain may not be anatomically related to the pathogenesis of the pain. For example, buttock or leg pain may be related to pathology in the spine. In addition to the diagnostic challenges of back pain is the natural history of acute back pain. The majority of cases of acute low back pain will resolve with conservative therapy, such as physical therapy, and continuing normal activities within limits permitted by the pain. Thus, initial imaging or other diagnostic testing is generally not recommended unless red flag warning signs are present or the pain persists for longer than 4-6 weeks. Red flag findings include significant trauma, history of cancer, unrelenting night pain, fevers or chills, and progressive motor or sensory deficits. Aside from physical examination, diagnostic tests include imaging technologies, such as magnetic resonance imaging (MRI), designed to identify pathology (e.g., bulging discs) or tests such as discography to localize the abnormality by reproducing the pain syndrome. However, due to their lack of specificity, all diagnostic tests must be carefully interpreted in the context of the clinical picture. For example, 5% of asymptomatic patients will have bulging discs as identified by MRI. Therefore, the presence of a bulging disc may only be clinically significant if well correlated with symptoms. Assessment of the musculature may focus on ROM or strength exercises.

In contrast to anatomic imaging, SEMG, which records the summation of muscle activity from groups of muscles, has been investigated as a technique to evaluate the physiologic functioning of the back. A noninvasive procedure, SEMG is contrasted with needle electromyography, an invasive procedure in which the electrical activity of individual muscles is recorded. Paraspinal SEMG, also referred to as paraspinal EMG scanning, has been explored as a technique to evaluate abnormal patterns of electrical activity in the paraspinal muscles in patients with back pain symptoms such as spasm, tenderness, limited ROM, or postural disorders. The technique is performed using 1 or an array of electrodes placed on the skin surface, with recordings made at rest, in various positions, or after a series of exercises. Recordings can also be made by using a handheld device, which is applied to the skin at different sites. Electrical activity can be assessed by computer analysis of the frequency spectrum (i.e., spectral analysis), amplitude, or root mean square of the electrical action potentials. In particular, spectral analysis that focuses on the median frequency has been used to assess paraspinal muscle fatigue during isometric endurance exercises. Paraspinal SEMG has been researched as a technique to establish the etiology of back pain and also has been used to monitor the response to therapy and establish physical activity limits, such as assessing capacity to lift heavy objects or ability to return to work. Paraspinal SEMG is an office-based procedure that may be most commonly used by physiatrists or chiropractors. The following clinical applications of the paraspinal SEMG have been proposed: clarification of a diagnosis (i.e., muscle, joint, or disc disease) selection of a course of medical therapy selection of a type of physical therapy preoperative evaluation postoperative rehabilitation follow-up of acute low back pain evaluation of exacerbation of chronic low back pain evaluation of pain management treatment techniques Regulatory Status SEMG devices approved by the U.S. Food and Drug Administration (FDA) include those that use a single electrode or a fixed array of multiple surface electrodes. Several FDA-approved devices combine surface EMG along the spine with other types of monitors. For example, in 2007, the Insight Discovery (Fasstech; Burlington, MA) was cleared for marketing through the 510(k) process. The device contains 6 sensor types, 1 of which is surface EMG. The indications include measuring bilateral differences in surface EMG Policy Paraspinal surface electromyography (SEMG) is considered investigational as a technique to diagnose or monitor back pain.

Policy Guidelines There is no specific CPT code for surface electromyography (SEMG) (other than 96002, dynamic surface electromyography, during walking or other functional activities, 1 12 muscles, which is part of the CPT coding for motion analysis). Existing codes for EMG (95860-95872) explicitly describe needle EMG, in which a needle is inserted into an individual muscle. Therefore, these codes do not describe surface EMG. One of the following nonspecific CPT codes might be used: 95999: Unlisted neurological or neuromuscular diagnostic procedure 97799: Unlisted physical medicine/rehabilitation service or procedure 99199: Unlisted special service, procedure, or report There is a HCPCS code that is specific to surface EMG (S3900). Rationale This policy was originally created in 2000 and was updated regularly with searches of the MEDLINE database. The most recent literature search was performed for the period September 2011 through September 2012. Following is a summary of the key literature to date: Surface electromyography (SEMG) has been used as a research tool to evaluate the performance of paraspinal muscles in patients with back pain and to further understand the etiology of low back pain. (1-5) However, validation of its use as a clinical diagnostic technique involves a sequential 3-step procedure as follows: 1. Technical performance of a device is typically assessed by studies that compare test measurements with a gold standard and those that compare results taken with the same device on different occasions (test-retest). 2. Diagnostic performance is evaluated by the ability of a test to accurately diagnose a clinical condition in comparison with the gold standard. The sensitivity of a test is the ability to detect a disease when the condition is present (true-positive), while specificity indicates the ability to detect patients who are suspected of disease but who do not have the condition (true-negative). Evaluation of diagnostic performance, therefore, requires independent assessment by the 2 methods in a population of patients who are suspected of disease but who do not all have the disease. 3. Evidence related to improvement of clinical outcomes with use of this testing assesses the data linking use of a test to changes in health outcomes (clinical utility). While in some cases, tests can be evaluated adequately using technical and diagnostic performance, when a test identifies a new or different group of patients with a disease; randomized trials are needed to demonstrate impact of the test on the net health outcome. The following discussion focuses on these three steps as they apply to SEMG. Technical performance Several studies using different SEMG devices have suggested that paraspinal SEMG, in general, is a reliable technique, based on coefficients of variation or test-retest studies. (1, 6) No

