Dyna Modelng and Control of a Hybrd Hydron Heatng Syste Yeng Ma A thess n Departent of Buldng Cvl and Envronental Engneerng Presented n Partal Fulfllent of the Requreents For the Degree of Master of Appled Sene Buldng Engneerng at Conorda nversty Montreal Quebe Canada Yeng Ma 03
hs s to ertfy that the thess prepared by By: Y eng Ma CONCORDIA NIVERSIY Shool of Graduate Studes Enttled: Dyna Modelng and Control of a Hybrd Hydron Heatng Syste and subtted n partal fulfllent of the requreents for the degree of Master of Appled Sene Buldng Engneerng oples th the regulatons of the nversty and eets the aepted standards th respet to orgnalty and qualty. Sgned by the fnal exanng ottee: Char Dr.S.L Supervsor Dr.M.Zaheeruddn Exaner External to progra Dr.M.Y.Chen Exaner Dr.S.L Exaner Dr.L.Wang Approved by Dr. M. Elektoroz GPD Departent of Buldng Cvl and Envronental Engneerng Dr. C. W. ruean Inter Dean Faulty of Engneerng and Coputer Sene Date
ABSRAC Dyna Modelng and Control of a Hybrd Hydron Heatng Syste Yteng Ma A dyna odel of a hybrd hydron heatng syste has been developed. Sulatons of the ontrol strateges and the odel-based energy analyss for the overall syste have been presented n ths thess. he hybrd hydron syste s oposed of a onventonal natural gas fred boler hot ater heatng and a ground soure heat pup syste. he overall syste onssts of several oponents suh as a boler a heat exhanger a ground loop heat pup a ground loop heat exhanger baseboard heaters and radant floor hydraul ppng systes. he syste odel as desrbed by nonlnear dfferental equatons hh ere prograed and solved usng MALAB. o ontrol strateges for provng the overall syste perforane ere explored: a onventonal PI ontrol and an adaptve gan ontrol. he sulaton results subjet to set-pont hanges shoed that the perforane of the adaptve ontroller s better than the fxed gan PI ontroller n dsturbane rejeton and stablty. Energy sulatons under three dfferent operatng strateges ere onduted: a onventonal fxed set-pont PI ontrol an outdoor ar teperature reset ontrol and an optal set-pont PI ontrol. It as shon that the outdoor teperature reset strategy an save 4.5% and 9.9% energy under old day and ld day ondtons opared to the onventonal fxed set-pont PI ontrol strategy. In addton the
pleentaton of the optal PI ontrol strategy result n hgher energy savngs 6.6% and % as opared to the base ase under old and ld day ondtons respetvely. ACKNOWLEDGEMENS I ould lke to express y snere grattude to Dr. M. Zaheer-ddn for hs nvaluable and onstant gudane help enourageent sustaned nterest and fnanal support throughout the hole span of ths thess. My thanks are also to y olleagues Lanzhong L Mn Nng and Songhun L for ther assstane and gudane n y study. I also express y snere appreatons to the staff n BCEE departent. I ould lke to dedate ths thess to y parents Yanlong Ma and Xuegang L as ell as y grl frend Hurong Lu for ther patene understandng and support durng y hole studes. v
ABLE OF CONENS Lst of Fgures. x Lst of ables....x Noenlature... x v
Chapter Introduton.... Introduton.... he sope and objetves....3 he thess organzaton... 3 Chapter Lterature Reve... 4. Introduton... 4. Steady state and dyna odels of hydron heatng systes... 4.. Boler and heater odels... 4.. Heat pup odels... 5..3 Ground-oupled heat exhanger odels... 8..4 Radant floor heatng syste odels... 0.3 A reve of ontrol strateges for hydron heatng systes... 3 Chapter 3 Dyna Models of Hybrd Hydron Heatng Syste... 5 3. Introduton... 5 3. Physal odel of the syste... 5 3.3 he forulaton of dyna odel... 8 v
3.3. Coeral zone odel... 8 3.3. Buldng enlosure odel... 0 3.3.3 Baseboard heater odel... 3.3.4 Resdental zone odel... 3 3.3.5 Floor slab odel... 5 3.3.6 Ground loop heat exhanger odel... 3 3.3.7 Heat pup odel... 39 3.3.8 Heat exhanger odel... 40 3.3.9 Boler odel... 4 3.3.0 Heat losses fro the ater dstrbuton ppe netork... 4 3.4 Open loop sulatons of the syste... 4 Chapter 4 Proportonal-Integral and Adaptve Control of Hybrd Soure Hydron Heatng Syste... 48 4. Introduton... 48 4. he effets of load dsturbanes on the resdental and oerdal zones... 5 4.3 Fxed gan PI ontrol of zone ar teperatures... 54 v
4.4 Sulaton results for the adaptve PI ontrol... 56 Chapter 5 Control Strateges for Iproved Energy Effeny of Hybrd Hydron Heatng Syste... 63 5. Introduton... 63 5. Conventonal fxed set-pont ontrol strategy... 63 5.3 Outsde ar teperature reset ontrol strategy... 65 5.4 Optal set-pont ontrol strategy... 68 5.5 Energy onsupton... 74 5.6 Suary... 77 Chapter 6 Contrbutons Conlusons and Reoendatons for Future Researh... 79 6. Conlusons and ontrbutons... 79 6.. Dyna odelng of the hybrd soure hydron heatng syste... 79 6.. Adaptve ontrol of hybrd hydron syste... 80 6..3 Energy sulaton under three dfferent ontrol strateges... 80 6. Reoendatons for future researh... 8 v
Referenes... 8 Appendes... 86 x
LIS OF FIGRES Fgure 3.. Coeral and resdental floor layout... 6 Fgure 3.. All boler heatng syste layout... 7 Fgure 3..3 Hybrd soure hydron heatng syste layout... 8 Fgure 3.3. Sheat dagra of the reversed return hot ater syste loop... 9 Fgure 3.3. Struture of exteror all... Fgure 3.3.3 Sheat dagra of the radant floor heatng syste loop... 3 Fgure 3.3.4 Plan ve of ebeded tube... 5 Fgure 3.3.5 Struture of floor slab... 6 Fgure 3.3.6 heral netork analyss for the ground loop heat exhanger desrbng heat and ass transport proesses n a vertal dreton... 33 Fgure 3.3.7 Horzontal ross-seton ve of the sngle -tube... 33 Fgure 3.4. Syste open loop test at desgn ondton -5 o C outsde ar teperature43 Fgure 3.4. Syste open loop test for the heat pup teperature responses at desgn ondton -5 o C outsde ar teperature... 44 Fgure 3.4.3 Supply ater teperature of boler and heat exhanger under dfferent outsde ar teperature... 46 Fgure 3.4.4 Effet of enterng soure teperature on COP... 47 Fgure 4.. Sheat dagra of hybrd soure hydron heatng syste ontrol loop for spae heatng... 49 Fgure 4.. Boler ontrol loop... 49 Fgure 4..3 Heat exhanger ontrol loop... 50 Fgure 4..4 Heat pup ontrol loop... 50 Fgure 4..5 Coeral zone ontrol loop... 5 Fgure 4..6 Resdental zone ontrol loop... 5 Fgure 4.. Outdoor ar teperature profle... 53 Fgure 4.. Resdental and oeral zone ar teperature responses th no ontrol... 53 Fgure 4.3. Valdaton of the onstant gan values of PI ontrollers for the resdental and oeral zone teperature ontrol... 55 Fgure 4.4. Valdaton of the adaptve PI ontrollers for the resdental and oeral zone teperature ontrol... 58 Fgure 4.4. Coparson of ontroller responses th adaptve ontrol a-b and fxed gan ontrol -d for the resdental zone subjet to step hange n o C and a outsde ar teperature profle fro -5 o C to -5 o C... 59 x
Fgure 4.4.3 Coparson of ontroller responses th adaptve ontrol a-b and fxed gan ontrol -d for the resdental zone subjet to step hange n o C and a outsde ar teperature profle fro -5 o C to 5 o C... Fgure 4.4.4 eperature responses of the boler heat exhanger and heat pup ontrol loops for adaptve ontrol... 6 Fgure 5.. Output responses of resdental and oeral zone fxed set-pont ontrol strategy... 64 Fgure 5.. Output responses of boler and heat exhanger fxed set-pont ontrol strategy... 65 Fgure 5.3. Outsde teperature reset profle for boler heat exhanger and heat pup 66 Fgure 5.3. Output responses of resdental and oeral zone outsde ar teperature reset strategy... 67 Fgure 5.3.3 Output responses of boler and heat exhanger outsde ar teperature reset strategy... 67 Fgure 5.4. Coparson beteen the splfed regated odel and the detaled full order odel... 7 Fgure 5.4. Optal set-pont teperature profle for boler heat exhanger and heat pup... 7 Fgure 5.4.3 Output responses of resdental and oeral zone optal ontrol strategy... 73 Fgure 5.4.4 Output responses of boler and heat exhanger optal ontrol strategy.. 74 x
LIS OF ABLES able 3. Physal propertes and operatng ondtons of the radant flor heatng syste... 3 able 3. Geoetral data physal propertes and operatng ondtons of the ground loop heat exhanger... 39 able 5. Energy oparson of dfferent operatng ethods syste based under hgh heatng lo deand and lo heatng load deand ondtons... 76 able 5. Energy oparson of dfferent operatng ethods syste based under hgh heatng lo deand and lo heatng load deand ondtons... 77 x
NOMENCLARE ultpler of the adaptve ontroller proportonal ter A slab area on top of eah RFH tube node A slab area on top of eah RFH onrete node A ex heat transfer area of the heat exhanger A f net ross-setonal area of the ground loop ater node A g net ross-setonal area of the grout node A s net ross-setonal area of the sol node A n ndo area of oeral zone A nr ndo area of resdental zone A n net all area of oeral zone A nr net all area of resdental zone a z zone heat loss oeffent ar spef heat of ar J/kg C b theral apaty of boler J/ C theral apaty of the ater stored n the heat pup ondenser J/ C theral apaty of the RFH onrete node horzontally fro the tube for eah ontrol volue J/ C theral apaty of the RFH onrete node vertally fro the tube for eah ontrol volue J/ C 3 theral apaty of the RFH onrete node one top of eah onrete node n the tube layer for eah ontrol volue J/ on spef heat of slab onrete J/kg C e theral apaty of the ater stored n the heat pup evaporator J/ flo spef heat of floor overng ateral J/kg C flo theral apaty of the floor overng node on top of the tube for eah ontrol volue J/ C flo theral apaty of the floor overng node on top of the onrete node for eah ontrol volue J/ C flud theral apaty of the ater nsde the ground loop for eah ontrol volue J/ g spef heat of grout J/kg C grout theral apaty of the grout J/ C h theral apaty of the ater stored n prary sde of the heat exhanger J/ C h theral apaty of the ater stored n seondary sde of the heat exhanger J/ C htr theral apaty of the baseboard heater J/ s spef heat of sol J/kg theral apaty of the sol layer J/ C sol x
spef heat of ater J/kg C theral apaty of the ater nsde the radant floor ppng for eah ontrol volue J/ C l theral apaty of exteror all brk layer J/ C z theral apaty of oeral zone J/ C zr theral apaty of resdental zone j J/ d ar densty of ar kg/ 3 d bore borehole daeter d on densty of slab onrete kg/ 3 d flo densty of floor overng ateral kg/ 3 d g densty of grout kg/ 3 d g nner daeter of the ground loop tube d r nner daeter of the RFH tube d og outer daeter of the ground loop tube d or outer daeter of the RFH tube d pbore borehole depth d s densty of sol kg/ 3 d densty of ater kg/ 3 e error e b boler effeny % E o heat pup opressor poer F en-p Radaton angle fator beteen the surfae node and enlosure hv heatng value of fuel J/kg h onveton heat transfer oeffent of ater nsde ppe / k a adaptve ntegral gan k ap adaptve proportonal gan k f theral ondutvty of the ground loop flud / k g theral ondutvty of the grout / k ntegral gan k o predtve gan of the outsde ar teperature k p proportonal gan k ppe theral ondutvty of the ground loop ppng / k s theral ondutvty of the sol / k t theral ondutvty of the RFH tube / k theral ondutvty of the ater / L bore enter to enter dstane beteen to boreholes L length of RFH ppe segent LMD logarth ean teperature dfferene LMD d logarth ean teperature dfferene of heat exhanger at desgn ondton LMD ex logarth ean teperature dfferene of heat exhanger xv
fax axu flo rate of fuel kg/s ater flo rate kg/s n fator dentfed based on heater heat transfer test N nuber of bores n eah seres rut N nuber of bores n eah parallel rut Q bd boler apaty Q h total desgn heatng load of oeral zone Q hz desgn heatng load of oeral zone Q hr total desgn heatng load of resdental zone Q hrz desgn heatng load of resdental zone Q nt nternal heat gan for oeral zone Q radonv radatve/onvetve heat transfer fro radant floor slab of zone Q sol transtted solar radaton for oeral zone Q solr transtted solar radaton for resdental zone s shank spae beteen to tubes of ground loop S t nterval beteen RFH tubes b supply ater teperature of boler t hkness of the floor slab overng layer onrete node teperature of RFH n the tube layer onrete node teperature of RFH n the onrete layer on top of eah tube 3 onrete node teperature of RFH n the onrete layer on top of the onrete node n the tube layer red oeral zone desgn return ater teperature spd oeral zone desgn supply ater teperature en area-average nteror surfae teperature exludng the slab surfae teperature exred prary sde return ater teperature fro the heat exhanger at desgn ondton exsp supply ater teperature to the heat exhanger exspd prary sde supply ater teperature to the heat exhanger at desgn ondton flo floor overng node teperature on top of eah onrete node on top of eah tube flo floor overng node teperature on top of eah onrete node gb grout all teperature of ground loop of segent gr grout teperature of ground loop on the don ppe sde of segent gr grout teperature of ground loop on the up ppe sde of segent htr outlet ater teperature of baseboard heater x x ater s teperature to the heat exhanger o outsde ar teperature at operatng ondton xv
od outsde ar teperature at desgn ondton o ean outsde ar teperature t p thkness of the floor slab onrete layer r xed return ater teperature fro oeral zone & r xed return ater teperature fro oeral zone & & 3 rb return ater teperature of boler r return ater teperature fro the oeral zone re return ater teperature fro the heat exhanger prary sde rg return ater teperature fro the ground loop rl return ater teperature fro the heat pup rr return ater teperature fro the resdental zone rred resdental zone desgn return ater teperature rs supply ater teperature to the ground loop rspd resdental zone desgn supply ater teperature s floor surfae teperature on top of eah tube s floor surfae teperature on top of onrete node sp supply ater teperature to the oeral zone spr supply ater teperature to the resdental zone g don ppe ater teperature of ground loop segent g up ppe ater teperature of ground loop segent ater node teperature of RFH at seton l exteror all nodal teperature of oeral zone lr exteror all nodal teperature of resdental zone ls exteror all surfae teperature of zone zd oeral zone ar teperature at desgn ondton z zone ar teperature at oeral zone zrd resdental zone ar teperature at desgn ondton zr zone ar teperature at resdental zone bs theral ondutane beteen the sol node and the grout all / o ontrol sgnal of heat pup opressor ondh theral ondutane beteen the onrete node n the tube layer and the onrete node n the onrete layer horzontally / ondv theral ondutane beteen the onrete node n the tube layer and the onrete node n the onrete layer vertally / ondflov theral ondutane beteen the onrete node on top of the tube node and the floor overng node / ondflov theral ondutane beteen the onrete node on top of eah onrete node n the tube layer and the floor overng node / ondflov theral ondutane beteen the floor overng node n the tube layer and the floor surfae node / theral ondutane beteen the floor overng node on top of the onrete ondflov xv
node and the floor surfae node / ondh theral ondutane beteen the ater and the onrete node horzontally fro the ater node / ondv theral ondutane beteen the ater and the onrete node vertally fro the ater node / ex heat transfer oeffent of heat exhanger / f ontrol sgnal of gas obuston rate fg theral ondutane beteen the flud n the ground loop ppng and the grout zones / floh theral ondutane beteen the floor overng nodes / gb theral ondutane beteen the grout all the grout zones / gg theral ondutane beteen the grout zones / htr theral ondutane of the baseboard heat / ss theral ondutane beteen to onneted sol nodes / theral ondutane beteen the all nteror surfae and the brk layer node / theral ondutane beteen the brk layer node and the exteror surfae / u ontrol sgnal of oeral zone ater flo rate u ontrol sgnal of resdental zone ater flo rate n theral ondutane of ndo / z dstane beteen vertal nodes of ground loop heat exhanger z<0 z dstane beteen vertal nodes of ground loop heat exhanger 0<z<75 β ultpler of the adaptve ontroller ntegral ter γ eghtng fator of the resdental zone theral ofort to the energy onsupton φ eghtng fator of the oeral zone theral ofort to the energy onsupton Subsrpts ar b o onv ond d e referrng to regated referrng to ar referrng to boler or buldng referrng to oeral onrete or ondenser referrng to opressor referrng to onvetve referrng to ondutve referrng to desgn ondton referrng to evaporator xv
eq equ referrng to equalty onstrant ex referrng to heat exhanger f referrng to fuel or flud flo referrng to floor g referrng to grout h referrng to horzontal htr referrng to ternal heater referrng to sequent nuber or nuber of heated zones n referrng to ndent solar radaton ns referrng to nsulaton nt referrng to nternal load pv referrng to present value r referrng to resdental rad referrng to radatve re referrng to return s referrng to surfae s sol referrng to sol sol referrng to solar sp set referrng to supply set-pont t referrng to tube v referrng to vertal Vol referrng to volue referrng to ater n referrng to ndo ls referrng to all surfae n l referrng to all Abbrevatons ACH ASHRAE COP HVAC OL PI ar hange per hour Aeran soety of heatng refrgeratng and ar-ondtonng engneers oeffent of perforane heatng ventlatng and ar ondtonng open loop test proportonal plus ntegral ontroller xv
Chapter Introduton. Introduton In reent days energy effeny and sustanablty have donated the researh n the feld of desgn and operaton of HVAC systes. o ths end there s a grong aareness of the nfluene the buldng HVAC syste operaton on the energy onsupton. Most of the heatng oolng and ventlaton systes have optal range for satsfatory and eonoal operaton subjet to ther apaty onstrants. o a large extent a sngle HVAC syste ay not be adequate to eet all requreents of a ult-funtonal buldng to perfor n the ost effent and eonoal anner. herefore t s ore appealng to use a deentralzed hybrd syste approah suh that the overall ntegrated syste an operate n a ore effeny ay. In the past fe deades ore envronental frendly ay to aheve heatng oolng and ventlaton has been explored and ephaszed n pratal applatons. Hene systes that utlze geotheral solar nd or other eans of green energy are nreasngly popular n the ontext of broader aareness of sustanable buldng energy tehnologes. o ths end a hybrd hydron spae heatng syste for a ult-funtonal buldng s proposed n ths thess to antan desred zone ar teperatures hle nzng the energy onsupton. A ground loop heat pup syste s ntegrated nto an exstng onventonal hot ater heatng natural gas fred boler syste. As suh hot ater an be
partally or opletely suppled by the ground soure heat pup syste so that the boler energy onsupton an be nzed. he nteratons of obned systes are exaned and evaluated n ters of syste perforane and teperature ontrol.. he sope and objetves he an fous of ths thess s to develop dyna odels of a hybrd hydron heatng syste so that the syste operaton and ontrol an be perfored n a realst and energy-effent anner. he an objetves of the study are as follos: o desgn a hybrd hydron heatng syste for a ult-funtonal buldng based on pratal gudelnes and steady state ethods. o develop dyna odels for eah syste oponent nludng a boler a heat exhanger a ground loop heat pup a ground loop heat exhanger baseboard heaters and radant floor hydraul ppng systes. he dyna odels are used to analyze and sulate the syste responses under varous operatng ondtons. 3 o develop ontrol strateges to antan desred zone ar teperatures hle provng the overall energy effeny of the syste. 4 o obtan optal set-ponts of the syste by forulatng and solvng a ult-varable onstrant optzaton proble to nze energy onsupton. 5 Condut several energy sulatons of the syste under dfferent ontrol strateges to evaluate the potental energy savngs.
