Systems Engineering. Designing, implementing, deploying and operating systems which include hardware, software and people



Similar documents
Socio-Technical Systems

Socio technical Systems. Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 2 Slide 1

Software Engineering UNIT -1 OVERVIEW

Overview. System Definition Webster s Dictionary. System Engineering Hierarchy. System Engineering. Computer-Based Systems [PRE2005]

Software Processes. Topics covered

Software Engineering. Objectives. Designing, building and maintaining large software systems

Peter Mileff PhD SOFTWARE ENGINEERING. The Basics of Software Engineering. University of Miskolc Department of Information Technology

CS 389 Software Engineering. Lecture 2 Chapter 2 Software Processes. Adapted from: Chap 1. Sommerville 9 th ed. Chap 1. Pressman 6 th ed.

Software Engineering. Software Processes. Based on Software Engineering, 7 th Edition by Ian Sommerville

Project management: an SE Perspective

Chapter 1- Introduction. Lecture 1

Chapter 8 Software Testing

Software Engineering. Software Testing. Based on Software Engineering, 7 th Edition by Ian Sommerville

Configuration management. Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 29 Slide 1

Project management. Organising, planning and scheduling software projects. Ian Sommerville 2000 Software Engineering, 6th edition.

Chapter 9 Software Evolution

The Role of the Software Architect

Project management. Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 5 Slide 1

Software Engineering. So(ware Evolu1on

Management activities. Risk management

Introduction. Getting started with software engineering. Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 1

Chapter 1 Introduction

Topics covered. An Introduction to Software Engineering. FAQs about software engineering Professional and ethical responsibility

An Introduction to Software Engineering

An Introduction to Software Engineering. Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 1 Slide 1

Introduction to Software Engineering. Adopted from Software Engineering, by Ian Sommerville

Software development life cycle. Software Engineering - II ITNP92 - Object Oriented Software Design. Requirements. Requirements. Dr Andrea Bracciali

Chapter 1- Introduction. Lecture 1

1.1 The Nature of Software... Object-Oriented Software Engineering Practical Software Development using UML and Java. The Nature of Software...

SOFTWARE-IMPLEMENTED SAFETY LOGIC Angela E. Summers, Ph.D., P.E., President, SIS-TECH Solutions, LP

2. Analysis, Design and Implementation

Software Processes. The software process. Generic software process models. Waterfall model. Waterfall model phases

SE 367 Software Engineering Basics of Software Engineering

2. Analysis, Design and Implementation

Software Engineering. Software Engineering. Software Costs

Rapid software development. Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 1

Software Engineering. Project Management. Based on Software Engineering, 7 th Edition by Ian Sommerville

Finance and Resources Committee

System Specification. Objectives

To introduce software process models To describe three generic process models and when they may be used

Renaissance: A Method to Support Software System Evolution

Introduction to Software Engineering

26. Legacy Systems. Objectives. Contents. Legacy systems 1

Chapter 23 Software Cost Estimation

Security Solutions to Meet NERC-CIP Requirements. Kevin Staggs, Honeywell Process Solutions

CSC 342 Semester I: H ( G)

1.1 Identification This is the Subcontractor Management Plan, document number XYZ035, for the SYSTEM Z project.

False Alarm/Unwanted Fire Signals Reduction Guidance

Verification and Validation of Software Components and Component Based Software Systems

Project management. Organizing, planning and scheduling software projects

Critical Systems Validation. Objectives

Components Based Design and Development. Unit 2: Software Engineering Quick Overview

3SL. Requirements Definition and Management Using Cradle

Design with Reuse. Building software from reusable components. Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 14 Slide 1

Agile So)ware Development

Software Requirements Specification

The London Ambulance fiasco

6500m HOV Project Stage 1: A-4500 HOV

How To Design A Project

Software Engineering. Introduc)on

Software cost estimation

Software Engineering. What is a system?

INFORMATION & COMMUNICATIONS TECHNOLOGY (ICT) PHYSICAL & ENVIRONMENTAL SECURITY POLICY

A flexible approach to outsourcing in the financial services sector

Verification of need. Assessment of options. Develop Procurement Strategy. Implement Procurement Strategy. Project Delivery. Post Project Review

Legacy Systems Older software systems that remain vital to an organisation Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 26 Slide 1

The introduction covers the recent changes is security threats and the effect those changes have on how we protect systems.

