Available online at www.sciencedirect.com. ScienceDirect. Procedia CIRP 38 (2015 ) 3 7



Similar documents
Available online at ScienceDirect. Procedia CIRP 16 (2014 ) 3 8

Methodology and Framework of a Cloud-Based Prognostics and Health Management System for Manufacturing Industry

Industrial Dr. Stefan Bungart

Making Machines More Connected and Intelligent

How To Understand The Power Of The Internet Of Things

Big Data, Physics, and the Industrial Internet! How Modeling & Analytics are Making the World Work Better."

Industrial Roadmap for Connected Machines. Sal Spada Research Director ARC Advisory Group

SIMATIC IT Production Suite Answers for industry.

Industrial Internet of Things Bears Fruit with Connected Services for Plant Assets and Fleet Migration

SMARC Architecture for Industrial Internet of

Industrial Internet & Advanced Manufacturing

A Roadmap for Future Architectures and Services for Manufacturing. Carsten Rückriegel Road4FAME-EU-Consultation Meeting Brussels, May, 22 nd 2015

Critical Infrastructure in a CyberPhysicalHuman World

Master big data to optimize the oil and gas lifecycle

Introduction. Background

A Cloud Based Solution with IT Convergence for Eliminating Manufacturing Wastes

of The New England Water Works Association

Why it s time to move to online accounting software

Introduction to e- Manufacturing

Arun Veeramani. Principal Marketing Manger. National Instruments. ni.com

Remote access for education and control of mechatronics systems

Circuit Protection is Key in Maintaining Growth for The Internet of Things

ARC VIEW. OSIsoft-SAP Partnership Deepens SAP s Predictive Analytics at the Plant Floor. Keywords. Summary. By Peter Reynolds

WATCHMAN Reliability Services Enhance OEM Service Center Revenue

The Cloudburst: Hitting New Heights With Cloud-Based Environmental Software. White Paper. Enviance

T r a n s f o r m i ng Manufacturing w ith the I n t e r n e t o f Things

EL Program: Smart Manufacturing Systems Design and Analysis

Data Management Practices for Intelligent Asset Management in a Public Water Utility

Enabling the SmartGrid through Cloud Computing

Where Smart Data meets Data Security Siemens Cloud for Industry powered by SAP HANA. April 2015

Increase System Efficiency with Condition Monitoring. Embedded Control and Monitoring Summit National Instruments

SAP Solution Brief SAP Technology SAP IT Infrastructure Management. Unify Infrastructure and Application Lifecycle Management

Architecting an Industrial Sensor Data Platform for Big Data Analytics

White paper. Control room convergence: Merging industrial monitoring and control systems with data center operations

Power & Environmental Monitoring

The Internet of Everything:

Internet of Things Vom Hype zum Innovationsschub!

Stuart Gillen. Principal Marketing Manger. National Instruments ni.com

ARC VIEW. Services Oriented Drives Support Critical Energy Management and Asset Management Applications through IT/OT Convergence. Keywords.

Elevating Data Center Performance Management

Vortex White Paper. Simplifying Real-time Information Integration in Industrial Internet of Things (IIoT) Control Systems

Big Data Collection Study for Providing Efficient Information

DECISYON 360 ASSET OPTIMIZATION SOLUTION FOR U.S. ELECTRICAL ENERGY SUPPLIER MAY 2015

Autonomic IoT Systems Realizing Self-* Properties in IoT Systems

WHITE PAPER ON. Operational Analytics. HTC Global Services Inc. Do not copy or distribute.

The Rise of Industrial Big Data

The Challenge of Handling Large Data Sets within your Measurement System

One solution, countless benefits

Security Threats on National Defense ICT based on IoT

Automotive Applications of 3D Laser Scanning Introduction

Manufacturing Connectivity and Data Integration

The Purview Solution Integration With Splunk

Available online at Available online at Advanced in Control Engineering and Information Science

Internet of Things (IoT): A vision, architectural elements, and future directions

TS03: Operational Excellence by Leveraging Internet of Things Technologies

Leveraging the Industrial Internet of Things (IOT) to Optimize Renewable Energy

Manufacturing and the Internet of Everything

StruxureWare for Data Centers

A Framework of Smart Internet of Things based Cloud Computing

Igniting the Next Industrial Revolution

Best Practices for Implementing Global IoT Initiatives Key Considerations for Launching a Connected Devices Service

Cloud, Simple Practical Applications On industrial automation, process control and distributed real-time systems

Factories of the Future Horizon 2020: LEIT ICT WP FoF : Digital Automation

DATA CENTER PHYSICAL INFRASTRUCTURE

Converging Technologies: Real-Time Business Intelligence and Big Data

From Big Data to Smart Data Thomas Hahn

Nominee: FieldView Solutions, Inc.