.3 he thess organzaton he thess s organzed nto several hapters. In Chapter a lterature reve s presented. In Chapter 3 the dyna odels of hybrd hybron heatng syste are developed and the open loop sulaton results are presented. In Chapter 4 ontrol strateges nludng a onventonal PI ontrol and an adaptve PI ontrol are developed. Sulaton results are presented to sho the perforane and ontrol strateges under varable load ondtons. In Chapter 5 an energy based analyss for eah operatng strategy s presented. Conlusons are gven n Chapter 6. 3
Chapter Lterature Reve. Introduton A hybrd hydron heatng syste onssts of several oponents suh as a boler a heat exhanger a ground loop heat pup a ground loop heat exhanger baseboard heaters and ppng systes. he odelng aspets of the syste ere studed by any researhers. A lterature reve of steady state and dyna odels ll be gven frst. Also the hydron heatng syste operaton ontrol strateges and ontroller desgn ethods publshed n the lterature are reveed and presented n the follong setons.. Steady state and dyna odels of hybron heatng syste.. Boler and heater odels Zaheer-uddn and Monastrakos 998 proposed a hydron heatng syste odel hh onssted of odels for a boler baseboard ternal unts a doest hot ater heat exhanger and an envronental zone. Nonlnear oupled dfferental equatons ere utlzed to develop the odel. Sulaton results ere opared th the feld easured data. It as shon that the desgned ontrollers are able to antan the boler zone and DHW teperatures lose to ther respetve set-ponts hen the spae heatng and DHW loads are subjeted to step hanges. A load trakng set-pont ontrol strategy as developed and valdated and t as shon that the boler teperature hen regulated as a funton of outdoor ar teperature result n better zone teperature ontrol. 4
Lao and Parand 00 developed a dyna odel of oeral hot ater bolers that as ntegrated th other heatng syste oponent odels for optzaton of boler ontrol n entral heatng systes. he atheatal odel nluded of sx ajor oponents a burner a flae tunnel an nner shell separatng the flae and the ater ass a ater hannel here ater s heated an outer shell apped th an nsulaton layer. he dynas of the nner shell ater node outer shell and the nsulaton layer ere odeled and evaluated by the therodyna equatons and energy onservaton la. he results shoed that the odel an aurately sulate the dyna perforane of the targeted bolers. L and Zaheer-uddn 00 proposed a dyna odel of an ndret dstrt heatng IDH syste. he dyna odel onssts of sub-syste odels suh as a boler a ppe netork a heat exhanger ternal heaters and a zone odel. he sulaton results shoed that the overall effeny of the IDH syste s 78.7% and t as also shon that the to hghest heat loss oponents ere the boler heat losses 8.7% and the seondary ater akeup loss 6.% n the syste... Heat pup odels A nuber of heat pup odels have been proposed by researhers over the years rangng fro detaled deternst odels to sple urve-ft odels. he detaled deternst odel usually requres nuerous unavalable and unertan nputs and a detaled analyss based on therodyna las and heat transfer relatons appled to 5
ndvdual oponents. On the other hand a urve-ft odel treats the heat pup as a blak box and the syste perforane urve s predted by fttng a polynoal funton to the perforane data extrated fro the anufatures atalog. Cehn and Marhal 99 proposed a oputer progra for sulatng refrgeraton and ar-ondtonng equpent perforane. he sulaton odel as based on therodyna yles and experental data fro equpent testng. Soe of the paraeters suh as saturaton pressures n evaporator and ondenser superheatng and suboolng hh are usually not avalable n anufatures atalogs ere also used fro experental data. Stefanuk et al. 99 developed a superheat-ontrolled ater-to-ater heat pup odel hh as derved fro ass energy oentu balane as ell as fundaental orrelatons of heat transfer. Paraeters that desrbe the behavor of the ndvdual oponents ere assued to be avalable for odel predton suh as the relatonshp aong ass flo rate nput eletral poer evaporaton teperature and the opressor dsharge pressure hh are norally not avalable n the heat pup anufaturers atalogs. Results for the evaporatng and ondensng pressures the heat transfer rates n the evaporator and the ondenser and the COP of the heat pup fro the odel predtons ere opared th experental easureents. Exept for a fe ponts th errors beyond ±0% ost of the results ere n an aeptable range. 6
Jn and Sptler 00 developed a paraeter estaton based odel for a ater-to-ater reproatng vapor opresson heat pup. he odel as developed fro the bas therodyna prnples and heat transfer relatons and t s sutable for use n buldng energy analyss and HVAC sulaton progras. he odel nluded several paraeters that ere estated fro anufatures atalog by applyng a ult-varable urve-ft algorth. he odelng and valdaton results shoed that the physally based odel representaton of the heat pup ads n ahevng a better ath of the atalog data and as ell as lends tself to soe extrapolaton beyond the atalog data. As opared to ore detaled deternst odels the estated odels do not requre nternally easured data hh are usually unavalable. ang 003 developed a urve-ft ater-to-ater heat pup odel n hs thess. he generalzed least square ethod as appled to generate a set of perforane oeffents fro the atalog data at ndated referene ondtons. he follong varables that affeted the heat pup perforane ere hosen: load sde nlet ater teperature soure sde nlet ater teperature soure sde ater flo rate and load sde ater flo rate. he governng equatons for the heatng ode are derved. hese are: Q Q h h ref D L n S n L D D3 D4 ref ref V V L ref V D5 V S S ref Poer Poer Q Q h h ref soure soure ref E F L n S n L E E3 E4 ref ref V V L ref L n S n L F F3 F4 ref ref V V L ref V E5 V S S ref V F5 V S S ref 7
he valdaton results shoed that the urve-ft ater-to-ater heat pup odel perfors adequately ell opared to the atalog data th RMS error less than 7% and t s ore robust and requres less oputaton te than the paraeter estaton odel...3 Ground-oupled heat exhanger odels he desgn and odelng of ground heat exhangers are oplated by a varety of fators suh as geologal foratons and propertes that affet theral perforane. he earlest approah to alulatng the theral transport around a heat exhange ppe n the ground s the Kelvn s lne-soure theory 88. It assued that the ground s an nfnte edu and heat onduton proess s one-densonal beause the length of the vertal ground heat exhanger s uh greater than ts daeter. Carsla and Jaeger 947 developed a ylndral heat soure soluton for a onstant heat transfer rate. In the ylndral soure odel the borehole s assued as an nfnte ylnder surrounded by hoogeneous edu th onstant propertes. Ingersoll and Zobel 954 proposed a steady-state heat transfer equaton to predt the shorter ter varatons. he odel s also referred to as a lne soure odel hh assues that heat transfer takes plae fro an nfnte long lne soure or snk n an nfnte edu. Kavanaugh 985 adjusted the ethod to aount for the -bend arrangeent and hourly heat rate varatons. Other desgn odelng alternatves ere desrbed by Esklson 987 Morrson 997 and Sptler 000. 8
Berner et al. 004 proposed a ylndral heat soure odel for the vertal ground loop heat exhanger that regates heatng or/and oolng loads and takes nto aount the theral nteratons aong surroundng boreholes. hs odel as also referred to as ultple-load regaton algorth MLAA. Danel E. Fsher et al 005 presented a ground soure heat pup syste odel that s pleented n the hole buldng annual energy sulaton progra EnergyPlus. Splfed odels of heat exhanger and expanson deve oponents and a ore detaled opressor odel ere proposed and valdated. Mult-varable paraeter estaton ethods have been used to fnd odel paraeter values fro anufaturers atalogue data. he results shoed that the odel s able to reprodue the anufatures atalogue data thn a +/-0% error bound. Copared to deternst and urve-ft odels t has the advantage that no detaled oponent data or easureents are requred and the extrapolaton over a de range of operatng ondtons s feasble. Georgos Flordes and Soters Kalogrou 007 dd a reve on ground heat exhangers regardng systes odels and ther applatons. Varous syste types ere desrbed and opared for ther effenes perforane under dfferent operatng ondtons as ell as the odelng etrologes. Yujn Na Ryozo Ooka and Sukho Hang 008 developed a nueral odel that obnes a heat transport odel th ground ater flo and a heat exhanger odel. he proposed odel as used to predt the heat exhange rate for an atual offe 9
buldng n Japan. Sulaton results usng the developed predton odel ere opared th the experental results and a good ath as reported. Bauer Hedeann and Dersh 0 proposed a transent 3D analyss of a borehole heat exhanger odel. he odel as based on theral resstane and apaty approahes onsderng the transent effets of heat and ass transports nsde the borehole. he odel as used to ondut a three-densonal nueral sulaton of -tube borehole heat exhangers. he results shoed that the proposed odel an provde aurate results hle substantally redung the nuber of nodes and the oputaton te...4 Radant floor heatng syste odels Radant floor heatng systes use ppes that are ebedded nto a onrete floor and thus the rulatng hot ater nsde the ppes ars up the surroundng onrete struture hh n turn dretly radates heat nto the spae. Several benefts of radant floor heatng systes have been shon. Suh systes gve better theral ofort produe less nose an operate th lo-teperature ater and often use less energy than other types of heatng systes. Furtherore dust auulaton and stratfaton probles that ay our th ar handlng syste and baseboard heatng syste are not probles th radant floor heatng. Due to the sgnfant advantage over onventonal heatng systes several researhers have studed on radant floor heatng systes. Cho and Zaheer-uddn 999 onduted 0
an experental study to oparatvely evaluate the perforanes of to dfferent ontrol shees for the radant floor heatng systes. hose to ontrol shees are onventonal on-off ontrol and to paraeter sthng ontrol PSC. he PSC shoed a better perforane n ontrollng the ndoor ar teperature. Zaheer-uddn and Zhang 00 developed a dyna odel and proposed to ontrol strateges: a ultstage on-off ontrol and an augented onstant gan ontrol ACGC for provng the teperature regulaton of a radant floor heatng syste. Sulaton results shoed that by stagng the ontrol aton n ultple steps the teperature regulaton of RFH systes as sgnfantly proved opared to the on-off ontrol. he ACGC strategy elnates the use of floor slab teperature sensor. Also ACGC strategy shoed better zone teperature ontrol and robustness opared to the onventonal proportonal ontrol. Sattar and Farhaneh 006 presented a paraetr study on radant floor heatng syste perforane. In ther paper the effets of desgn paraeters suh as type of ppe daeter ateral nuber of ppes thkness and the floor overng on perforane of a typal radant floor heatng syste ere nvestgated usng fnte eleent odelng ethod. he sulaton results shoed that the type and thkness of the floor over play a ore rual role than the nuber type and daeter of ppes on the theral perforane of the floor heatng syste.
L 00 developed a dyna odel for a radant floor heatng syste hh predted the ean zone ar teperature the ater teperature dstrbuton the teperature dstrbuton n floor slab and slab surfae teperature under desgn and off desgn ondtons. By applyng sngle zone and ult-zone analyss the sulaton results ere presented to sho that the axu surfae teperature dfferene n RFH syste s about 4 o C and the axu varaton n ar teperature n the zone an reah as uh as.6 o C. he sulaton results fro the ult-zone odel also shoed that nreasng the nuber of ater tubes and nreasng the ater ass flo rate an opensate for the hgh heat loss rate n the zone. Dfferent ontrol strateges suh as onventonal PI ontrol predtve ontrol and optal ontrol ere developed and opared for provng the perforane of RFH systes. he sulaton results shoed that the optal PI ontrol strategy not only has the best zone ar teperature regulaton but also t has the greatest energy effeny. It as shoed that the predtve ontrol strategy s easer to pleent opared to optal ontrol strategy. Chae et al. 0 nvestgated the theral perforane enhaneent of the hydron radant floor heatng syste by explorng tube shape proveent. Both analytal and detaled CFD sulatons ere onduted to assess the pat of eah tube desgn paraeter. Other perforane ndators suh as the floor surfae teperature dstrbuton the return hot ater teperature and the atual heatng supply requreent of the radant floor syste ere also nvestgated under both steady-state and transent
ondtons. he onlusons dran by the authors stated that radant floor tube fn thkness the nuber of fns and the tube theral ondutvty refneents have sgnfant nfluene on theral perforane enhaneent. he heatng energy onsupton as sgnfantly redued by seletng sutable tube shape geoetry..3 A reve of ontrol strateges for hydron heatng systes Zaheer-uddn 993 proposed an adaptve ontrol ethod for the desgn of teperature ontrollers for ntellgent buldngs. he lnear odels of the systes ere used to desgn ontrollers for VAV-HVAC systes. It as shon that by a proper hoe of the adaptaton rate the output response of the VAV syste an be proved. Chen 00 desrbed an proved algorth for generalzed predtve ontrol GPC and appled t to a radant floor heatng syste n a full-sale outdoor test-roo. he perforane of the floor heatng syste ontrolled by on-off and PI ontrollers as also evaluated and opared th GPC ontrol through oputer sulatons. he results deonstrated that the GPC ontroller as superor to the other to n ters of response speed nu offset and on-off ylng frequeny. Sngh et al 000 proposed an adaptve ontrol strategy for ultvarable theral proesses n HVAC systes. A to zone fan-ol heatng syste s onsdered and sulated by usng a nonlnear odel. A ultvarable adaptve ontroller based on lnear quadrat regulator theory as desgned. he sulaton results shoed that the adaptve ontroller as able to rejet the effets of both stat and dyna dsturbanes rapdly 3
and the axu perentage overshoot n zone teperature as found to be thn aeptable lts. he ontroller also shoed robust ontrol ould handle unodelled dynas and syste nonlneartes. Fateeh et al 0 studed unstable osllatory behavor of the therostat radator valves durng the partal load operatng ondtons as they ere desgned for full load ondton. o aheve a balane beteen stablty and perforane for radator ontrol they presented a lnear paraeter varyng odel of the therostat radator valve RV as a funton of operatng flo rate roo teperature and the radator spefatons so that the RV ontroller an be adaptve th the operatng ondtons. he sulaton results shoed that the desgned ontroller based on the LPV odel perfored satsfatorly and reaned stable n the hole operatng ondtons. Fro the lterature reve t s noted that ost systes are related to stand-alone HVAC systes. On the other hand very lttle ork has been done on the ntegraton of ultple HVAC systes. Furtherore uh less ork has been done on the ntegraton of onventonal hot ater heatng syste and ground soure heat pup systes. o ths end the ajor objetve of ths thess s to odel an ntegrated hot ater and ground soure heat pup syste and to develop proved ontrol strateges to optze energy effeny of the overall syste. 4
Chapter 3 Dyna Models of Hybrd Hydron Heatng Syste 3. Introduton In ths hapter dyna odels of a hybrd hydron heatng syste are developed. Frstly the syste layout and the nodal arrangeent of the odel are desrbed. hen dyna odels are developed for eah oponent nludng zone ar buldng enlosure baseboard heaters radant floor ppng ground soure heat exhanger heat pup heat exhanger and the boler. Fnally open loop tests are onduted to sho the dyna response haratersts of the syste at desgn ondton. 3. Physal odel of the syste As shon n Fgure 3.. a typal ult-funtonal to-storey buldng s onsdered n ths thess. he frst floor and the seond floor are used for oeral and resdental applaton respetvely. he oeral floor onssts of four zones and t s desgned to be served by baseboard heaters. he resdental floor onssts of four apartents and eah apartent has four roos. Radant floor heatng syste s nstalled n eah of the resdental spaes. 5
Fgure 3.. Coeral and resdental floor layout he sheat dagras of to systes are shon n Fgure 3.. and Fgure 3..3 respetvely. he base ase syste s a onventonal all boler syste that all the hot ater supply s fro the boler loated n a entral plant. Hgh teperature ater an be used dretly to heat up the oeral floor by rulatng hot ater through the baseboard heater unts. For resdental zones here loer teperature ater s requred for the radant floor heatng RFH a heat exhanger s appled to regulate the supply ater teperature to the RFH syste. 6
Hoever to use hgh-qualty heat boler soure for lo-qualty energy deand syste radant floor spae heatng s not desrable beause of the lo exergy effeny. herefore to upgrade and ake the syste sustanable t s proposed to add a ground-soure heat pup syste to the onventonal hot ater boler heatng syste. hus the overall syste s a hybrd hydron heatng syste hh s flexble to provde hgh teperature and edu teperature hot ater as needed n the baseboard and RFH systes respetvely. As suh lo teperature ater an be suppled partally or opletely by the sutable soures at desrable qualty levels. he sheat layout of the above to systes are shon n Fgure 3.. and Fgure 3..3 respetvely. Fgure 3.. All boler heatng syste layout Fgure 3.. represents a onventonal all boler heatng syste. he boler s loated n a entral plant and hot ater s suppled through an underground dstrbuton loop. 7
Fgure 3..3 Hybrd hydron heatng syste layout he syste desgn and equpent seleton onsst of heatng load estaton radant floor heatng syste szng 3 Baseboard heater szng 4 Ground loop heat exhanger szng 4 Heat pup seleton 5 Heat exhanger szng and 6 Boler seleton. Steady sate desgn ethod as used to deterne the desgn apaty. he suary of alulatons s presented n Appendx-A. 3.3 he forulaton of a dyna odel 3.3. Coeral zone odel Fgure 3.3. shos a sheat dagra of the ppng syste and the baseboards nstalled n eah of the four oeral zones of the buldng. o develop the oeral zone 8
odel an energy balane approah as used. he equatons 3. to 3.4 desrbe the odel. hese equatons state that the net energy stored n the zone ar s equal to the heat output fro the baseboard heater unts the solar radaton and the nternal heat gan nus the heat losses fro the buldng enlosure and nfltraton. Note that there are four oeral zones and the zone teperatures are dentfed by z z z3 z4 respetvely. Fgure 3.3. Sheat dagra of the reversed return hot ater syste loop 9
d z Cz sp htr3 An n dt ACH Vol ar ar z o Qsol Q 30 d z Cz sp htr5 A dt ACH Vol ar ar z o Q 30 n d z3 Cz3 3 sp htr7 A dt ACH Vol 3 ar ar z3 o Q 30 sol n3 d z4 Cz4 4 sp htr8 A dt ACH Vol 4 ar ar z4 o Q 30 sol3 n4 sol4 n Q n Q n z nt z nt Q z3 nt3 z4 nt4 A o o n A A o A o n n3 n4 z z z3 z4 l l l3 l4 3. 3. 3.3 3.4 u d 3.5 u d 3.6 3 u3 3d 3.7 4 u4 4d 3.8 3.3. Buldng enlosure odel A setonal ve of the all assebly s shon n Fgure 3.3. and a all teperature odel as derved. he all assebly onssts of a 00 fae brk an ar gap a 00 nsulaton layer another ar gap and a 3 gypsu board. 0
Fgure 3.3. Struture of exteror all o splfy the odel unfor teperature n the all assebly s used for the heat transfer analyss. herefore the heat transfer proess through the all seton an be sply onsdered as one-densonal proble. o nodes are used for the heat transfer analyss: one s loated n the outsde brk layer and the other s loated on the exteror surfae. Based on the energy onservaton analyss at eah node the teperature equaton for eah node an be desrbed as: C l d dt l A A 3.9 n z l n l ls ls l h o o h Q o n 3.0 he sybols used n the equatons are desrbed n the noenlature.