Requirements Engineering Processes. Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 7 Slide 1

ALARM PERFORMANCE IMPROVEMENT DURING ABNORMAL SITUATIONS

CS 487. Week 8. Reference: 1. Software engineering, roger s. pressman. Reading: 1. Ian Sommerville, Chapter 3. Objective:

Software testing. Objectives

Activity Schedules in the NEC3 Engineering and Construction Contract

ELECTROTECHNIQUE IEC INTERNATIONALE INTERNATIONAL ELECTROTECHNICAL

Requirements Engineering Process

Mossfiel Electrical & Safety Management Pty Ltd

Software Development Risk Assessment

Rapid software development. Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 17 Slide 1

Modular Safety Cases

Public Safety Messaging System: Telecommunications Emergency Alerting Capabilities

System Aware Cyber Security

An Introduction to Software Engineering

A Comparison of System Dynamics (SD) and Discrete Event Simulation (DES) Al Sweetser Overview.

SWEBOK Certification Program. Software Engineering Management

Invisible EYE for Security System

Rapid Software Development

ITIL A guide to event management

Organizational Requirements Engineering

Chapter 2 INDUSTRIAL BUYING BEHAVIOUR: DECISION MAKING IN PURCHASING

Overview of the System Engineering Process. Prepared by

Introduction. Getting started with software engineering. Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 1

CDC UNIFIED PROCESS JOB AID

2.1 The RAD life cycle composes of four stages:

Cloud Computing. MCSN - N. Tonellotto - Distributed Enabling Platforms 1

Suggested Language to Incorporate System Security Engineering for Trusted Systems and Networks into Department of Defense Requests for Proposals

Virtual Platforms Addressing challenges in telecom product development

Dealing with risk. Why is risk management important?

The Software Process. The Unified Process (Cont.) The Unified Process (Cont.)

Electronic Power Control

Some Critical Success Factors for Industrial/Academic Collaboration in Empirical Software Engineering

27. Software Change. Objectives. Contents. Software change 1

Transcription:

Systems Engineering Designing, implementing, deploying and operating systems which include hardware, software and people Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 1

Objectives To explain why system software is affected by broader system engineering issues To introduce the concept of emergent system properties such as reliability and security To explain why the systems environment must be considered in the system design process To explain system engineering and system procurement processes Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 2

Topics covered Emergent system properties Systems and their environment System modelling The system engineering process System procurement Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 3

What is a system? A purposeful collection of inter-related components working together towards some common objective. A system may include software, mechanical, electrical and electronic hardware and be operated by people. System components are dependent on other system components The properties and behaviour of system components are inextricably inter-mingled Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 4

Problems of systems engineering Large systems are usually designed to solve 'wicked' problems Systems engineering requires a great deal of co-ordination across disciplines Almost infinite possibilities for design trade-offs across components Mutual distrust and lack of understanding across engineering disciplines Systems must be designed to last many years in a changing environment Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 5

Software and systems engineering The proportion of software in systems is increasing. Software-driven general purpose electronics is replacing special-purpose systems Problems of systems engineering are similar to problems of software engineering Software is (unfortunately) seen as a problem in systems engineering. Many large system projects have been delayed because of software problems Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 6

Emergent properties Properties of the system as a whole rather than properties that can be derived from the properties of components of a system Emergent properties are a consequence of the relationships between system components They can therefore only be assessed and measured once the components have been integrated into a system Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 7

Examples of emergent properties The overall weight of the system This is an example of an emergent property that can be computed from individual component properties. The reliability of the system This depends on the reliability of system components and the relationships between the components. The usability of a system This is a complex property which is not simply dependent on the system hardware and software but also depends on the system operators and the environment where it is used. Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 8

Types of emergent property Functional properties These appear when all the parts of a system work together to achieve some objective. For example, a bicycle has the functional property of being a transportation device once it has been assembled from its components. Non-functional emergent properties Examples are reliability, performance, safety, and security. These relate to the behaviour of the system in its operational environment. They are often critical for computer-based systems as failure to achieve some minimal defined level in these properties may make the system unusable. Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 9