studies were identified that compared the performance of SEMG to a gold standard reference test. Diagnostic performance No articles that compare the results of SEMG (which tests groups of muscles) with needle electromyography (which tests individual muscles) for diagnosing any specific muscle pathology were identified in literature searches. However, the pathology of individual muscles (i.e., radiculopathy, neuropathy, etc.) may represent a different process than the pathology of muscle groups (i.e., muscle strain, spasm, etc.), and thus SEMG may be considered by its advocates as a unique test for which there is currently no gold standard. Nevertheless, even if one accepts this premise, there are inadequate data to evaluate the diagnostic performance of SEMG. For example, no articles were identified in the published peer-reviewed literature that established definitions of normal or abnormal SEMG. In some instances, asymmetrical electrical activity may have been used to define abnormality, results may be compared to a normative data base. However, there was no published literature defining what degree of asymmetry would constitute abnormality or how a normative database was established. (7) In the absence of a gold standard diagnostic test, correlation with the clinical symptoms and physical exam is critical. De Luca has published a series of studies investigating a type of SEMG called the Back Analysis System (BAS), consisting of surface electrodes and other components to measure the electrical activity of muscles during isometric exercises designed to produce muscle fatigue. (2) Using physical exam and clinical history as a gold standard, the author found that BAS was able to accurately identify control and back pain patients 84% and 91% of the time, respectively, with the values increasing to 100% in some populations of patients. (Accuracy is the sum of true-positive and true-negative results.) However, these studies were not designed as a clinical diagnostic tool per se but were intended to investigate the etiology of back pain and to investigate muscular fatigue patterns in patients with and without back pain. A 2010 study from Hong Kong used a different type of analysis of SEMG findings called dynamic topography. (8) Using SEMG, they evaluated 20 healthy men and 15 men with lowback pain and found different dynamic topography e.g., a more symmetric pattern in healthy controls. After physical therapy, the dynamic topography images of back pain patients were more similar to the healthy controls on some of the parameters that were assessed. However, there are no data that analyze how changes in the SEMG correlate to clinical response, whether a clinical response in the face of persisting SEMG abnormalities suggests ongoing pathology, or whether persistent symptoms in the face of a normal SEMG represent malingering. Improvement of clinical outcomes Several articles describe the use of SEMG as an aid in classifying low back pain. (9-11) Much of the research in this application has focused on the use of spectral analysis to assess muscle fatigability. However, it is unclear how this information may be used in the management of the patient. For example, while the innovators of the BAS system indicate that SEMG can suggest potential therapies by distinguishing deconditioning from muscle inhibition secondary to painrelated behavior, (11) no clinical studies describe the use of SEMG in suggesting therapy. In another application of SEMG, Arena and colleagues assessed the amplitude of SEMG recordings as a measure of paraspinal muscle tension in 66 patients and reported that the degree of muscle tension did not correlate with pain levels. These findings raised questions

about the role of biofeedback, muscle relaxants, or other therapies designed to reduce muscle tension. (12) While SEMG may be used to objectively document muscle spasm or other muscular abnormalities, it is unclear how such objective documentation would supplant or enhance clinical evaluation, or how this information would be used to alter the treatment plan. Part of the difficulty in clinical interpretation is understanding to what extent the SEMG abnormalities are primary or secondary. In addition, as noted in the Background section, no specific workup is recommended for acute low back pain without warning signs. There are no data regarding the final health outcome. For example, SEMG has been proposed as a technique to differentiate muscle spasm from muscle contracture, with muscle spasm treated with relaxation therapy and contracture treated with stretching exercises. However, there are no data to validate that such treatment suggested by SEMG results in improved outcomes. (13, 14) A review of spinal muscle evaluation in low-back pain patients, published in 2007, indicates that the validity of SEMG remains controversial. (15) The authors note that although many studies show increased fatigability of the paraspinal muscles in patients with low back pain, it is not known whether these changes are causes or consequences of the low back pain. Also, the considerable inter-individual variability and the absence of normative data complicate the description of normal or abnormal profiles, thereby limiting the diagnostic usefulness of SEMG. Summary There are inadequate data on the technical and diagnostic performance of paraspinal SEMG compared to a gold standard reference test. Moreover, there is insufficient evidence regarding how findings from paraspinal SEMG impact patient management and/or how use of the test improves health outcomes. Thus, paraspinal surface electromyography for diagnosing and monitoring back pain is considered investigational. Practice Guidelines and Position Statements In 2007, the American College of Physicians and the American Pain Society issued a joint clinical guideline on the diagnosis and treatment of low-back pain. The guideline did not specifically mention paraspinal surface electromyography. (16) It included the recommendations: Clinicians should not routinely obtain imaging or other diagnostic tests in patients with nonspecific low back pain (strong recommendation, moderate-quality evidence). Clinicians should perform diagnostic imaging and testing for patients with low back pain when severe or progressive neurologic deficits are present or when serious underlying conditions are suspected on the basis of history and physical examination (strong recommendation, moderate-quality evidence). In a 2007 guideline from the American College of Occupational and Environmental Medicine (ACOEM), surface electromyography is not recommended as a technique for evaluating and managing low back disorders. (17) Medicare National Coverage