3.3.3 Baseboard heater odel By applyng the energy balane prnple an equaton desrbng heat transfer proesses n the heater as developed. he odels are desrbed by equatons 3. to 3.8. he follong equatons state that the net energy stored n the ater nsde of the heater tube n eah zone s equal to the heat suppled fro the hot ater nus the heat esson fro the outsde surfae of the heaters to the zone ar. C C C C C C C C d htr sp htr n htr sp htr htr z dt d htr htr htr n htr htr htr htr z dt d htr3 htr htr3 n htr3 htr htr3 htr3 z dt d htr4 sp htr4 n htr4 sp htr4 htr4 z dt d htr5 htr4 htr5 n htr5 htr4 htr5 htr5 z dt d htr6 sp htr6 n htr6 3 sp htr6 htr6 z3 dt d htr7 htr6 htr7 n htr7 3 htr6 htr7 htr7 z3 dt d htr8 sp htr8 n htr8 4 sp htr8 htr8 z4 dt 3. 3. 3.3 3.4 3.5 3.6 3.7 3.8 htr3 htr5 r 3.9
3 3 3 7 htr r r 3.0 4 3 4 8 3 htr r r 3. 3.3.4 Resdental zone odel Fgure 3.3.3 shos a sheat dagra of the RFH syste nstalled n eah of the four resdental zones of the buldng. A odel for predtng the zone ar teperature of eah zone as forulated by assung that the zone ar teperature s unforly dstrbuted throughout the zone. Equatons 3. to 3.5 state that the net energy stored n the zone ar s equal to the heat output fro the radant floor panel the solar radaton and the nternal heat gan nus the heat losses fro the buldng enlosure and nfltraton. Fgure 3.3.3 Sheat dagra of the radant floor heatng syste loop
4 a solr o a zr ar ar a a lr a zr a nr o a zr n a nr a onv rad a zr a zr Q Vol ACH A A Q dt d C 30 3. b solr o b zr ar ar b b lr b zr b nr o b zr n b nr b onv rad b zr b zr Q Vol ACH A A Q dt d C 30 3.3 solr o zr ar ar lr zr nr o zr n nr onv rad zr zr Q Vol ACH A A Q dt d C 30 3.4 d solr o d zr ar ar d d lr d zr d nr o d zr n d nr d onv rad d zr d zr Q Vol ACH A A Q dt d C 30 3.5 ad a ad a spr ad a a r ad a a r u u u u ' 3.6 bd b bd b spr bd b b r bd b b r u u u u ' 3.7 bd ad b r bd a r ad b a r 3.8 d d spr d r d r u u u u ' 3.9 dd d dd d spr dd d d r dd d d r u u u u ' 3.30 dd d d r dd r d d r 3.3 dd d bd ad d r dd d b a r bd ad abd r 3.3
3.3.5 Floor slab odel he plan ve of the radant floor heatng panel s shon n the Fgure 3.3.4. Sne the spef heat of ater s hgher than that of the onrete the teperature gradent n the dreton of the hot ater ppes s neglgble opared to that n the dreton perpendular to the RFH ppes. Also as the hot ater ppes are equally spaed t an be assued that the sae unt seton s syetrally repeatng. Fgure 3.3.4 Plan ve of ebedded tube A typal floor slab struture s shon n Fgure 3.3.5. he heat transfer fro the ater rulated n the radant floor ppng to the slab surfae s onsdered as to-densonal heat flo: horzontal heat flux fro the ater node to the nearby onrete nodes and vertal heat flux fro ater node as ell as the onrete nodes n the tube layer to the upper layer. It s also assued that the onrete nodes on both sdes of eah tube node are of the sae ondton. 5
Fgure 3.3.5 Struture of floor slab. Water node he equaton desrbng the ater teperature n the tube s gven by: C d dt 3.33 spr ond h ond v. Conrete node horzontally fro the tube he equaton desrbng the onrete node teperature horzontally fro the tube s gven by: C d 3.34 ond h ond v 3 dt 3. Conrete node on top of eah tube he equaton desrbng the onrete node teperature on top of eah tube s gven by: C d ond v ond h 3 ond flo v flo dt 3.35 6
4. Conrete node on top of eah onrete node horzontally fro the tube he equaton desrbng the onrete node teperature on top of eah onrete node horzontally fro the tube s gven by: C d 3 3 ond h 3 ond v 3 ond flo v 3 flo dt 3.36 5. Floor overng node on top of eah tube he equaton desrbng the floor overng node teperature on top of eah tube s gven by: C d flo flo ond flo v flo flo h flo flo ond flo v flo s dt 3.37 6. Floor overng node on top of eah onrete node horzontally fro the tube he equaton desrbng the floor overng node teperature on top of eah onrete node horzontally fro the tube s gven by C d flo flo ond flo v 3 flo flo h flo flo ond flo v flo s dt 3.38 7. Floor surfae node on top of eah tube he equaton desrbng the floor surfae node teperature on top of eah tube s gven by: 7
s qr q flo 3.39 ond flo v ond flo v 8. Floor surfae node on top of eah onrete node horzontally fro the tube he equaton desrbng the floor surfae node teperature on top of onrete node horzontally fro the tube s gven by: s qr q flo 3.40 ond flo v ond flo v 9. Heat transfer due to radaton and onveton fro the floor surfae on top of eah tube 8 4 4 q 50 F A 73 73 3.4 r en p s en q.3.7a s z 3.4 0. Heat transfer due to radaton and onveton fro the floor surfae on top of eah onrete node horzontally fro the tube 8 4 4 q 50 F A 73 73 3.43 r en p s en q.3.7a s z 3.44. Radatve and onvetve heat transfer fro radant floor slab to the zone ar Q n rad onv qr q qr q 3.45 he propertes of the aterals n the radant floor syste and the sybols used n the equatons 3.33-3.45 are lsted n the follong able 3.. 8
Sybol Desrpton Value or forula d flo flo [J/ 3 o C] Densty*spef heat apaty 8400 of floor overng ateral d on on [J/ 3 o C] Densty*spef heat apaty.8*0 6 of slab onrete Pr [-] Prandtl nuber of the ater 4.34 ν [ s - ] Kneat vsosty of ater 0.658*0-6 k [W/ o C] heral ondutvty of the 0.649 ater k t [W/ o C] heral ondutvty of the 0.38 tube Re [-] Reynolds nuber of the ater V d r Re Nu [-] Nusselt nuber of the ater f Re < 300 Nu 4.36 else f Re >= 300 & Re < 0000 f r 0.79ln Re.64 Nu f r Re Pr 8 f r 0.5.07.7 Pr 8 else Re >= 0000 0.67 Nu 0.8 0.3 0.03 Re Pr R ondt [ o C/W] R onv [ o C/W] R ondtv [ o C/W] heral resstane of the tube all heral resstane beteen ater and tube all due to onveton heral resstane beteen the tube all and the onrete node vertally fro the tube all R R R ond t onv d o r ln d r k L ond t v Nu t k p 0.5t k L p 0.5 d L d o r o r 9
R ondh [ o C/W] R ondv [ o C/W] ondh [W/ o C] ondv [W/ o C] R ondv [ o C/W] R ondh [ o C/W] ondv [W/ o C] ondh [W/ o C] R ondflov [ o C/W] R ondflov [ o C/W] heral resstane beteen the ater and the onrete node horzontally fro the ater node heral resstane beteen the ater and the onrete node vertally fro the ater node heral ondutane beteen the ater and the onrete node horzontally fro the ater node heral ondutane beteen the ater and the onrete node vertally fro the ater node heral resstane beteen the onrete node n the tube layer and the onrete node n the onrete layer vertally heral resstane beteen the onrete node n the tube layer and the onrete node n the onrete layer horzontally heral ondutane beteen the onrete node n the tube layer and the onrete node n the onrete layer vertally heral ondutane beteen the onrete node n the tube layer and the onrete node n the onrete layer horzontally heral resstane beteen the onrete node on top of the tube node and the floor overng node heral resstane beteen the onrete node on top of eah onrete node n the tube layer and the floor overng node R ond h Ronv Rond t Rond t h R ond h Ronv Rond t Rond t v R R R R R R ond h ond v ond v ond h ond v ond h ond flo v ond flo v R R k k ond h ond v p p R R 0.5t L 0.5 S L 0.5 t ond v ond h 0.5t k p p t 0.5 S p p p t L d d d 0.5 d o r t o r o r o r 0.5t p 0.5 d k L 0.5 S d o r o r 0.5t k L d k o r 0.5t L S t d o r 30
ondflov [W/ o C] ondflov [W/ o C] R floh [ o C/W] heral ondutane beteen the onrete node on top of the tube node and the floor overng node heral ondutane beteen the onrete node on top of eah onrete node n the tube layer and the floor overng node heral resstane beteen the floor overng nodes R ond flo v ond flo v flo h R R 0.5 St k L t ond flo v ond flo v floh [W/ o C] heral ondutane beteen the floor overng nodes flo h R flo h R ondflov [ o C/W] R ondflov [ o C/W] ondflov [W/ o C] ondflov [W/ o C] C [J/ o C] C [J/ o C] heral resstane beteen the floor overng node n the tube layer and the floor surfae node heral resstane beteen the floor overng node on top of the onrete node and the floor surfae node heral ondutane beteen the floor overng node n the tube layer and the floor surfae node heral ondutane beteen the floor overng node on top of the onrete node and the floor surfae node heral apatane of the ater nsde the radant floor ppng for eah ontrol volue heral apatane of the onrete node horzontally fro the tube for eah ontrol volue R R C C ond flo v ond flo v ond flo v ond flo v 0.5 t k L d k R R r d 4 S d o r 0.5 t L 0.5 S ond flo v ond flo v L d t o r do r t L d d on o r on 3
C [J/ o C] heral apatane of the t p do r onrete node vertally fro C do r L don on the tube for eah ontrol volue C 3 [J/ o C] heral apatane of the t p do r St do r onrete node on top of eah C L don on onrete node n the tube layer for eah ontrol volue C flo [J/ o C] heral apatane of the C flo do r t L d flo flo floor overng node on top of the tube for eah ontrol volue C flo [J/ o C] heral apatane of the St do r floor overng node on top of C flo L d flo flo the onrete node for eah ontrol volue able 3. Physal propertes and operatng ondtons of the radant floor heatng syste 3.3.6 Ground loop heat exhanger odel A three-densonal nueral sulaton odel for -tube borehole heat exhanger s presented. he transent effets of heat transports nsde the ground oupled heat exhanger are onsdered by analyzng eah theral apaty of borehole oponents: ater nsde the ground bured tubes groutng ateral and surroundng sol. 3
Fgure 3.3.6 heral netork analyss for the ground loop heat exhanger desrbng heat and ass transport proesses n a vertal dreton Fgure 3.3.7 Horzontal ross-seton ve of the sngle -tube 33
. Flud node nsde the tube he heat and ass transports nsde the -tube are onsdered by the fore onveton fro the ovng flud and the onduton fro/to the onneted grout node. In the eante the onduton beteen flud nodes s also onsdered sne slo ater ass flo rate nsde the tube s onsdered. Whle ovng along the tubes the grout nodes transfer heat to the flud: C flud d g dt g g g k f A f g z g g fg z gr g 3.46 C flud d g dt g g g k f A f g z g g fg z gr g 3.47 he sybols used n the equatons are desrbed n the noenlature.. Grout node In eah layer the grout nodes are onneted to eah other to the borehole all and to the flud nodes nsde the tubes. he heat transfer equatons for the grout nodes an be desrbed: C grout fg d gr dt z g gb gr dz gb gr k g A g gr z gr gr gg z gr gr 3.48 34
C grout fg d gr dt z g gb gr z gb gr k g A g gr z gr gr gg z gr gr 3.49 3. Grout all node he borehole all nodes are onsdered as nodes thout volue. herefore a steady-state analyss for the grout all nodes s proposed: gb bssol gb gr gr 3.50 bs gb 4. Sol node he sol layer s dvded as 5 sub-layers and the end nodes onneted th the last sol layer nodes are onsdered as the undsturbed ground teperature. he heat transfer aong sol nodes our by heat onduton. Sne the heat transport n the sol s alays onsdered transent the transport equatons for the sol node are: C sol d sol ks As sol sol sol ssz sol sol bsz gb sol dt z 3.5 C sol d sol ks As sol sol sol ssz sol 3 sol ssz sol sol dt z C sol3 3.5 d sol 3 ks As 3 sol 3 sol 3 sol 3 ss3z sol4 sol 3 ssz sol sol 3 dt z 3.53 35
C sol4 d sol4 ks As 4 sol4 sol4 sol4 ss4z sol 5 sol4 ss3z sol 3 sol4 dt z 3.54 C sol5 d sol 5 ks As 5 sol 5 sol 5 sol 5 ss4z ground sol 5 ss4z sol4 sol 5 dt z 3.55 he paraeters of the ground loop odel and equatons used to deterne the paraeters are desrbed n the follong able 3.. Sybol Desrpton Value or forula g [kg/s] Ground loop ater ass flo 0.4 rate Physal propertes k f [W/ o C] heral ondutvty of the 0.568 ground loop flud A f [ ] Cross-setonal area of the flud dg node Af 4 Pr flud [-] ν flud [ s - ] Re flud [-] Prandtl nuber of the ground loop flud Kneat vsosty of ground loop flud Reynolds nuber of the ground loop flud.4.535*0-6 Re flud Vg d flud g Nu flud [-] Nusselt nuber of the ground loop flud f Re flud < 300 Nu flud 4.36 else f Re flud >= 300 & Re flud < 0000 f g 0.79 ln Re flud.64 36
C flud [J/ o C] k g [W/ o C] d g g [J/ 3 o C] A g [ ] C grout [J/ o C] Nu flud f g Re 8 f g.07.7 8 else Re flud >= 0000 Nu flud flud 0.5 Pr flud Pr 0.8 0.3 0.03 Re flud Prflud heral apatane of the flud node C flud Af dz d heral ondutvty of the.4 grout Densty*spef heat apaty.9*0 6 of grout Cross-setonal area of the grout Dbore node Ag do g 4 heral apatane of the grout node C grout k s [W/ o C] heral ondutvty of the sol. d s s [J/ 3 o C] Densty*spef heat apaty.*0 6 of sol A s [ ] Cross-setonal area of the sol node A L A s [ ] A s3 [ ] A s4 [ ] A s5 [ ] C sol [J/ o C] C sol [J/ o C] Cross-setonal area of the sol node Cross-setonal area of the sol node 3 Cross-setonal area of the sol node 4 Cross-setonal area of the sol node 5 heral apatane of the sol node heral apatane of the sol node A A A A C C s 0.67 flud Dbore d gg do g dz 4 xx D 4 bore s Lxx Lxx s3 3 Lxx Lxx s4 4 Lxx 3 Lxx s5 5 Lxx 4 Lxx Dbore sol Lxx sol xx 4 dz d xx L L dz d s s s s 37