System reliability engineering Because of component inter-dependencies, faults can be propagated through the system System failures often occur because of unforeseen inter-relationships between components It is probably impossible to anticipate all possible component relationships Software reliability measures may give a false picture of the system reliability Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 10

Influences on reliability Hardware reliability What is the probability of a hardware component failing and how long does it take to repair that component? Software reliability How likely is it that a software component will produce an incorrect output. Software failure is usually distinct from hardware failure in that software does not wear out. Operator reliability How likely is it that the operator of a system will make an error? Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 11

Reliability relationships Hardware failure can generate spurious signals that are outside the range of inputs expected by the software Software errors can cause alarms to be activated which cause operator stress and lead to operator errors The environment in which a system is installed can affect its reliability Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 12

The shall-not properties Properties such as performance and reliability can be measured However, some properties are properties that the system should not exhibit Safety - the system should not behave in an unsafe way Security - the system should not permit unauthorised use Measuring or assessing these properties is very hard Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 13

Systems and their environment Systems are not independent but exist in an environment System s function may be to change its environment Environment affects the functioning of the system e.g. system may require electrical supply from its environment The organizational as well as the physical environment may be important Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 14

System hierarchies Town Street Building Heating system Security system Power system Lighting system Water system Waste system Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 15

Human and organisational factors Process changes Does the system require changes to the work processes in the environment? Job changes Does the system de-skill the users in an environment or cause them to change the way they work? Organisational changes Does the system change the political power structure in an organisation? Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 16

System architecture modelling An architectural model presents an abstract view of the sub-systems making up a system May include major information flows between subsystems Usually presented as a block diagram May identify different types of functional component in the model Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 17

Intruder alarm system Movement sensors Door sensors Alarm controller Siren Voice synthesizer Telephone caller External control centre Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 18

Component types in alarm system Sensor Movement sensor, door sensor Actuator Siren Communication Telephone caller Co-ordination Alarm controller Interface Voice synthesizer Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 19

Radar system Transponder system Data comms. system Aircraft comms. Telephone system Position processor Backup position processor Comms. processor Backup comms. processor Aircraft simulation system Flight plan database ATC system architecture Weather map system Accounting system Controller info. system Controller consoles Activity logging system Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 31. Slide ##

Functional system components Sensor components Actuator components Computation components Communication components Co-ordination components Interface components Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 21

System components Sensor components Collect information from the system s environment e.g. radars in an air traffic control system Actuator components Cause some change in the system s environment e.g. valves in a process control system which increase or decrease material flow in a pipe Computation components Carry out some computations on an input to produce an output e.g. a floating point processor in a computer system Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 22

System components Communication components Allow system components to communicate with each other e.g. network linking distributed computers Co-ordination components Co-ordinate the interactions of other system components e.g. scheduler in a real-time system Interface components Facilitate the interactions of other system components e.g. operator interface All components are now usually software controlled Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 23

Component types in alarm system Sensor Movement sensor, Door sensor Actuator Siren Communication Telephone caller Coordination Alarm controller Interface Voice synthesizer Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 24

The system engineering process Usually follows a waterfall model because of the need for parallel development of different parts of the system Little scope for iteration between phases because hardware changes are very expensive. Software may have to compensate for hardware problems Inevitably involves engineers from different disciplines who must work together Much scope for misunderstanding here. Different disciplines use a different vocabulary and much negotiation is required. Engineers may have personal agendas to fulfil Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 25

The system engineering process Requirements definition System decommissioning System design System evolution Sub-system development System installation System integration Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 26

Inter-disciplinary involvement Software engineering Electronic engineering Mechanical engineering Structural engineering ATC systems engineering User interface design Civil engineering Electrical engineering Architecture Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 27

System requirements definition Three types of requirement defined at this stage Abstract functional requirements. System functions are defined in an abstract way System properties. Non-functional requirements for the system in general are defined Undesirable characteristics. Unacceptable system behaviour is specified Should also define overall organisational objectives for the system Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 28

System objectives Functional objectives To provide a fire and intruder alarm system for the building which will provide internal and external warning of fire or unauthorized intrusion Organisational objectives To ensure that the normal functioning of work carried out in the building is not seriously disrupted by events such as fire and unauthorized intrusion Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 29