No national coverage determination. References: 1. Cram JR, Lloyd J, Cahn TS. The reliability of EMG muscle scanning. Int J Psychosom 1994; 41(4-Jan):41-5. 2. De Luca CJ. Use of the surface EMG signal for performance evaluation of back muscles. Muscle Nerve 1993; 16(2):210-6. 3. Hanada EY, Johnson M, Hubley-Kozey C. A comparison of trunk muscle activation amplitudes during gait in older adults with and without chronic low back pain. PM R 2011; 3(10):920-8. 4. Jones SL, Hitt JR, Desarno MJ et al. Individuals with non-specific low back pain in an active episode demonstrate temporally altered torque responses and direction-specific enhanced muscle activity following unexpected balance perturbations. Exp Brain Res 2012; 221(4):413-26. 5. Sheeran L, Sparkes V, Caterson B et al. Spinal position sense and trunk muscle activity during sitting and standing in nonspecific chronic low back pain: classification analysis. Spine (Phila Pa 1976) 2012; 37(8):E486-95. 6. Ahern DK, Follick MJ, Council JR et al. Reliability of lumbar paravertebral EMG assessment in chronic low back pain. Arch Phys Med Rehabil 1986; 67(10):762-5. 7. Gentempo P, Kent C. Establishing medical necessity for paraspinal EMG scanning. Chiropractic: J Chiropractic Res Clin Invest 1990; 3(1):22-5. 8. Hu Y, Siu SH, Mak JN et al. Lumbar muscle electromyographic dynamic topography during flexion-extension. J Electromyogr Kinesiol 2010; 20(2):246-55. 9. Humphrey AR, Nargol AV, Jones AP et al. The value of electromyography of the lumbar paraspinal muscles in discriminating between chronic-low-back-pain sufferers and normal subjects. Eur Spine J 2005; 14(2):175-84. 10. Peach JP, McGill SM. Classification of low back pain with the use of spectral electromyogram parameters. Spine 1998; 23(10):1117-23. 11. Roy SH, Oddsson LI. Classification of paraspinal muscle impairments by surface electromyography. Phys Ther 1998; 78(8):838-51. 12. Arena JG, Sherman RA, Bruno GM et al. Electromyographic recordings of low back pain subjects and non-pain controls in six different positions: effect of pain levels. Pain 1991; 45(1):23-8. 13. Ellestad SM, Nagle RV, Boesler DR et al. Electromyographic and skin resistance responses to osteopathic manipulative treatment for low-back pain. J Am Osteopath Assoc 1988; 88(8):991-7. 14. Bittman B, JR C. Surface electromyography: an electrophysiologic alternative in pain management.presented at the American Pain Society. Illinois1992.

15. Demoulin C, Crielaard JM, Vanderthommen M. Spinal muscle evaluation in healthy individuals and low-back-pain patients: a literature review. Joint Bone Spine 2007; 74(1):9-13. 16. Diagnosis and treatment of low back pain: a joint clinical practice guideline from the American College of Physicians and the American Pain Society. 2007. Available online at: www.guideline.gov. Last accessed October, 2012. 17. American College of Occupational and Environmental Medicine (ACOEM). Low back disorders. Occupational medicine practice guidelines: evaluation and management of common health problems and functional recovery in workers. Available online at: www.guideline.gov. Last accessed October, 2012. Codes Number Description CPT No specific CPT code; see Policy Guidelines ICD-9 Procedure ICD-9 Diagnosis 724 Other unspecified disorders of the back, including low back pain - code range HCPCS S3900 Surface electromyography (EMG) ICD-10-CM (effective 10/1/14) Investigational for all relevant diagnoses M54.00-M54.9 Dorsalgia code range ICD-10-PCS (effective 10/1/14) Type of Service Place of Service Index EMG, Surface, Paraspinal Paraspinal Surface EMG Surface EMG, Paraspinal 4A0FX3Z Medicine Outpatient ICD-10-PCS codes are only used for inpatient services. There is no specific ICD-10-PCS code for this testing. Measuring and monitoring, physiological systems, measurement, musculoskeletal, external, contractility