C sol3 [J/ o C] heral apatane of the sol Csol node 3 C sol4 [J/ o C] heral apatane of the sol Csol node 4 C sol5 [J/ o C] heral apatane of the sol Csol node 5 R onv [K W - ] heral resstane beteen ater and tube all due to R onveton k ppe [W/ o C] heral ondutvty of the ppe 0.38 R ond [ o C/W] heral resstane of the tube all R R ond [ o C/W] R fg [ o C/W] R g [ o C/W] R ar [ o C/W] L g [-] heral resstane beteen the tube all and the grout zone heral resstane beteen the flud n the ppes and the grout zones heral resstane beteen the outer all of one tube and the borehole all ganng fro to-densonal heat onduton analyss and borehole geoetry heral resstane beteen the outer alls of to tubes he value L g deternes ho the theral resstane beteen the outer all of one tube and the borehole all R g s dvded R R R R L onv 3 L L dz d 3 xx 4 L 3 L dz d 4 xx 5 L 4 L dz d 5 xx ond ond fg g ar g R Nu flud k d ln d k L onv g R o g g g R D ar osh f ppe R ond ond bore d d k s d ar osh d o g k ln D ln bore d D d g g d o g bore o g o g o g o g o g s xx xx xx s s s. 0.888 s s s s d b R gb [ o C/W] heral resstane beteen the grout zones and the borehole all R gb L R g g 38
R gg [ o C/W] heral resstane beteen to grout zones R gg R R gb gb R R ar ar L g L g R g R g R bs [ o C/W] heral resstane beteen the sol node and the grout all R bs L log 4 D k bore bore s R ss [ o C/W] heral resstane beteen sol node and sol node R ss.5 Lxx log Lxx D 4 k s bore R ss [ o C/W] R ss3 [ o C/W] R ss4 [ o C/W] heral resstane beteen sol node and sol node3 heral resstane beteen sol node3 and sol node4 heral resstane beteen sol node4 and sol node5 R R ss ss3 ss4.5 L log.5 L k 3.5 L log.5 L k 4.5 L log 3.5 L k able 3. Geoetral data physal propertes and operatng ondtons of the ground loop heat exhanger R s s s xx xx xx xx xx xx 3.3.7 Heat pup odel A ater-to-ater heat pup s odeled based on ts to ajor oponents: evaporator and ondenser and an equaton-ft COP odel s utlzed to onnet the to. he energy balane equaton of the heat pup an be desrbed as: 39
. Evaporator odel drs Ce gg rs oeo COP 3.56 dt. Condenser odel C d rl oeocop rl rr 3.57 dt 3. COP odel R40a refrgerant he COP odel s based on the polynoal urve-ft to the anufature s data. he data used s lsted n the Appendx-B. E E ond COP 3.58 C0 o COP C C rg rr rg C3 C g rr C4 g C C5 rg g C6 C3 rr rg C7 rr C8 g 3.59 C9 3.3.8 Heat exhanger odel. Return ater nodes of the prary sde: Equaton 3. desrbes the rate of heat stored n the prary sde of s equal to the heat suppled by the prary ppng netork nus the heat transferred to seondary sde. C d dt re h p x re qex 3.. Supply ater nodes of the seondary sde: he rate of heat stored n the seondary sde s equal to the heat nput fro the prary sde nus the heat transferred to the seondary sde. hs s expressed n Equaton 3.6 40
C d q 3.6 spr h ex spr rl dt Logarth ean teperature dfferene of eah heat exhanger s oputed fro: LMD exsp spr ln exsp re re spr rl rl 3.6 he rate of heat transferred s deterned fro: q ex ex Aex LMD 3.63 3.3.9 Boler odel A gas-fred ondensng boler s used n ths study. he teperature of supply ater of boler s a funton of the apaty of the boler the effeny of boler ass flo rate of supply-return ater and the rate of fuel onsupton. he boler effeny s alulated by usng the equaton gven n L et al 00. he energy balane equaton of the boler an be desrbed as: C b d dt b HVeb 3.64 f f ax b rb he return ater teperature to the boler an be desrbed as: rb r re p 3.65 p 3.3.0 Heat losses fro the ater dstrbuton ppe netork he heat losses fro the ater dstrbuton loop are evaluated based on the boler supply ater teperature b ground teperature g ater flo rate ppe ateral as ell as 4
the nsulaton property and the total length of ppe. he ppe segents that ontrbute to the ppe heat losses are: fro the boler to the oeral zone supply; fro the oeral zone to the boler return; fro the boler to the heat exhanger supply; and fro the heat exhanger to the boler return. It s assued that the heat pup unt and the heat exhanger are loated nsde the buldng. herefore the ppe heat losses fro the ground soure heat exhanger heat pup and heat exhanger are gnored. 3.4 Open loop sulatons of the syste All the oponent odels desrbed earler n setons 3. to 3.3 ere ntegrated to develop an overall hybrd hydron heatng syste odel. he odel equatons ere solved usng MALAB. Open loop sulaton runs ere ade to study the dyna responses of the syste. he open loop test results for the desgn ondton are depted n Fgure 3.4.. 4
Fgure 3.4. Syste open loop test at desgn ondton -5 o C outsde ar teperature he teperature responses at desgn ondton are depted n Fgure 3.4.. he syste as started fro arbtrary ntal ondtons. As shon n the fgure the boler and the heat exhanger supply teperatures reah nearly steady state n hours and 7 hours respetvely at ther desgn loads and the response te s affeted by the theral apaty of oponents and the loads atng on the syste. For the resdental zone a and oeral zone the response tes are 8 hours and hours respetvely hh are ndatve of the hgher theral ass of the radant floor heatng syste than the baseboard heater syste. he overall syste responses are not only affeted by spae 43
heatng loads but due to theral dyna effet of the heat pup loop nteratng th the ground loop. A ten day responses of the overall syste ere sulated and the results are depted n Fgure 3.4.. Fgure 3.4. Syste open loop test for the heat pup teperature responses at desgn ondton -5 o C outsde ar teperature By oparng Fgure 3.4. and 3.4. t an be noted that the boler and zone teperature responses reah steady state uh faster than heat pup loop teperatures. hs s due to the effet of ground loop theral nteratons hle the boler and zone teperatures responses are pated by the hangers n zone loads. he heat pup-ground loop 44
teperature responses exhbt uh sloer varatons that reflet large theral apaty effet of the ground loop. In order to prove the energy effeny of the overall syste t ould be portant to reset the boler supply ater teperature and the supply ater fro the heat exhanger as a funton of loads. o study ths aspet sulaton runs ere ade to deterne the funtonal relatonshp beteen boler ater teperature and the outdoor ar teperature. Lkese the heat exhanger supply ater teperature as a funton of outdoor ar teperature as exaned. he results are depted n Fgure 3.4.3. In ths sulaton the outsde ar teperature as vared fro the desgn ondton at -5 o C to the partal load ondton at -5 o C and the orrespondng boler supply ater teperature and the heat exhanger supply ater teperature ere deterned. As shon n Fgure 3.4.3 the boler teperature dereased fro 87 o C to 7 o C hen the syste loads hanged fro full load to partal load ondton. Slarly t an be stated that the heat exhanger supply ater teperature an be regulated beteen 45 o C to 39 o C to eet the zone loads of the resdental buldng hle the outdoor teperature vary fro -5 o C to -5 o C range. 45
Fgure 3.4.3 Supply ater teperature of boler and heat exhanger under dfferent outsde ar teperature he enterng soure ater teperature s one of the ost portant fators to deterne the effeny of a heat pup. o ths end open loop sulaton runs ere also ade to study the pat of enterng ground loop ater teperature on the COP of the heat pup. he enterng soure teperature ES s related to the teperature of the ground here the ground loop s nstalled. In ters of spae heatng applaton a hgher sol teperature ll provde a hgher ES and a ore effent heat pup operaton. he sulaton results presented n Fgure 3.4.4 sho that the COP nreases lnearly as the ES nreases. 46
Fgure 3.4.4 Effet of enterng soure teperature on COP 47
Chapter 4 Proportonal-Integral and Adaptve Control of Hybrd Hydron Heatng Syste 4. Introduton In ths hapter the desgn and tunng of feedbak ontrollers are explored and the responses of the syste subjet to dsturbanes are nvestgated. he objetve s to prove the regulaton perforane of the ontrol loops of the overall hybrd hydron heatng syste. Fgure 4.. shos the sheat dagra of a hybrd soure hot ater heatng syste supplyng spae heatng va boler and ground loop heat pup. Also shon n Fgure 4.. are the feedbak ontrol loops. here are fve loops n the syste: boler ontrol loop Fgure 4.. hh ontrols the boler fuel supply to antan the boler supply ater teperature at ts set-pont; heat exhanger ontrol loop Fgure 4..3 hh ontrols the seondary sde supply ater teperature through the regulaton of the prary sde ater teperature; 3 Heat pup loop Fgure 4..4 hh ontrols the ondenser sde supply ater teperature through the opressor poer regulaton; 4 Coeral zone ater loop Fgure 4..5 hh regulates the ater flo rate aordng to zone ar teperature hange va a to ay zone valve; and 5 Resdental zone ater loop Fgure 4..6 hh regulates the supply ater flo rate by a three ay xng valve. he applaton of to types of ontrol shees as exaned: a onventonal fxed gan PI ontrol and an adaptve gan PI ontrol. 48
Fgure 4.. Sheat dagra of hybrd soure hydron heatng syste ontrol loop for spae heatng Fgure 4.. Boler ontrol loop 49
Fgure 4..3 Heat exhanger ontrol loop Fgure 4..4 Heat pup ontrol loop 50
Fgure 4..5 Coeral zone ontrol loop Fgure 4..6 Resdental zone ontrol loop 5
4. he effets of load dsturbanes on the resdental and oeral zones he zone teperatures are affeted by several dsturbanes suh as the outdoor teperature the theral dyna effets of ndent or transtted solar radaton as ell as the nternal heat gan. he hanges n ntal ondtons of the odel tself an also lead to varatons n zone teperature. hese dsturbanes ould our onurrently or n several obnatons. Note that ost of the HVAC systes are desgned at the peak load ondton. As suh the effets of solar heat gan and nternal heat gan are not onsdered at the desgn stage. In prate hoever the buldngs operate under varable load ondtons hh are uh less than the desgn load ondtons. o antan zone teperatures at desred set-ponts under suh ondtons proper desgn and seleton of the ontrol syste s rtal to antan desrable zone ar ondton and to avod unneessary energy aste. o arry out the sulaton runs a snusodal profle for the outdoor ar teperature s assued th the ean ar teperature -0 o C and an apltude 0 o C. he hourly data of solar radaton s onsdered n both the ndent and transtted for and as odeled by usng Hottel s lear sky odel. he daly outdoor ar teperature profle s shon n Fgure 4... 5
Fgure 4.. Outdoor ar teperature profle By applyng the above outdoor ar teperature profle the teperature responses of the oeral and resdental zones thout ontrol ere sulated. he results are shon n Fgure 4... Fgure 4.. Resdental and oeral zone ar teperature responses th no ontrol 53
As shon n Fgure 4.. the resdental zone ar teperature flutuates beteen 4 o C and 30 o C and the oeral zone ar teperature flutuates beteen o C and 30 o C thout ontrol. hese flutuatons ll be aplfed f the solar radaton and nternal heat gan are also nluded n the sulaton. he results deonstrate that t ould be reasonable to expet up to 0 o C teperature flutuatons n buldngs hen no ontrol s appled hen the syste operates under a typal day load ondtons. 4.3 Fxed gan PI ontrol of zone ar teperatures A fxed gan PI ontrol strategy for zone teperature ontrol n both resdental and oeral zones as studed. A ell-tuned PI ontroller an provde satsfatory teperature regulaton perforane of the hydron heatng syste. he PI ontrol algorth an be desrbed as: t K t e t K t e t dt 4. p here e t = set pv K p t s the proportonal gan K t s the ntegral gan set s the set-pont teperature pv s the present value and t s the ontrol sgnal. In the sulatons the set-pont teperatures for the resdental and oeral zones ere assued to be o C and 0 o C respetvely. he set-pont ater teperatures for the boler supply s 88.7 o C and for the resdental and oeral zones are 45 o C. eperature responses subjet to outsde ar teperature hanges solar heat flux and nternal heat gans for the resdental and oeral zones are depted n Fgure 4.3.. he ontroller gans used n the sulaton runs ere obtaned by tral-and-error. he 54