System requirements problems Changing as the system is being specified Must anticipate hardware/communications developments over the lifetime of the system Hard to define non-functional requirements (particularly) without an impression of component structure of the system. Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 30

The system design process Partition requirements Organise requirements into related groups Identify sub-systems Identify a set of sub-systems which collectively can meet the system requirements Assign requirements to sub-systems Causes particular problems when COTS are integrated Specify sub-system functionality Define sub-system interfaces Critical activity for parallel sub-system development Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 31

The system design process Partition requirements Define sub-system interfaces Identify sub-systems Specify sub-system functionality Assign requirements to sub-systems Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 32

System design problems Requirements partitioning to hardware, software and human components may involve a lot of negotiation Difficult design problems are often assumed to be readily solved using software Hardware platforms may be inappropriate for software requirements so software must compensate for this Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 33

Sub-system development Typically parallel projects developing the hardware, software and communications May involve some COTS (Commercial Off-the- Shelf) systems procurement Lack of communication across implementation teams Bureaucratic and slow mechanism for proposing system changes means that the development schedule may be extended because of the need for rework Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 34

System integration The process of putting hardware, software and people together to make a system Should be tackled incrementally so that sub-systems are integrated one at a time Interface problems between sub-systems are usually found at this stage May be problems with uncoordinated deliveries of system components Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 35

System installation Environmental assumptions may be incorrect May be human resistance to the introduction of a new system System may have to coexist with alternative systems for some time May be physical installation problems (e.g. cabling problems) Operator training has to be identified Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 36

System operation Will bring unforeseen requirements to light Users may use the system in a way which is not anticipated by system designers May reveal problems in the interaction with other systems Physical problems of incompatibility Data conversion problems Increased operator error rate because of inconsistent interfaces Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 37

System evolution Large systems have a long lifetime. They must evolve to meet changing requirements Evolution is inherently costly Changes must be analysed from a technical and business perspective Sub-systems interact so unanticipated problems can arise There is rarely a rationale for original design decisions System structure is corrupted as changes are made to it Existing systems which must be maintained are sometimes called legacy systems Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 38

System decommissioning Taking the system out of service after its useful lifetime May require removal of materials (e.g. dangerous chemicals) which pollute the environment Should be planned for in the system design by encapsulation May require data to be restructured and converted to be used in some other system Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 39

System procurement Acquiring a system for an organization to meet some need Some system specification and architectural design is usually necessary before procurement You need a specification to let a contract for system development The specification may allow you to buy a commercial off-the-shelf (COTS) system. Almost always cheaper than developing a system from scratch Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 40

The system procurement process Off-the-shelf system available Adapt requirements Choose system Issue request for bids Choose supplier Survey market for existing systems Bespoke system required Issue request to tender Select tender Negotiate contract Let contract for development Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 41

Procurement issues Requirements may have to be modified to match the capabilities of off-the-shelf components The requirements specification may be part of the contract for the development of the system There is usually a contract negotiation period to agree changes after the contractor to build a system has been selected Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 42

Contractors and sub-contractors The procurement of large hardware/software systems is usually based around some principal contractor Sub-contracts are issued to other suppliers to supply parts of the system Customer liases with the principal contractor and does not deal directly with sub-contractors Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 43

Contractor/Sub-contractor model System customer Principal contractor Sub-contractor 1 Sub-contractor 2 Sub-contractor 3 Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 44

Key points System engineering involves input from a range of disciplines Emergent properties are properties that are characteristic of the system as a whole and not its component parts System architectural models show major subsystems and inter-connections. They are usually described using block diagrams Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 45

Key points System component types are sensor, actuator, computation, co-ordination, communication and interface The systems engineering process is usually a waterfall model and includes specification, design, development and integration. System procurement is concerned with deciding which system to buy and who to buy it from Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 46

Conclusion Systems engineering is hard! There will never be an easy answer to the problems of complex system development Software engineers do not have all the answers but may be better at taking a systems viewpoint Disciplines need to recognise each others strengths and actively rather than reluctantly cooperate in the systems engineering process Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 2 Slide 47