follong set of ontroller gans k pa =.0 k a = 0.00 k p = 0.8 k = 0.05 gave aeptable set-pont trakng responses. Fgure 4.3. Valdaton of the onstant gan values of PI ontrollers for the resdental and oeral zone teperature ontrol he sulaton results depted n Fgure 4.3. a and b sho that the set-pont teperatures for both resdental and oeral zones an be antaned but ore noteable osllatons ere found n the resdental zone. hs s due to the fat that the resdental RFH syste has sgnfantly hgher theral apaty as suh the ntal teperature n the zone pats the ontrol perforane. he slo syste response to 55
ontrol nput hanges of the RFH syste also ontrbutes to ths sluggsh response. Furtherore due to the fat that the PI ontroller as desgned and tuned based n the ost rtal operaton pont the responses under partal load ondtons sho noteable flutuatons. o ths end an adaptve ontrol shee s proposed to prove the ontroller perforane. 4.4 Sulaton results for the adaptve PI ontrol A ell-tuned fxed gan PI ontroller an provde good dsturbane rejeton suh as due to hanges n ntal ondtons and abent ar teperature as ell as the theral dyna effets of absorbed solar radaton fluxes. Nevertheless due to nonlnear dynas of the syste and unknon external dsturbanes relane on fxed gan PI ontroller to aheve good teperature ontrol reans a hallengng proble. o ths end an adaptve ontroller has been desgned and pleented to prove ontrol perforane of the syste. Instead of usng tral-and-error approah to fnd the gans the adaptve PI ontrol onsders both nput and output to defne and update the gans. he adaptve gan PI ontrol algorth as desrbed as: t K t e t K t e t dt k 4. ap a o o o here K ap t s the adaptve proportonal gan hh s gven by: K ap az zr o t 4.3 spr 56
a z s the zone heat loss oeffent spr and are the supply and return ater teperature of the zone zr and o are the zone ar teperature and outsde ar teperature. K a t s the adaptve ntegral gan hh s reset hen the error buld up exeeds large value. When the ontroller s settled and the present value s lose to the set-pont an adaptve gan K a t s appled to elnate the steady-state error. A preve aton ter k o o o s also nluded n the adaptve ontrol algorth here k o s the predtve gan of the outsde ar teperature o s the ean abent ar teperature and o s the present abent ar teperature. α and β are the ultpler of the proportonal and ntegral ters. 57
Fgure 4.4. Responses of the adaptve PI ontrollers for the resdental and oeral zones teperature ontrol he responses of the adaptvely ontrolled syste are shon n Fgure 4.4.. Copared th the onstant gan PI ontroller perforane Fgure 4.3. under sae operatng ondtons the adaptve PI ontrol shos better dsturbane rejeton and hgher stablty Fgure 4.4.. Moreover hen a sudden step hange s appled suh as an nrease or derease n set-pont teperature of the zone the ontroller responds n a stable and sooth anner as shon n Fgure 4.4.. he sulatons ere onduted at to dfferent outdoor ar 58
teperature profles one rangng beteen -5 o C and -5 o C to sulate a old-day; and the other rangng fro -5 o C to 5 o C representng a ld nter day ondton ere appled for ths analyss. Zone teperature set-ponts n buldngs ere assued to be 9 o C durng the frst 0 hours and set forard to o C for the reander of the day. Fgure 4.4. Coparson of ontroller responses th adaptve ontrol a-b and fxed gan ontrol -d for the resdental zone subjet to step hange n o C and a outsde ar teperature profle fro -5 o C to -5 o C 59
Fgure 4.4.3 Coparson of ontroller responses th adaptve ontrol a-b and fxed gan ontrol -d for the resdental zone subjet to step hange n o C and a outsde ar teperature profle fro -5 o C to 5 o C he anner n hh the adaptve ontroller brngs the zone teperatures fro a loer set-pont to a hgher set-pont s depted n Fgure 4.4. a b and Fgure 4.4. a b for to ases th dfferent outdoor ar teperature profles. Also shon n Fgure 4.4. d and Fgure 4.4. d are the responses obtaned fro the fxed gan ontroller. Due to the fat that the ontroller s desgned and tuned for hgh load ondton under lo load ondtons hen outsde ar teperature s hgher and and/or zone set-pont teperature s loer osllatons n zone teperature ay our beause of the nonlnear
dynas of the systes. A reedy to ths proble s to ake the ontroller adaptve th the operatng ondtons so that durng the hole operatng range stable and fast teperature responses of the zone ar an be aheved he responses presented n Fgure 4.4. and 4.4.3 sho that the adaptve ontroller perforane s better than the fxed gan PI ontroller and responds to hange n set-pont soothly. he adaptve ontrol strategy as further pleented nto other ontrol loops suh as the boler loop the heat exhanger loop and the heat pup loop. he perforane evaluaton of adaptve ontrol for these ontrol loops are shon n Fgure 4.4.4. 6
Fgure 4.4.4 eperature responses of the boler heat exhanger and heat pup ontrol loops for adaptve ontrol Fgure 4.4.4 shos the adaptve ontrol responses of the boler teperature heat exhanger teperature and the return ater teperature through the heat pup loop orrespondng to a typal day sulaton result. As an be noted the ontroller s adaptng very ell to durnal load hanges that our durng a typal day operaton and varable set-ponts. 6
Chapter 5 Control Strateges for Iproved Energy Effeny of Hybrd Hydron Heatng Syste 5. Introduton Several ontrol strateges ere nvestgated to prove the energy effeny of the hybrd hydron heatng syste. Energy sulatons runs ere onduted under dfferent operatng ondtons. A onventonal fxed set-pont PI ontrol as used as the base ase ontrol strategy. In ths ase supply ater teperatures of boler heat pup and heat exhanger are pre-deterned and kept onstant aordng to the hstoral perforane data. Also an outdoor reset ontrol strategy as developed n a ay that the rate of heat delvery to the buldng an be adjusted to ath the buldng heat losses. Fnally an optal set-pont ontrol strategy s proposed to nze the overall energy onsupton of the syste hle antanng desrable zone ar teperature. 5. Conventonal fxed set-pont ontrol strategy A onventonal fxed set-pont PI ontrol strategy s presented as the base ase. Here the supply ater teperatures of boler heat pup and heat exhanger are pre-deterned and kept onstant. he set-pont teperature of boler supply s 88.7 o C and the supply teperatures for both heat exhanger and heat pup ere set at 45 o C. he set-pont teperatures for both resdental and oeral zones ere o C. nder these 63
ondtons the zone teperature responses and ontrol valve responses are shon n Fgure 5... Fgure 5.. Output responses of resdental and oeral zone fxed set-pont ontrol strategy 64
Fgure 5.. Output responses of boler and heat exhanger fxed set-pont ontrol strategy he results sho that a ell tuned PI ontroller an antan zone and boler teperatures at ther respetve set-pont n the presene of dsturbanes atng on the syste. 5.3 Outsde ar teperature reset ontrol strategy An outsde ar teperature reset ontrol strategy s developed to ontnually adjust the rate of heat delvery to the zone to ath the zone heat loads. o splfy the ontrol proess sae set-pont teperatures for the heat exhanger and the heat pup supply ere appled n ths sulaton. A seres of open loop tests ere onduted to deterne the target set-pont ater teperature as a funton of the outsde ar teperature. Fgure 5.3. shos the hange of the supply ater teperature set-pont as a funton of the outsde ar teperature. 65
Fgure 5.3. Outsde teperature reset profle of boler heat exhanger and heat pup 66
Fgure 5.3. Output responses of resdental and oeral zone outsde ar teperature reset ontrol strategy Fgure 5.3.3 Output responses of boler and heat exhanger outsde ar teperature reset ontrol strategy 67
he outsde ar teperature s used as the bass for deternng an deal target ater teperature to be suppled to the syste s heat etters. As shon n Fgure 5.3. a and b both the resdental and oeral zones an be antaned at desrable set-ponts. It an be noted fro Fgure 5.3.3 a that the boler teperature s reset throughout the day as a funton of outsde ar teperature. Copared to fxed set-pont teperature ontrol strategy Fgure 5.. a the boler teperature n the reset ontrol strategy reans loer. 5.4 Optal set-pont ontrol strategy In order to obtan optal set-ponts for the boler heat exhanger and heat pup supply ater teperatures an optzaton proble as forulated and solved. A ult-varable onstrant optzaton tehnque for energy optzed operaton as appled to deterne the steady state optal set-pont teperature. he set-pont supply ater teperature of boler heat exhanger and heat pup ere deterned by usng a splfed regated syste odel th 5 steady state equatons. he regated odel as opared th the full-order odel developed n Chapter 3. he objetve funton to be nzed as set up based on three an onsderatons: the energy nput to the boler and to the heat pup opressor are to be nzed the zone ar teperature should be alays antaned lose to the set-pont and 3 the upper and loer bounds for eah paraeter should not be exeeded. o ths end the objetve funton J as defned as: 68
69 ax set z rset zr o o f f COP E HVeb J 5. he splfed regate odel equatons expressed as steady state onstrants are shon n the follong: 30 o zr ar ar o zr el el o zr nr o zr n nr onv rad Vol ACH A A A Q 5. rer v ond rer h ond rer spr 3 v ond rer h ond 5.3 3 flo v flo ond h ond rer v ond 5.4 3 3 3 v ond h ond flo v flo ond 5.5 s flo v flo ond flo flo h flo ond flo v flo ond 5.6 3 flo v flo ond flo flo h flo ond s flo v flo ond 5.7 v flo ond v flo ond r flo s q q 5.8 v flo ond v flo ond r flo s q q 5.9
70 30 o z ar ar o z n o z n n re sp Vol ACH A A 5.0 n z re sp htr re sp 5. re x p ex q 5. ex rl spr q 5.3 ALMD q ex ex 5.4 rl re spr exsp rl re spr exsp LMD ln 5.5 p r p r p p r exsp p r x 5.6 rs rg COP E o o g 5.7 rer rl o o COP E 5.8 o ond E E COP 5.9 rer g g rer g rer g rer C C C C C C C C C C C C C COP rg rg rg rg 3 0 9 8 7 6 5 4 3 5.0 ax rb b f f HVeb 5. p p exre r rb 5. g b loss exsp b p 5.3
p re exre loss re g 5.4 b sp loss b g 5.5 re r loss re g 5.6 Fgure 5.4. Coparson beteen the splfed regated odel and the detaled full order odel he open loop tests for both splfed regated odel and detaled full order odel ere onduted and the results ere shon n Fgure 5.4.. he teperature responses 7
for the boler heat exhanger resdental zone and oeral zone for both ases ere plotted. It an be noted that the errors beteen the to odels s not very sgnfant. he optzaton proble as solved by utlzng the f non J funton n MALAB. he senstvty of optal set-ponts of boler heat exhanger and heat pup to the outsde ar teperature ere studed and shon n Fgure 5.4.. Fgure 5.4. Optal set-pont teperature profle for boler heat exhanger and heat pup he above fgure shos the optal set-pont of boler heat exhanger and heat pup as a funton of outsde ar teperature. he results sho that the set-pont teperatures 7
derease as the outsde ar teperature nreases. he above optal set-pont teperature ere pleented on the syste by ondutng a typal day sulaton. he results are depted n Fgure 5.4.3 and Fgure 5.4.4. Fgure 5.4.3 Output responses of resdental and oeral zone optal ontrol strategy 73
Fgure 5.4.4 Output responses of boler and heat exhanger optal ontrol strategy Sulaton results presented n Fgure 5.4.4 reflet ontnuous hange n boler and heat exhanger teperature hh trak the optal set-ponts soothly. 5.5 Energy onsupton Syste-based and ontrol-based energy sulatons ere onduted. For the purpose of sulaton to dfferent days: a old day teperature range -5 o C to -5 o C and a ld day teperature range -5 o C to 5 o C ere used. Coparson of the energy onsupton beteen all boler syste and hybrd hydron syste ere ade. As shon n able 5.5. the pleentaton of the ground soure heat pup syste an ontrbute to 55.4% and 70% of boler energy savngs for the old day and ld day as opared th the onventonal all boler syste. Energy sulaton of hybrd hydron syste as onduted under three dfferent ontrol strateges and the sulatons results are presented n able 5.5.. It an be noted fro the table that on a old day -5 o C to -5 o C the energy savngs of 4.5% and 6.6% 74
respetvely for the reset ontrol and the optal ontrol ere obtaned opared to the base ase. nder the ld day ondtons -5 o C to -5 o C the heatng load deands are loer and as suh ore energy savng 9.9% and % ere realzed by usng the reset and optal ontrol strateges. he sulaton results sho that the outsde ar teperature reset ontrol strategy s an effent and sple strategy to aheve energy savngs. As the supply ater teperatures are regulated aordng to the outsde ar teperature less ppe heat losses our and hgher boler operatonal effeny an be aheved. Although the optal ontrol strategy results n hgher energy savngs t s relatvely ore dffult to pleent n real systes. 75
Daly outdoor ar teperature profle Cold nter day -5<o<-5 otal energy onsupton MJ Energy onsupton oeral zone MJ Energy onsupton Resdental zone MJ Daly outdoor ar teperature profle Mld nter day -5<o<5 otal energy onsupton MJ Energy onsupton oeral zone MJ Energy onsupton Resdental zone MJ Conventonal all boler heatng syste Hybrd soure heatng syste Boler energy savng 84. 85. NA 8.4 Boler 83.5 Boler NA 00.8 Boler 446.7 Boler 554.9 Heat pup Conventonal all boler heatng syste Hybrd soure heatng syste 55.4% Boler energy savng 683. 684.7 NA 93.4 Boler 95 Boler NA 769.7 Boler 3.5 Boler 538. Heat pup 70% able 5. Energy oparson of dfferent operatng ethods syste based under hgh heatng lo deand and lo heatng load deand ondtons 76
Daly outdoor ar teperature profle Hgher Deand -5<o<-5 otal energy onsupton MJ Energy onsupton oeral zone MJ Energy onsupton Resdental zone MJ Conventonal fxed set-pont PI ontrol Outdoor ar teperature reset ontrol Optal set-pont PI ontrol 85. 087 040. 83.5 33.3 099.6 446.7 Boler 554.9 Heat pup 380.6 Boler 573. Heat pup 468.0 Boler 47.6 Heat pup Energy savng NA 4.5% 6.6% Daly outdoor ar teperature profle Loer Deand Conventonal fxed set-pont PI ontrol Outdoor ar teperature reset ontrol Optal set-pont PI ontrol -5<o<5 otal energy onsupton 684.7 350 37 MJ Energy onsupton oeral zone MJ 95 746.5 77.8 Energy onsupton Resdental zone MJ 3.5 Boler 538. Heat pup 80.7 Boler 5.8 Heat pup 83.6 Boler 45.6 Heat pup Energy savng NA 9.9% % able 5. Energy oparson of dfferent operatng ethods ontrol based under hgh heatng lo deand and lo heatng load deand ondtons 5.6 Suary he transent responses and energy sulatons for all three ontrol strateges ere onduted. Wth properly seleted hot ater supply set-pont teperatures and ell-tuned PI ontrollers both the resdental and oeral zones an be antaned at desrable ondtons. Hoever supplyng the hot ater at onstant teperature an lead 77
to hgher ppe heat losses and lo boler effeny at partal load ondtons. o ths end an outsde ar teperature reset strategy as pleented. he supply ater teperatures to the zones ere regulated aordng to the outsde ar teperatures. As suh ontnual adjustent of heat delvery to the zone as aheved to ath the zone heat losses. Moreover less flo rate flutuatons at the zone level ere observed for the reset ontrol. hs ore stable rulaton an ensure that the heat delvered to dfferent parts s even and the potental loalzed heat snks an be avoded. Furtherore a ult-varable onstrant optzaton tehnque for energy optzed operaton as appled to deterne the steady state optal set-pont teperature. In ths ase the operatonal nteratons aong ontrol loops ere taken nto onsderaton. Instead of usng sae supply ater teperature for heat pup and the heat exhanger a unque teperature profle for the heat pup as deterned and used. hese easures resulted n further energy savngs. 78
Chapter 6 Conlusons Contrbutons and Reoendatons for Future Researh 6. Conlusons and ontrbutons he developent of the dyna odel the desgn and sulatons of the ontrol strateges and the odel-based energy analyss for the hybrd soure hydron heatng syste have been presented n ths study. he onlusons and ontrbutons are stated n the follong setons: desgn and dyna odelng of the overall HWH syste energy sulatons under dfferent operatng ondtons and the study of ontrol strateges for the optzed syste perforane. 6.. Dyna odelng of the hybrd soure hydron heatng syste Dyna odels for eah oponent ere frst developed and ntegrated nludng the boler heat exhanger ground loop heat pup ground loop heat exhanger baseboard heaters and radant floor heatng ppes. he hybrd hydron heatng syste odel as used to analyze and sulate the syste responses n ters of the nfluenes of buldng heatng load zone ar teperature varaton rulatng ater flo rate as ell as other dsturbanes. It as found that zone and boler teperature responses are faster opared to the heat exhanger and heat pup loop teperature beause of the large theral apaty of the 79
ground loop. For the daly teperature responses of the boler and zone the dret effet of the ground loop theral apaty s less onsderable. 6.. Adaptve ontrol of hybrd hydron syste A onventonal fxed gan PI ontrol and an adaptve gan PI ontrol ere presented and the sulaton results for both ontrols ere nvestgated. A ell-tuned PI ontroller as found to gve good teperature ontrol. Hoever the dyna haratersts of RFH syste hange sgnfantly durng operaton. he syste nonlneartes ause unstable osllatory behavor n zone teperature espeally durng the lo load ondtons. A fxed set of ontrol gans ere shon to be not effent to handle the ultple te varyng proesses durng the syste operaton. o ths end an adaptve gan strategy as desgned. It as shon that the adaptve ontrol strategy gves good teperature ontrol under varable load ondtons opared to the onventonal fxed gan ontrol. he responses ere sooth and ontrol as stable. 6..3 Energy oparson under three dfferent ontrol strateges Energy sulatons of the syste under dfferent ontrol strateges ere onduted. he fxed set-pont strategy as found to ontrbute to hgher energy onsupton due to hgher ppe heat losses. he reset ontrol strategy on the other hand as found to be effetve n redung syste energy onsupton. he supply ater teperature as regulated as a funton of the outdoor ar teperature so that the ater teperature s 80
just suffent to opensate for the zone heat losses. By ths ay the boler energy as saved by 5% old nter day and 0% ld nter day respetvely opared to the fxed set-pont ontrol strategy. he optal set-pont ontrol strategy resulted n the hghest energy savng of 7% old nter day and % ld nter day respetvely. In ths ase the nteratons and tradeoff under dfferent operatng ondtons beteen soures are onsdered and odeled by a ult-varable onstrant objetve funton optzaton tehnque. It as also found that the ground loop heat pup syste ontrbutes beteen 50 to 70% of energy to the resdental RFH syste opared to the all boler syste. 6. Reoendatons for future researh Solar radaton ndent on the radant floor surfae plays an portant role for both the energy and ontrol analyss. Solar energy absorpton by the theral ass of a floor heatng syste ay ontrbute to a onsderable reduton n energy onsupton. Hoever proper predtve ontrol strategy should also be pleented to antpate the theral lag effet. Dyna optal ontrol nstead of steady-state optal ontrol should be studed and pleented n the urrent syste to develop proved ontrol strateges. 8
Referenes [] Bauer.D W. Hedeann and H.-J.G. Dersh 0. ransent 3D analyss of borehole heat exhanger odelng. Geothers 40 50-. [] Berner M.A. P.Pnel R.Labb and R. Pallot. 004. A Multple-load regaton Algorth for Annual Hourly Sulatons of GCHP Systes. HVAC&R Researh. [3] Carsla HS Jaeger JC. 946. Conduton of heat n solds. Oxford K: Clareore [4] Cehn C. D. Marhal. 99. A sulaton odel of refrgerant and ar-ondtonng equpent based on experental data. ASHRAE ransatons 97: 388-393. [5] Chae. Y. K. H. Lee J. S. Park. 0. Iproved theral perforane of a hydron radant panel heatng syste by the optzaton of tube shapes. Journal of Zhejang nversty Appled Physs & Engneerng 48-437. [6] Chen.Y. 00. Applaton of Adaptve Predtve Control to a Floor Heatng Syste th a Large heral lag. Energy and Buldngs. 34 00. Pp.45-5. [7] Cho S.H and Zaheer-uddn M 999 "An experental study of ultple paraeter sthng ontrol for radant floor heatng systes" Energy the Int. Journal Vol.4 pp. 433-444. [8] Danel E. Fsher and Son J. Rees 005. Modelng Ground Soure Heat Pup Systes n a Buldng Energy Sulaton Progra EnergyPlus. Nnth Internatonal IBPSA Conferene. 8
[9] Esklson P. 987. heral Analyss of Heat Extraton Boreholes. Dotoral hess. nversty of Lund Seden. [0] Fateeh ahersa Jakob Stoustrup and Henrk Rasussen. 0. Elnatng Osllatons n RV-Controlled Hydron Radators. 0 50th IEEE Conferene on Deson and Control and European Control Conferene CDC-ECC Orlando FL SA Deeber -5 0 [] Flordes. G and S. Kalogrou. 007. Ground heat exhangers A reve of systes odels and applatons. Reneable Energy 3 007. 46-478. [] Ingersoll LR Plass HJ. heory of the ground ppe soure for the heat pup. ASHVE rans 948; 54:339 48. [3] Ingersoll L.R. and A.C. Zobel. 954. Heat onduton th engneerng and geologal applaton th ed. MGra-Hll Ne York. [4] Jn Sptler. 00. A paraeter estaton based odel of ater-to-ater heat pups for use n energy alulaton progras. ASHRAE ransatons 00 Vol 08 Part. [5] Kavanaugh SP. 985. Sulaton and experental verfaton of vertal ground oupled heat pup systes. Ph.D dssertaton. Stllater Oklahoa: Oklahoa State nversty Stllater. [6] L L Zaheer-uddn M 00. Steady State and Dyna Modelng of an Indret Dstrt Heatng Syste. Int. Journal of Ar-Condtonng and Refrgeraton Vol. 8 No. 00 6-75 83
[7] L S.C 00. Modelng and ontrol strateges for radant floor heatng systes. Master thess Conorda nversty. [8] LaoZ. Parand. 00. Develop a Dyna Model of Gas and Ol Burned Bolers for Optzaton of Boler Control n Central Heatng Systes. [9] Morrson A.997. GS000 Softare. Proeedngs of the hrd Internatonal Heat Pups n Cold Clates Conferene Wolfvlle Nova Sota pp. 67-76. Press [0] Sattar. S and B. Farhaneh 006. A paraetr study on radant floor heatng syste perperforane. Reneable Energy 3 67-66. [] Sngh. G M. Zaheer-uddn R.V.Patel. 000. Adaptve ontrol of ultvarable theral proesses n HVAC systes. Energy Converson & Manageent 4 000 67-685. [] Sptler J.D S.J.Rees and C. Yavuzturk. 000. Reent developents n ground soure heat pup syste desgn odelng and applatons. Proeedngs of the Dubln 000 Conferene. [3] Stefanuk N.B.M. J.D. Aplevh and M. Renkszbulut. 99. Modelng and sulaton of a superheat-ontrolled ater-to-ater heat pup. ASHRAE ransatons 98: 7-84. [4] ang. 003. Modelng Pakaged Heat Pups n a Quas-steady State Energy Sulaton Progra. Master thess. Oklahoa State nversty. 84
[5] Na.Y R. Ooka and S. Hang 008. Developent of a nueral odel to predt heat exhange rates for a ground-soure heat pup syste. Energy and Buldngs 40 33-40. [6] Zaheer-uddn M Z.L. Zhang and S.H. Cho 00 "Augented ontrol strateges for radant floor heatng systes" Int. Journal of Energy Researh Vol.5. [7] Zaheer-uddn M. 993. Optal Sub-optal and Adaptve Control Methods for the Desgn of eperature Controllers for Intellgent Buldngs. Buldng and Envronent Vol. 8 No. 3 pp. 3-3. [8] Zaheer-uddn M. P. Monastrakos 998. Hydron heatng systes: transent odelng valdaton and load athng ontrol. Int. Journal of Energy Researh Vol. pp. 33-46 85
Appendes Appendx-A Desgn paraeters of Hybrd Hydron Heatng Syste Sybol Desrpton Value or forula Heatng Load Estaton od [ o C] Outsde ar teperature at -5 desgn ondton zd [ o C] Coeral zone ar teperature at desgn ondton zrd [ o C] Resdental zone ar teperature at desgn ondton Q h [W] otal heatng load of 44 oeral zone Q hz [W] Heatng load of 575.6 oeral zone Q hz [W] Heatng load of 973.7 oeral zone Q hz3 [W] Heatng load of 343.5 oeral zone 3 Q hz4 [W] Heatng load of 9.6 oeral zone 4 Q hr [W] otal heatng load of 788 resdental zone Q hrza [W] Heatng load of resdental 748.4 zone a Q hrzb [W] Heatng load of resdental 053.3 zone b Q hrz [W] Heatng load of resdental 45.6 zone Q hrzd [W] Heatng load of resdental 94.6 zone d Boler seleton Q bd [W] Boler apaty 35000 Radant floor heatng syste szng 86
rspd [ o C] Resdental zone desgn 45 supply ater teperature rred [ o C] Resdental zone desgn 35 return ater teperature d r [] Inner daeter of the tube 0.0087 d or [] Outer daeter of the tube 0.07 S t [] Interval beteen tubes Vares for eah zone t p [] hkness of the floor slab 0.038 onrete layer t [] hkness of the floor slab 0.00955 overng layer L [] Radant floor ppe length Vares for eah zone for eah ontrol segent Baseboard heater szng spd [ o C] Coeral zone desgn 85 supply ater teperature red [ o C] Coeral zone desgn 65 return ater teperature n Fator dentfed based on 0.3 heater heat transfer test htr [W/K] heral ondutane of 0.5Qhz the baseboard heater htr spd red htr [W/K] htr3 [W/K] htr4 [W/K] heral ondutane of the baseboard heater heral ondutane of the baseboard heater 3 heral ondutane of the baseboard heater 4 htr htr3 htr4 spd spd spd 0.5 Qhz red 0.5Qhz red 0.5 Qhz red n zd n zd n zd n zd 87
htr5 [W/K] htr6 [W/K] htr7 [W/K] htr8 [W/K] heral ondutane of the baseboard heater 5 heral ondutane of the baseboard heater 6 heral ondutane of the baseboard heater 7 heral ondutane of the baseboard heater 8 htr5 htr6 htr7 htr8 spd spd spd spd 0.5 Qhz red 0.5 Qhz3 red 0.5 Qhz3 red.0 Qhz4 red Ground loop heat exhanger szng N Nuber of bores n eah seres rut N Nuber of parallel rut d g [] Inner daeter of the tube 0.06 d og [] Outer daeter of the tube 0.03 z [] Dstane beteen vertal /3.7 nodes z [] Dstane beteen vertal nodes z<0 z [] Dstane beteen vertal 3.7 nodes 0<z<75 s [] Shank spae beteen to 0.06 tubes L bore [] Center to enter dstane 6 beteen to boreholes D bore [] Borehole daeter 0.3 D pbore [] Borehole depth 75 Heat pup seleton Heat pup type Water-to-ater heat pup n zd n zd n zd n zd 88
E o [W] Heat exhanger szng exspd [ o C] exred [ o C] LMD d ex [W/ o C] A ex [ ] Refrgeraton type Heat pup opressor poer Heat exhanger prary sde desgn supply ater teperature Heat exhanger prary sde desgn return ater teperature Desgn Log Mean eperature Dfferene Heat transfer oeffent of heat exhanger Heat transfer area of heat exhanger R40a 5000 85 75 LMD 3000 A ex d ex Q exspd hr LMD rspd ln d exspd exred exred rspd rred rred 89
90 Appendx-B Preu Hydron Syste H Seres HS Spefaton Catalogue HS08 - Perforane Data ont. Heatng Capaty Soure ES F Flo GPM 4 5 5 EL F 80 00 0 80 00 0 3 80 00 0 30 4 80 00 0 5 80 00 0 3 80 00 0 50 4 80 00 0 5 80 00 0 3 80 00 0 70 4 80 00 0 5 80 00 0 3 80 00 0 90 4 80 00 0 5 80 00 0 80.5 99.4 9.9 8. 0.88.9 6.9 4. 9.96 6.97 78.9 80.0 76.3 95.5 80. 99.0 9. 7.7 0.88.9 6. 3.6 9.7 6.84 75.7 77. 76.0 95. 69.8 89.4 09. 8.7 70.4 90.0 09.6 9. 70.7 90. 09.8 9.4 70.9 90.5 0.0 9.6 73.5 93.0.4 3.9 73.9 93.3.7 3. 74. 93.6.9 3.3 76.6 95.9 5. 34.5 77. 96.3 5.5 34.7 77.5 96.7 5.8 35.0 79.6 98.6 4. 3.7 3..7 5. 4.5 4.0 3.4 5.5 4.9 4.3 3.7 5.9 5. 4.6 3.9 9.7 8.9 8. 7.3 0. 9.3 8.4 7.6 0.7 9.8 8.8 7.9 4. 3... 4.9 3.7.6.5 5.5 4.3 3.0.8 8.5 7. 0.90..53.84 0.9..54.85 0.9..53.85 0.90..53.84 0.90..5.84 0.89..5.83 0.89.0.5.83 0.88.9.5.8 0.88.9.5.8 0.88.9.5.8 0.88.8. 9.6 8.0 6.4.0 0.4 8.7 7..4 0.7 9.0 7.4.8. 9.4 7.6 6.6 4.7.9.0 7. 5. 3..3 7.7 5.6 3.6.6. 9. 7.0 4.9.8 9.6 7.4 5..5 0. 7.9 5.6 5.5 3.0 4.6 3.3.53.0 4.86 3.48.66. 5.0 3.58.73.7 5.8 3.68.80. 6.46 4.58 3.48.76 6.6 4.69 3.55.8 6.83 4.8 3.64.86 8.06 5.69 4.30 3.40 8.7 5.8 4.39 3.45 8.49 5.96 4.48 3.5 9.49 6.70 0.4..7.4.8.9 4.0 5. 3. 4. 5. 6.0 4.7 5.4 6. 6.9 38.6 39.9 4. 4.4 40.7 4.7 4.8 43.8 4.7 43.5 44.4 45. 55.4 56.9 58.3 59.8 58. 59.3.5 6.7.7 6.7 6.6 63.6 7.5 74. 67.4 87. 06.8 6.6 68.3 88.0 07.7 7.4 68.6 88. 07.9 7.5 68.8 88.4 08.0 7.6 70.9 90.4 0.0 9.5 7. 90.7 0. 9.7 7.5 90.9 0.4 9.8 73.4 9.8. 3.6 73.8 93..5 3.8 74. 93.5.7 3.0 75.6 94.9 4.3 3.8 3.3.8 5. 4.6 4.0 3.5 5.6 5.0 4.3 3.7 6. 5.3 4.6 3.9 9.8 9.0 8. 7.3 0.4 9.5 8.5 7.6.0 9.9 8.9 7.9 4.5 3.4.3. 5. 3.9.7.5 5.9 4.5 3..9 8.4 7. 0.88.9.5.8 0.90..5.83 0.89.0.50.8 0.89.9.49.80.74.43..80.8.80.80.80 0.87.7.48.79 4.59 3.65.7.78.7.4.09.78 0.85.6.47.78 0.85.5.3 9.7 8. 6.5. 0.5 8.8 7..6 0.9 9. 7.5 3.0.3 9.5 7.8 0.4 0.7 0.9. 4. 3.3.4.5 8.0 5.9 3.9.8 8.8 0.9 3.0 5. 5.9 5.7 5.6 5.4.9 0.6 8. 5.8 5.5 3. 4.76 3.38.58.05 4.96 3.55.7.6 5.4 3.66.79. 5.3 3.78.87.7 4.7 3.48.85.8 3.3 3.6 3.0.87 7. 4.99 3.75.94 4.46 3.4.99 3.48.7.9 3.8 3.54 8.93 6.0 4.63 3.6 9.84 6.9 0.3.0.6.3.7.8 3.9 5.0 3. 4. 5.0 5.9 4.6 5.3 6. 6.8 4.8 4.7 4.5 4.3 4.7 43.0 43.4 43.7 4.6 43.4 44.3 45. 64.0 6.5 6. 59.6 6. 6.0 6.8 6.6.5 6.5 6.5 63.5 7.5 74. 65.9 85.7 05.5 5.3 66.3 86.0 05.8 5.6 66.5 86. 05.9 5.6 66.7 86.4 06.0 5.7 68. 87.9 07.5 7. 68.5 88. 07.7 7.3 68.7 88.3 07.8 7.4 70. 89.7 09. 8.7 70.5 90.0 09.4 8.9 70.8 90. 09.6 9. 7.6 9. 4.4 3.9 3.3.8 5. 4.6 4. 3.5 5.7 5.0 4.4 3.7 6. 5.4 4.7 3.9 0.0 9. 8. 7.4 0.6 9.6 8.6 7.7. 0. 9.0 8.0 4.7 3.5.4. 5.5 4..9.6 6. 4.8 3.4.0 8. 7.0 0.86.7.49.80 0.88.9.49.80 0.88.8.48.78 0.87.6.46.75 4.59 3.65.7.77.7.40.08.76 0.85.5.45.75 8.30 6. 3.93.74 4.56 3.6.68.74 0.8.3.43.74 0.8..5 9.9 8.3 6.7. 0.6 9.0 7.4.7.0 9.3 7.6 3..5 9.7 7.9 4.3 6.6 9.0.3.3.4.5.7 8.3 6. 4..0-3.6.7 9.0 5.3 9.9.8 3.7 5.7 3.4.0 8.5 6. 5.4 3. 4.9 3.46.63.08 5.06 3.6.76.0 5.6 3.75.85.6 5.46 3.89.95.33.97.37..88..40.63.94 7.4 5.7 3.87 3.0 0.87.3.67 3.57.64.96.50 3.64 9.36 6.45 4.78 3.70 0.0 7.4 0.3 0.9.6.3.6.7 3.8 4.9 3. 4.0 4.9 5.8 4.5 5.3 6.0 6.7 47. 45.4 43.8 4. 44.8 44.4 44.0 43.6 4.4 43.3 44. 45. 7.5 68. 63.8 59.5 66.4 64.8 63. 6.4.3 6.4 6.4 63.4 7.5 74.0 Operaton not reoended LL F Load Flo-3 GPM HC MBH Poer kw HE MBH COP LS F LL F HC MBH Load Flo-4 GPM Poer kw HE MBH COP LS F LL F HC MBH Load Flo-5 GPM Poer kw HE MBH COP LS F Operaton not reoended 9.0 7.6 0.85.5 6. 3.7 0.05 7.05 75.7 77.0 7.9 9.4 8.8 7.6 0.8. 6.0 3.8 0.40 7.8 75.8 77.0 Operaton not reoended 9.6 8. 0.85.5 6.7 4. 0.8 7.9 79.0 80.0 7. 9.6 9.3 8. 0.8. 6.5 4.3 0. 7.4 79. 80.0 Operaton not reoended
9 HS05 - Perforane Data ont. Heatng Capaty Soure ES F Flo GPM 5.5 5 7 EL F 80 00 0 80 00 0 4 80 00 0 30 5.5 80 00 0 7 80 00 0 4 80 00 0 50 5.5 80 00 0 7 80 00 0 4 80 00 0 70 5.5 80 00 0 7 80 00 0 4 80 00 0 90 5.5 80 00 0 7 80 00 0 84. 0.9 47.0 44.5.39.8 4.3 38.3 9.9 7.8 77.6 78.7 78.7 97.8 83.5 0.3 45.5 43..38.8 40.8 37.0 9.66 6.99 73.6 75. 78. 97.4 7.0 90.6 0. 9.7 7.4 9.0 0.6 30. 7.8 9.3 0.8 30.3 7. 9.6.0 30.5 75. 94.5 3.9 33.3 75.7 95.0 4.3 33.6 76. 95.4 4.7 33.9 78.9 98. 7.3 36.4 79.6 98.7 7.8 36.9 80.3 99.3 8.3 37.3 8.7 0.6.4 0.5 9.7 8.8..4 0.6 9.8.9.9.0 0. 3.5.4.4 0.3 9.4 8. 7.0 5.9 30.4 9. 7.7 6.4 3.5 30.0 8.5 7.0 36.6 35.0 33.5 3.9 38.0 36.3 34.5 3.8 39.4 37.5 35.5 33.6 44.0 4.9.8.70..54.9.7..54.9.7..54.9.7..54.3.74.6.59.3.74.6.59.3.74.7.59.33.77.0.64.34.77..64.34.77..64.37.80 7.0 4.7.4 0. 7.8 5.6 3.4. 8.4 6. 3.7.4 9. 6.6 4..6 4.9.3 9.6 7.0 5.9 3. 0.4 7.6 7.0 4.0. 8. 3. 9.0 5.9.9 33.4 30. 7.0 3.7 34.8 3.4 8.0 4.6 39.3 35.7 4.90 3.54.7.7 5.04 3.67.84.8 5.9 3.76.90.3 5.34 3.85.95.34 6.55 4.74 3.65.9 6.79 4.90 3.76.99 6.98 5.0 3.83 3.04 8.06 5.8 4.45 3.54 8.34 6.00 4.58 3.63 8.6 6.9 4.7 3.73 9.4 6.80 0.0 0.7.3.0 0.8.0 3. 4.3.6 3.5 4.5 5.4 4.4 5. 5.8 6.6 37. 38.5 39.9 4. 39.6 40.7 4.8 4.9 4. 4.9 43.8 44.7 53.5 55.0 56.6 58. 56.6 57.9 59..5 59.7.7 6.8 6.8 69.7 7.6 68. 87.7 07.4 7. 69. 88.7 08.4 8. 69.3 88.9 08.6 8. 69.6 89. 08.7 8.3 7.9 9.4.0 30.5 7.3 9.8.3 30.7 7.7 9..5 3.0 74.8 94. 3.5 3.9 75.3 94.7 4.0 33.3 75.9 95. 4.4 33.6 77.7 96.9.5 0.7 9.8 9.0.4.6 0.8 0.0 3.0.. 0.3 3.7.6.6 0.6 9.5 8.3 7. 5.9 30.4 9. 7.8 6.5 3.4 30.0 8.5 7. 36.5 35.0 33.4 3.9 37.9 36. 34.5 3.8 39. 37.3 35.5 33.6 43.7 4.7.6.67.09.5.6.68.09.5.6.68.09.5.6.68.09.5.7.69..54.7.69..54.7.69..54.8.7.4.57.8.7.4.57.9.7.4.57.3.73 7. 4.9.7 0.4 8. 5.9 3.6.4 8.7 6.4 4..7 9.3 6.9 4.5. 5..5 9.9 7.3 6. 3.4 0.6 7.9 7. 4..3 8.4 3. 9. 6. 3. 33.5 30.3 7. 4.0 34.8 3.5 8. 4.8 39. 35.8 5.0 3.6.77. 5. 3.78.9.33 5.35 3.87.97.37 5.50 3.96 3.03.4 6.79 4.89 3.75.99 7.0 5.04 3.86 3.06 7.3 5.8 3.95 3.3 8.37 6.00 4.59 3.65 8.65 6.9 4.7 3.74 8.95 6.40 4.86 3.84 9.79 7.07 9.9 0.6.3.9 0.7.8 3.0 4..5 3.4 4.4 5.3 4.3 5.0 5.7 6.5 37. 38.4 39.7 4. 39.5 40.6 4.7 4.8 4.0 4.9 43.7 44.6 53.4 55.0 56.5 58. 56.6 57.9 59..4 59.7.7 6.7 6.7 69.8 7.6 66.4 86. 05.9 5.6 66.7 86.4 06. 5.9 66.8 86.6 06.3 6.0 67.0 86.7 06.4 6. 68.7 88.3 08.0 7.7 69.0 88.6 08. 7.8 69. 88.8 08.4 8.0 70.7 90.3 09.8 9.4 7. 90.6 0. 9.6 7.5 9.0 0.4 9.9 7.8 9..6 0.8 9.9 9..6.8 0.9 0. 3..3.4 0.5 3.8.8.9 0.9 9.5 8.3 7. 6.0 30.5 9. 7.9 6.6 3.4 30.0 8.6 7.3 36.4 34.9 33.4 3.9 37.7 36. 34.4 3.8 39.0 37. 35.4 33.6 43.4 4.5.3.65.06.48.3.64.06.47.3.64.06.47.3.64.06.47.3.65.06.48.3.65.06.48.3.65.06.48.3.65.07.49.3.65.07.49.3.65.07.49.5.66 7.4 5..9 0.6 8.4 6. 3.9.7 9.0 6.7 4.4. 9.6 7. 4.8.5 5.3.7 0. 7.5 6.3 3.6 0.9 8. 7. 4.4.6 8.8 3. 9.3 6.3 3.4 33.5 30.4 7.3 4.3 34.8 3.6 8.3 5. 39. 35.9 5.5 3.70.83.6 5.38 3.88.98.38 5.53 3.98 3.05.43 5.67 4.07 3..48 7.03 5.04 3.85 3.07 7.5 5.9 3.96 3.5 7.48 5.34 4.06 3. 8.67 6.0 4.73 3.75 8.98 6.40 4.87 3.85 9.9 6.6 5.0 3.95 0.7 7.33 9.9 0.5..9 0.5.7.8 4.0.4 3.3 4. 5. 4. 4.9 5.6 6.3 37.0 38.3 39.6 4.0 39.5 40.6 4.6 4.7 4.0 4.8 43.6 44.5 53.4 54.9 56.4 57.9 56.6 57.8 59.0.3 59.7.7 6.7 6.6 69.8 7.5 Operaton not reoended LL F Load Flo-4 GPM HC MBH Poer kw HE MBH COP LS F LL F Load Flo-5.5 GPM HC MBH Poer kw HE MBH COP LS F LL F HC MBH Load Flo-7 GPM Poer kw HE MBH COP LS F Operaton not reoended 44.8 4.8.3.74 40.3 36.8 9.96 7. 73.8 75. 73.0 9.5 44. 4.4.6.66 39.8 36.7 0.30 7.46 73.9 75. Operaton not reoended 45.9 43.8.33.74 4.4 37.9 0.6 7.38 77.8 78.8 73. 9.7 44.8 43..6.67 40.5 37.5 0.4 7.59 78. 79.0 Operaton not reoended
9 HS040 - Perforane Data ont. Heatng Capaty Soure ES F Flo GPM 7.5 5 0 EL F 80 00 0 80 00 0 5 80 00 0 30 7.5 80 00 0 0 80 00 0 5 80 00 0 50 7.5 80 00 0 0 80 00 0 5 80 00 0 70 7.5 80 00 0 0 80 00 0 5 80 00 0 90 7.5 80 00 0 0 80 00 0 87. 06.5 5.9 65.8 64.3 6.7.0.59 3.6 58.9 55.4 5.9 9.54 7.7 5.8 77.9 78.6 79.3 79.5 99.0 8.4 86. 05.5 4.8 63.7 6.9..0.58 3.5 56.8 53. 49.3 9.30 7.03 5.59 7.6 73.8 75.0 79.0 98.4 7.8 7. 9.9.5 3. 7.7 9.4.0 3.7 73.3 9.8.3 3.8 73.9 93..6 3.9 76.9 96.3 5.6 34.9 77.7 96.9 6. 35.4 78.5 97.6 6.7 35.8 8. 00. 9. 38. 8. 0. 0.0 38.9 83. 0.0 0.8 39.6 85.4 04.5 9.7 8.8 8.0 7. 30.9 30.0 9. 8.3 3.3 3.0 9.8 8.6 33.6 3.0 30.5 8.9 4. 39.5 37.9 36.3 43.0 4. 39. 37. 44.9 4.6 40.4 38. 5.3 48.9 46.6 44. 53.7 5. 48.5 45.9 56. 53. 50.4 47.5 6.5 59.4.83.4 3.00 3.59.84.4.99 3.57.84.43 3.0 3.6.84.44 3.04 3.64.88.47 3.06 3.65.86.46 3.06 3.66.84.45 3.07 3.68.9.5 3. 3.7.88.49 3. 3.7.84.47 3.09 3.7.99.56 3.5 0.6 7.7 4.8 4.6.8 9.0 6. 6.0.7 9.5 6.3 7.3 3.7 0. 6.5 34.7 3. 7.4 3.8 36.6 3.7 8.7 4.7 38.6 34.3 30.0 5.6 44.7 40.3 35.9 3.5 47.3 4.6 37.9 33. 49.8 44.8 39.8 34.8 54.7 50.7 4.76 3.50.73. 4.9 3.64.85.3 5.4 3.74.90.3 5.35 3.85.94.33 6.37 4.67 3.6.90 6.77 4.89 3.75.98 7.4 5.08 3.85 3.03 7.83 5.69 4.37 3.48 8.37 6.00 4.57 3.6 8.93 6.3 4.77 3.74 9.05 6.79 0. 0.8.3.9 9.8.0. 3.4. 3. 4.0 5.0 4.4 5. 5.9 6.6 35.7 37. 38.7 40. 38.9 40. 4.3 4.4 4.0 4.9 43.8 44.7 5.5 53.4 55. 57.0 55.6 57. 58.5 59.9 59.7.8 6.8 6.8 67.4 69. 68. 87.9 07.7 7.4 69.5 89.3 09.0 8.7 70.0 89.6 09. 8.9 70.4 89.9 09.5 9.0 7.7 9..7 3. 73. 9.7. 3.5 73.8 93..5 3.9 75.8 95. 4.4 33.7 76.5 95.7 5.0 34. 77. 96.4 5.5 34.7 78.5 97.8 9.7 8.8 7.9 7.0 30.8 30.0 9. 8.3 3. 3.0 9.9 8.7 33.6 3. 30.7 9. 40.8 39.3 37.7 36. 4.7 40.9 39. 37.3 44.5 4.5 40.4 38.4 50.9 48.6 46.4 44. 53. 50.7 48.3 45.9 55.4 5.8 50. 47.6 59.0 56.7.78.36.94 3.5.79.36.93 3.50.78.36.94 3.5.78.37.95 3.54.8.39.96 3.54.80.38.97 3.55.79.38.97 3.56.83.4 3.00 3.59.8.40.99 3.58.80.39.99 3.58.88.44 3.6 0.7 7.9 5.0 4.7.9 9. 6.3 6. 3.0 9.9 6.7 7.5 4. 0.6 7. 34.7 3. 7.6 4. 36.5 3.7 9.0 5. 38.4 34.3 30.3 6.3 44.6 40.4 36. 3.9 46.9 4.5 38. 33.6 49. 44.6 40.0 35.4 5.5 48.3 4.89 3.58.78.5 5.06 3.73.9.37 5.9 3.85.98.39 5.54 3.99 3.05.4 6.6 4.8 3.7.99 6.95 5.03 3.86 3.08 7.9 5.3 3.99 3.6 8.6 5.9 4.54 3.6 8.58 6.8 4.73 3.75 9.04 6.47 4.93 3.90 9.0 6.80 0. 0.7.3.9 9.8.0. 3.3. 3.0 3.9 4.9 4.3 5.0 5.8 6.5 35.7 37. 38.6 40. 38.9 40.0 4. 4.3 4. 4.9 43.8 44.6 5.6 53.4 55. 56.8 55.7 57. 58.4 59.8 59.9.8 6.8 6.7 68.3 70. 66. 85.9 05.7 5.5 66.3 86. 06.0 5.8 66.6 86.4 06. 5.9 66.9 86.6 06.4 6. 68.4 88. 07.8 7.5 68.7 88.4 08.0 7.7 69. 88.7 08.3 8.0 70.4 90.0 09.5 9. 70.8 90.4 09.9 9.5 7.3 90.8 0.3 9.8 7.6 9. 9.6 8.7 7.8 6.9 30.7 9.9 9.0 8. 3. 3. 30.0 8.9 33.6 3. 30.9 9.5 40.6 39. 37.6 36. 4.3 40.7 39.0 37.4 44. 4.3 40.4 38.6 50.4 48.3 46. 44. 5.5 50.3 48. 45.9 54.6 5.3 50.0 47.7 56.4 53.9.7.9.87 3.44.73.30.86 3.43.73.9.86 3.43.7.9.86 3.43.74.30.87 3.44.74.30.87 3.44.74.30.87 3.44.74.3.88 3.45.75.3.88 3.45.75.3.88 3.44.77.3 3.7 0.9 8.0 5. 4.8.0 9.3 6.5 6.3 3. 0. 7. 7.7 4.4. 7.8 34.6 3. 7.8 4.4 36.4 3.8 9. 5.6 38. 34.4 30.6 6.9 44.5 40.4 36.4 3.3 46.5 4.4 38.3 34. 48.6 44.4 40. 36.0 50.4 46.0 5.04 3.67.84.9 5.0 3.8.97.4 5.46 3.97 3.07.46 5.7 4. 3.6.5 6.84 4.97 3.84 3.08 7.5 5.8 3.98 3.9 7.43 5.37 4.3 3.9 8.49 6.3 4.70 3.75 8.8 6.38 4.90 3.90 9.4 6.6 5.09 4.06 9.34 6.80 0. 0.7.3.9 9.8 0.9. 3..0.9 3.9 4.8 4.3 5.0 5.6 6.3 35.7 37. 38.5 39.9 38.9 40.0 4. 4. 4. 4.9 43.7 44.5 5.7 53.3 55.0 56.7 55.8 57. 58.4 59.6.0.8 6.7 6.6 69. 7.0 Operaton not reoended LL F Load Flo-5 GPM HC MBH Poer kw HE MBH COP LS F LL F Load Flo-7.5 GPM HC MBH Poer kw HE MBH COP LS F LL F HC MBH Load Flo-0 GPM Poer kw HE MBH COP LS F Operaton not reoended.4 58.3 56. 6.8 59.9 58..89.45 3.0.90.46 3.0 53.9 49.9 45.9 55.3 5.5 47.8 9.37 6.97 5.47 9.55 7.3 5.6 73.5 74.7 76.0 78.6 79.4 80. 7.8 9.3 0.8 7.9 9.5.0 57. 54.7 5.4 57.7 55.6 53.4.77.33.88.77.33.88 5.0 46.8 4.6 5.7 47.6 43.6 9.44 6.90 5.33 9.55 7.00 5.43 74.3 75.6 76.9 79.3 80. 8.0 Operaton not reoended Operaton not reoended
93 HS050 - Perforane Data ont. Heatng Capaty Soure ES F Flo GPM.5 5 5 EL F 80 00 0 80 00 0 8 80 00 0 30.5 80 00 0 5 80 00 0 8 80 00 0 50.5 80 00 0 5 80 00 0 8 80 00 0 70.5 80 00 0 5 80 00 0 8 80 00 0 90.5 80 00 0 5 80 00 0 8.8 0.5 0. 88.3 83.4 78.6.86 3.73 4.6 78.5 70.7 6.8 9.05 6.55 5.00 79. 80.3 8.4 77.0 96. 5.4 8.3 0. 9.8 86.6 8.8 76.9.86 3.7 4.59 76.9 69.0 6. 8.89 6.43 4.9 74.9 76.5 78.0 76.8 95.9 5. 7.3 9.0 0.6 30.3 7.8 9.4. 30.7 7. 9.7.3 30.9 7.5 9.0.5 3. 75. 94.5 3.9 33. 75.7 95.0 4. 33.5 76.3 95.4 4.6 33.7 78.5 97.6 6.7 35.7 79.3 98. 7. 36. 80. 98.9 7.6 36.4 8.9 00.6 9.4 43.9 4.6 4.3 40.0 45.7 44.4 43.0 4.7 47. 45.5 43.9 4.3 48.6 46.7 44.8 4.9 58.8 56.3 53.9 5.4 6.0 58. 55. 5.4 63.3 59.9 56.6 53.3 7.8 68. 64.7 6. 74.9 70.7 66.6 6.4 77.9 73. 68.4 63.7 84.9 80. 75..50 3.4 4.3 5.3.36 3.3 4.7 5..50 3.4 4.3 5..64 3.50 4.36 5..56 3.47 4.39 5.30.64 3.53 4.4 5.30.7 3.58 4.44 5.30.76 3.63 4.5 5.38.78 3.64 4.5 5.38.79 3.65 4.5 5.38.85 3.7 4.58 35.4 3.0 6.6. 37.6 33. 8.5 3.9 38.6 33.9 9. 4.5 39.6 34.8 9.9 5. 50.0 44.4 38.9 33.3 5.0 46. 40. 34.3 54.0 47.7 4.5 35. 6.4 55.8 49.3 4.7 65.4 58.3 5. 44.0 68.4.7 53.0 45.3 75. 67.4 59.6 5.5 3.66.80.4 5.67 3.9.96.34 5.53 3.9.98.37 5.39 3.9 3.0.4 6.65 4.7 3.58.83 6.78 4.83 3.67.89 6.79 4.89 3.7.94 7.6 5.50 4.0 3.33 7.90 5.69 4.3 3.40 8.8 5.87 4.44 3.47 8.73 6.3 4.8 0. 0.7.3.0 0.3.5.7 3.8.4 3.4 4.3 5. 4.6 5. 5.9 6.6 37. 38.5 40.0 4.4 39.8 4.0 4. 43.3 4.6 43.4 44.3 45. 53.9 55.6 57.3 59.0 57.3 58.6.0 6.4.6 6.7 6.7 63.8 70.6 7.6 74.6 67.9 87.6 07.4 7. 69.0 88.8 08.5 8. 69.3 89.0 08.7 8.4 69.6 89. 08.9 8.5 7.6 9. 0.6 30. 7.0 9.5 0.9 30.3 7.4 9.8. 30.5 74. 93.5.8 3. 74.7 93.9 3. 3.3 75.3 94.4 3.5 3.6 76.5 95.6 4.8 44.0 4.6 4.3 40.0 45.8 44.4 43.0 4.7 47. 45.6 43.9 4.3 48.7 46.8 44.8 4.9 58.6 56. 53.8 5.4.8 57.9 55. 5.3 6.9 59.6 56.4 53. 7.5 68. 64.6 6. 74.3 70.3 66.3 6.4 77. 7.5 68.0 63.5 8.8 78.7 74.7 84. 80. 76. 85.4 8.6 77.7.50 3.37 4.5 5..43 3.33 4.3 5.3.49 3.37 4.5 5.3.56 3.4 4.7 5..54 3.4 4.30 5.8.58 3.44 4.3 5.8.6 3.47 4.3 5.8.65 3.5 4.37 5.3.66 3.5 4.37 5.3.67 3.5 4.38 5.3 3.5 4.09 4.68 3. 3.84 4.56.73 3.58 4.44 35.4 3. 6.8.5 37.5 33.0 8.6 4. 38.7 34. 9.4 4.8 40.0 35. 30. 5.4 50.0 44.6 39. 33.7 5.0 46. 40.4 34.6 54.0 47.8 4.7 35.5 6.5 56. 49.7 43.4 65. 58.3 5.4 44.5 67.9.5 53. 45.7 70.8 64.8 58.7 73.5 67..7 76. 69.3 6.6 5.6 3.7.85.9 5.53 3.9.98.38 5.56 3.96 3.03.4 5.59 4.0 3.08.45 6.7 4.80 3.66.9 6.9 4.93 3.75.96 7.03 5.03 3.8 3.0 7.9 5.69 4.34 3.43 8.8 5.86 4.44 3.49 8.47 6.04 4.56 3.56 7. 5.70 4.68 7.9 6. 4.90 9.9 6.68 5.4 0. 0.7.3.9 0.3.5.6 3.8.4 3.3 4. 5. 4.5 5. 5.8 6.5 37. 38.5 39.9 4.3 39.9 4.0 4. 43. 4.6 43.4 44.3 45. 53.9 55.5 57. 58.8 57.3 58.6 59.9 6.3.7 6.7 6.7 63.7 7.7 73.3 74.9 75.6 76.9 78. 79.5 80.5 8.4 66.0 85.9 05.7 5.5 66.3 86. 05.9 5.7 66.5 86.3 06.0 5.8 66.7 86.4 06. 5.9 68.0 87.7 07.4 7. 68.3 87.9 07.6 7. 68.6 88. 07.7 7.3 69.8 89.3 08.9 8.4 70. 89.6 09. 8.6 70.5 89.9 09.3 8.7 7. 90.6 0. 7. 90.8 0.4 7.3 9.0 0.6 44.0 4.6 4.3 39.9 45.8 44.4 43.0 4.6 47.3 45.6 43.9 4. 48.8 46.8 44.8 4.8 58.5 56. 53.8 5.5.5 57.8 55.0 5.3 6.5 59.4 56. 53. 7. 67.9 64.6 6.3 73.7 69.9 66. 6.3 76. 7.9 67.6 63.3 80.7 77.4 74. 8.6 78.6 75.5 8.5 79.7 76.9.49 3.33 4.7 5.0.49 3.34 4.9 5.04.48 3.33 4.8 5.03.47 3.3 4.7 5.0.5 3.36 4. 5.06.5 3.36 4. 5.06.5 3.36 4.0 5.05.54 3.39 4.3 5.08.55 3.39 4.4 5.08.55 3.39 4.4 5.08 4.6 4.47 4.77 3.38 3.95 4.5.59 3.43 4.6 35.5 3.3 7.0.8 37.3 33.0 8.7 4.4 38.8 34. 9.6 5.0 40.4 35.5 30.6 5.7 49.9 44.7 39.4 34. 5.9 46.3 40.6 35.0 53.9 47.9 4.9 35.8 6.5 56.3 50. 44.0 65.0 58.3 5.6 45.0 67.5.3 53. 46.0 66.5 6. 57.8 70. 65.. 73.7 68.0 6.3 5.8 3.75.90.33 5.39 3.89 3.0.4 5.59 4.0 3.08.46 5.79 4.3 3.5.50 6.80 4.88 3.74.98 7.06 5.04 3.83 3.03 7.7 5.7 3.9 3.07 8. 5.87 4.47 3.54 8.48 6.04 4.57 3.59 8.76 6. 4.68 3.65 5.68 5.08 4.55 7.08 5.83 4.90 9.33 6.8 5.8 0. 0.7.3.9 0.4.5.6 3.7.4 3.3 4. 5. 4.5 5. 5.8 6.5 37. 38.5 39.8 4. 39.9 4.0 4.0 43. 4.6 43.4 44. 45. 53.9 55.5 57. 58.7 57.3 58.6 59.9 6..7 6.7 6.7 63.7 7.9 74.0 75. 76.4 77.3 78.3 79.9 80.7 8.4 Operaton not reoended LL F Load Flo-8 GPM HC MBH Poer kw HE MBH COP LS F LL F Load Flo-.5 GPM HC MBH Poer kw HE MBH COP LS F LL F HC MBH Load Flo-5 GPM Poer kw HE MBH COP LS F Operaton not reoended Operaton not reoended Operaton not reoended
94 HS0 - Perforane Data ont. Heatng Capaty Soure ES F Flo GPM 3.5 5 8 EL F 80 00 0 80 00 0 9 80 00 0 30 3.5 80 00 0 8 80 00 0 9 80 00 0 50 3.5 80 00 0 8 80 00 0 9 80 00 0 70 3.5 80 00 0 8 80 00 0 9 80 00 0 90 3.5 80 00 0 8 80 00 0 83.3 0.3.3 0.6 97.3 93.0 3.3 4.3 5.3 90.3 8.6 74.9 8.99 6.6 5.3 79.7 80.5 8.4 77. 96.5 5.9 8.8 0.8 0.8 99.7 95.3 90.9 3.3 4.3 5.3 88.4 80.6 7.8 8.89 6.5 5.04 74.9 76.3 77.6 76.8 96. 5.6 7. 90.8 0.6 30.4 7.5 9.3. 3.0 7.9 9.7.4 3. 7.4 9.0.7 3.3 75. 94.6 4. 33.7 75.8 95. 4.6 34.0 76.4 95.7 5.0 34.3 78.8 98.0 7. 36.4 79.6 98.7 7.8 36.9 80.4 99.4 8.4 37.4 8.4 0.4 48.3 47.3 46.3 45.3 50. 49.3 48.6 47.8 5. 50.9 49.7 48.6 54. 5.5 50.9 49.3 66.0 63.9 6.7 59.6 68.8 66. 63.7 6. 7.6 68.6 65.6 6.6 8.9 78.4 74.9 7.4 85.5 8.6 77.6 73.7 89. 84.7 80.3 75.9 97.7 93..93 3.93 4.93 5.93.94 3.95 4.95 5.96 3.0 4.0 5.0 6.0.97 3.96 4.96 5.95 3.0 4.0 5.0 6.0 3. 4.0 5.0 6.0 3. 4. 5. 6.0 3. 4.06 5.0 5.95 3. 4. 5. 6.0 3.7 4.6 5.4 6.3 3.6 4.5 38.3 33.9 9.5 5. 40. 35.9 3.7 7.5 4.0 37.4 3.8 8. 44.0 39.0 34.0 9.0 55.7 50. 44.7 39.3 58.4 5.5 46.6 40.6 6. 54.7 48.4 4.0 7.3 64.5 57.8 5. 74.8 67.5.3 53.0 78.3 70.5 6.7 55.0 86.6 78.7 4.83 3.53.75.4 4.99 3.66.87.35 5.7 3.77.94.39 5.34 3.88 3.0.43 6.34 4.66 3.63.93 6.6 4.8 3.7.98 6.79 4.93 3.79 3.03 7.69 5.65 4.38 3.5 7.97 5.8 4.48 3.57 8.4 5.97 4.57 3.63 8.78 6.4 0.6..6. 0.8.8.7 3.7.9 3.7 4.4 5. 5.0 5.5 6. 6.7 37. 38.5 39.8 4.0 40. 4. 4. 43. 43.0 43.7 44.5 45. 53.7 55. 56.8 58.3 57.4 58.6 59.8 6.0 6.0 6.9 6.8 63.7 70. 7.0 67.4 87.3 07. 6.9 68.7 88.5 08.4 8. 68.9 88.7 08.6 8.4 69. 89.0 08.7 8.5 7.4 9.0 0.6 30.3 7.8 9.4.0 30.5 7. 9.7.3 30.8 74. 93.5.9 3.3 74.6 94.0 3.4 3.7 75. 94.5 3.8 33. 76.5 95.9 48.6 47.6 46.5 45.5 50.5 49.7 48.8 48.0 5.8 50.8 49.8 48.8 53. 5.0 50.8 49.6 66. 64. 6.0.0 68.5 66. 63.8 6.5 70.8 68. 65.6 63.0 8.8 78.5 75. 7.0 85. 8.5 77.8 74. 88.5 84.5 80.5 76.5 95. 9.9.86 3.85 4.83 5.8.87 3.86 4.85 5.84.87 3.86 4.84 5.83.88 3.86 4.84 5.8.9 3.89 4.86 5.83.93 3.90 4.87 5.85.95 3.9 4.89 5.87.98 3.9 4.87 5.8 3.00 3.95 4.9 5.86 3.0 3.98 4.95 5.9 3.09 4.06 38.8 34.4 30.0 5.6 40.7 36.5 3.3 8.0 4.0 37.6 33. 8.9 43.3 38.8 34. 9.7 56. 50.8 45.4 40. 58.5 5.8 47. 4.5.7 54.8 48.9 43.0 7.6 65. 58.6 5. 74.9 68.0 6. 54. 78. 70.9 63.6 56.3 84.7 78.0 4.98 3.6.8.9 5.7 3.77.95.4 5.9 3.86 3.0.45 5.4 3.95 3.07.50 6.6 4.83 3.74 3.0 6.84 4.96 3.84 3.08 7.0 5.09 3.9 3.5 8.07 5.88 4.54 3.63 8.33 6.04 4.65 3.7 8.6 6.3 4.77 3.80 9.04 6.65 0.6..6. 0.7.6.6 3.6.9 3.6 4.3 5. 5.0 5.6 6. 6.6 37. 38.4 39.6 40.8 40. 4.0 4.0 4.9 43.0 43.7 44.4 45. 53.6 55. 56.6 58. 57.3 58.5 59.6.8 6.0 6.9 6.7 63.6 70.6 7. 65.6 85.5 05.4 5. 65.8 85.7 05.6 5.5 65.9 85.8 05.7 5.6 66.0 85.9 05.8 5.7 67.6 87.4 07. 6.9 67.8 87.6 07.3 7. 68.0 87.8 07.5 7.3 69.4 89.0 08.7 8.3 69.7 89.3 08.9 8.6 70. 89.6 09. 8.8 70.6 90.4 48.9 47.8 46.8 45.7 50.9 50.0 49.0 48. 5.6 50.7 49.8 49.0 5. 5.4 50.6 49.8 66.3 64.3 6.3.3 68. 66. 64.0 6.9 70.0 67.8 65.6 63.4 8.7 78.6 75.6 7.5 84.8 8.4 78. 74.8 87.8 84. 80.6 77.0 9.7 90.5.79 3.76 4.74 5.7.79 3.77 4.74 5.7.8 3.8 4.7 5.7.79 3.76 4.7 5.69.8 3.8 4.7 5.7.8 3.8 4.7 5.7.8 3.8 4.7 5.7.83 3.78 4.7 5.67.8 3.8 4.7 5.7.86 3.80 4.75 5.69.9 3.86 39.4 35.0 30.6 6. 4.4 37. 3.8 8.6 4.0 37.8 33.7 9.5 4.7 38.6 34.5 30.4 56.7 5.4 46. 40.9 58.5 53. 47.8 4.4.4 54.9 49.4 44.0 7.0 65.7 59.4 53. 75.0 68.5 6.9 55.4 78.0 7. 64.4 57.6 8.7 77.4 5.4 3.7.89.35 5.35 3.89 3.03.46 5.4 3.95 3.08.5 5.48 4.0 3.4.56 6.90 4.99 3.86 3. 7.09 5.3 3.96 3.8 7.4 5.5 4.06 3.6 8.46 6.0 4.69 3.75 8.73 6.9 4.83 3.86 8.99 6.49 4.98 3.96 9.30 6.87 0.5.0.5.0 0.5.5.5 3.5.8 3.5 4.3 5.0 5. 5.6 6. 6.5 37.0 38. 39.4 40.6 40.0 4.0 4.9 4.8 43. 43.7 44.3 45.0 53.5 54.9 56.4 57.8 57.3 58.4 59.5.6 6. 6.8 6.6 63.4 7.0 7.3 Operaton not reoended LL F Load Flo-9 GPM HC MBH Poer kw HE MBH COP LS F LL F Load Flo-3.5 GPM HC MBH Poer kw HE MBH COP LS F LL F HC MBH Load Flo-8 GPM Poer kw HE MBH COP LS F Operaton not reoended 96.7 93.5 90.4 98. 95. 9. 3. 4.08 5.05 3.3 4.0 5.08 86. 79.6 73. 87.5 8. 74.9 9. 6.7 5.4 9. 6.8 5.33 75.3 76.4 77.5 80.0 80.7 8.4 70.7 90.5 0.3 70.8 90.7 0.5 93.7 9.8 89.9 94.7 93. 9.4.9 3.9 4.8.94 3.89 4.85 83.7 78.6 73.4 84.7 79.8 74.9 9.37 6.94 5.46 9.44 7.00 5.53 75.7 76.6 77.5 80.3 80.9 8.4 Operaton not reoended Operaton not reoended
95 HS075 - Perforane Data ont. Heatng Capaty Soure ES F Flo GPM 4.5 5 9 EL F 80 00 0 80 00 0 0 80 00 0 30 4.5 80 00 0 9 80 00 0 0 80 00 0 50 4.5 80 00 0 9 80 00 0 0 80 00 0 70 4.5 80 00 0 9 80 00 0 0 80 00 0 90 4.5 80 00 0 9 80 00 0 85.9 04.8 3.7 5.4 0. 5.0 4.79 6.3 7.46 09. 99.3 89.5 7.67 5.75 4.5 78. 79. 80.3 79.3 98.6 8.0 85.3 04. 3..8 7.6.4 4.77 6.07 7.38 06.5 96.8 87. 7.55 5.67 4.46 73.4 74.9 76.4 79.0 98.3 7.6 7. 9.8.6 3.3 7.6 9.3.0 3.8 73. 9.7.4 3.0 73.6 93..7 3. 76.7 96. 5.5 34.9 77.4 96.7 6.0 35.3 78. 97.3 6.5 35.7 80.8 99.9 9.0 38. 8.7 00.7 9.7 38.7 8.7 0.5 0.4 39. 84.8 03.7 58.8 57.4 56. 54.7 6. 59.7 58.4 57.0 63.5 6.7 59.9 58. 65.8 63.6 6.5 59.3 8.0 78. 75.3 7.5 84.5 8. 77.7 74.4 87.9 84.0 80. 76.3 00.9 96.6 9. 87.9 05.5 00.5 95.6 90.6 0.0 04.4 98.9 93.3 0. 4.9 3.90 5. 6.3 7.53 3.90 5. 6.35 7.57 3.9 5. 6.4 7.6 3.95 5.9 6.43 7.67 4. 5.4 6.7 7.9 4. 5.5 6.7 8.0 4.3 5.5 6.8 8.0 4.48 5.74 7.00 8.6 4.5 5.8 7.0 8.3 4.55 5.8 7.09 8.36 4.74 6.0 45.5 40.0 34.5 9.0 47.8 4.3 36.7 3. 50. 44. 38. 3. 5.3 45.9 39.5 33. 66.7 59.6 5.5 45.4 70. 6.4 54.8 47. 73.4 65. 57. 48.9 85.6 77.0 68.3 59.7 90.0 80.8 7.5 6. 94.5 84.6 74.7 64.8 03.9 94.4 4.4 3.9..3 4.59 3.4.69. 4.74 3.5.75.4 4.88 3.59.80.7 5. 4.7 3.8.66 5.86 4.35 3.39.74 5.98 4.4 3.44.77 6. 4.93 3.86 3. 6.84 5.09 3.97 3.9 7.08 5.6 4.09 3.7 7.4 5.59 0. 0.7.3.9 0..3.4 3.6. 3. 4. 5.0 4.3 5.0 5.7 6.4 36. 37.7 39. 40.6 39. 40.3 4.5 4.7 4.0 4.9 43.8 44.7 5.3 54. 55.9 57.7 56.0 57.5 58.9.3 59.7.8 6.9 63.0 68.6 70.5 68.4 88. 08.0 7.8 69.6 89.4 09. 9.0 70.0 89.7 09.4 9. 70.4 90.0 09.7 9.3 7.7 9.3.9 3.4 73.3 9.8. 3.7 73.8 93..6 3.0 75.9 95. 4.5 33.9 76.6 95.8 5. 34.3 77.3 96.4 5.6 34.7 78.6 97.9 58.9 57.5 56. 54.7 6. 59.8 58.4 57.0 63.6 6.8.0 58. 65.9 63.7 6.6 59.4 8.0 78. 75.4 7.6 84.4 8. 77.9 74.6 87.8 84. 80.3 76.6 00.8 96.6 9.4 88. 05. 00.5 95.7 9.0 09.7 04.4 99. 93.8 7.4 3. 3.78 4.97 6.5 7.34 3.79 4.99 6.9 7.39 3.8 5.0 6.3 7.43 3.84 5.05 6.7 7.48 4.0 5.4 6.46 7.69 4.07 5.9 6.5 7.73 4. 5.33 6.55 7.77 4.6 5.50 6.74 7.99 4.3 5.55 6.79 8.0 4.38 5. 6.83 8.06 4.45 5.7 46.0 40.6 35. 9.7 48.3 4.8 37.3 3.8 50.5 44.6 38.7 3.8 5.8 46.5 40. 33.9 67.3.3 53.3 46.4 70.5 63. 55.7 48. 73.8 65.9 58.0 50. 86.3 77.8 69.4.9 90.5 8.5 7.6 63.6 94.7 85. 75.8 66.3 0. 93.7 4.57 3.39.67.8 4.74 3.5.77.6 4.88 3..8.9 5.03 3.70.88.33 5.85 4.34 3.39.75 6.08 4.50 3.5.83 6.9 4.58 3.57.87 6.96 5.6 4.0 3.4 7.4 5.30 4.3 3.3 7.35 5.47 4.6 3.4 7.75 5.8 0.0 0.6..8 0.0..3 3.4. 3. 4.0 4.9 4.3 5.0 5.6 6.3 36. 37.6 39.0 40.4 39. 40. 4.4 4.5 4.0 4.9 43.7 44.6 5. 54.0 55.7 57.4 56.0 57.4 58.7. 59.7.7 6.8 6.8 68.9 70.7 66.4 86. 06. 5.9 66.7 86.5 06.3 6. 66.9 86.7 06.5 6.3 67. 86.9 06.7 6.5 68.8 88.5 08. 7.9 69. 88.8 08.5 8. 69.5 89. 08.7 8.3 70.9 90.5 0.0 9.6 7.4 90.9 0.4 9.9 7.9 9.3 0.8 30. 7.4 9. 59.0 57.6 56. 54.7 6.3 59.9 58.4 57.0 63.7 6.9. 58.3 66.0 63.8 6.7 59.5 8.0 78.3 75.5 7.8 84.3 8. 78.0 74.8 87.7 84. 80.5 76.9 00.7 96.6 9.6 88.5 05.0 00.5 95.9 9.4 09.3 04.3 99.3 94.3 4.6.5 3.66 4.8 5.98 7.4 3.68 4.85 6.03 7.0 3.7 4.9 6. 7. 3.73 4.9 6.0 7.9 3.9 5. 6.3 7.5 3.9 5. 6.3 7.5 4.0 5. 6.3 7.5 4.03 5.6 6.48 7.7 4. 5.3 6.5 7.7 4.0 5.39 6.57 7.76 4.6 5.39 46.5 4. 35.7 30.3 48.7 43.3 37.9 3.4 5.0 45. 39.4 33.5 53.3 47. 40.8 34.6 67.8 6.0 54. 47.3 7.0 63.7 56.5 49.3 74. 66.5 58.9 5. 86.9 78.7 70.4 6. 9.0 8.3 73.7 65.0 95.0 85.9 76.9 67.8 00.4 93. 4.7 3.50.75.4 4.88 3.6.84.3 5.03 3.7.90.36 5.8 3.80.96.39 6.0 4.50 3.5.84 6.3 4.66 3.63.93 6.40 4.74 3.69.98 7.3 5.39 4.8 3.36 7.48 5.53 4.3 3.46 7.6 5.67 4.43 3.56 8.07 6.06 9.95 0.5..7 0.0.. 3.3. 3.0 3.9 4.8 4. 4.9 5.6 6. 36.0 37.4 38.8 40. 39.0 40. 4. 4.3 4.0 4.8 43.6 44.4 5. 53.8 55.5 57. 55.9 57. 58.6 59.9 59.7.7 6.7 6.6 69.3 70.8 Operaton not reoended LL F Load Flo-0 GPM HC MBH Poer kw HE MBH COP LS F LL F Load Flo-4.5 GPM HC MBH Poer kw HE MBH COP LS F LL F HC MBH Load Flo-9 GPM Poer kw HE MBH COP LS F Operaton not reoended 9.5 5.4.4.6 7.7 3.8 4.49 5.76 7.0 4.53 5.8 7.08 04. 95.8 87.4 06. 97.9 89.6 7.80 5.88 4.65 7.88 5.95 4.7 73.7 75.0 76.4 78.5 79.4 80.3 7.6 9.3.0 7.8 9.5. 6. 3.3 0.4 7.8 5..5 4. 5.44 6.67 4.7 5.49 6.70 0.8 94.7 87.7 03. 96.4 89.7 8.08 6.0 4.85 8.08 6.5 4.9 74.0 75. 76.3 78.8 79.5 80.3 Operaton not reoended Operaton not reoended
96
97