NAVIGATING THE BIG DATA JOURNEY

CONECTIVIDAD EN LA ERA DEL IOT THE INTERNET OF THINGS

Impact of Internet of Things (IoT) on Industry and Supply Chain

IoT in Production. Dr. Verena Majuntke, Bosch Software Innovations. Bosch Software Innovations

Skelta BPM and High Availability

I. TODAY S UTILITY INFRASTRUCTURE vs. FUTURE USE CASES...1 II. MARKET & PLATFORM REQUIREMENTS...2

Data Mining and Analytics in Realizeit

Network Assessment Services

QUICK REFERENCE GUIDE MOBILE HUMAN MACHINE INTERFACE (HMI): INNOVATION THAT EMPOWERS THE MOBILE OPERATOR

Challenges. Department of Informatics University of Oslo. Presenter. October 25, 2011

Growth through partnerships and licensing technologies

Harnessing the Potential of the Industrial Cloud

Uniformance Asset Sentinel. Advanced Solutions. A real-time sentinel for continuous process performance monitoring and equipment health surveillance

Connected Product Maturity Model

Data Mining for Manufacturing: Preventive Maintenance, Failure Prediction, Quality Control

PM Optimization: Using Data-driven Analytics for Life Centered Maintenance

Microsoft Dynamics AX 2012 R3, clear cut benefits for your Organisation

A data pipeline for PHM data-driven analytics in large-scale smart manufacturing facilities

The Internet of Things: Opportunities & Challenges

Avaya Virtualization Provisioning Service

E-Guide. Sponsored By:

CONNECTING DATA WITH BUSINESS

Five Essential Components for Highly Reliable Data Centers

The Big Data methodology in computer vision systems

Best Practices for Deploying Wireless LANs

WHAT DO YOU MEAN END-TO-END FIELD SERVICE MANAGEMENT?

SCADA 2014 systems for wind

What do Big Data & HAVEn mean? Robert Lejnert HP Autonomy

Interactive data analytics drive insights

EVERYTHING THAT MATTERS IN ADVANCED ANALYTICS

Advanced Solutions. Uniformance Suite. Real-time Digital Intelligence Through Unified Data, Analytics and Visualization

Elena Terenzi. Technology Advisor for Big Data in Oil and Gas Microsoft

IoT Changes Logistics for the OEM Spare Parts Supply Chain

Transcription:

Available online at www.sciencedirect.com ScienceDirect Procedia CIRP 38 (2015 ) 3 7 The Fourth International Conference on Through-life Engineering Services Industrial big data analytics and cyber-physical systems for future maintenance & service innovation Jay Lee*, Hossein Davari Ardakani, Shanhu Yang, Behrad Bagheri NSF I/UCRC Center for Intelligent Maintenance Systems (IMS), University of Cincinnati, Cincinnati, OH 45221-0072, USA * Corresponding author. Tel.: +1-513-556-3412; fax: +1-513-556-4647. E-mail address: jay.lee@uc.edu Abstract With the rapid advancement of Information and Communication Technologies (ICT) and the integration of advanced analytics into manufacturing, products and services, many industries are facing new opportunities and at the same time challenges of maintaining their competency and market needs. Such integration, which is called Cyber-physical Systems (CPS), is transforming the industry into the next level. CPS facilitates the systematic transformation of massive data into information, which makes the invisible patterns of degradations and inefficiencies visible and yields to optimal decision-making. This paper focuses on existing trends in the development of industrial big data analytics and CPS. Then it briefly discusses a systematic architecture for applying CPS in manufacturing called 5C. The 5C architecture includes necessary steps to fully integrate cyber-physical systems in the manufacturing industry. Finally, a case study for designing smart machines through the 5C CPS architecture is presented. 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 2015 The Authors. Published by Elsevier B.V. (http://creativecommons.org/licenses/by-nc-nd/4.0/). Keywords: Cyber-physical systems; industrial big data; predictive maintenance; intelligent maintenance systems 1. Introduction: Unmet Needs in Today s Industry During past several decades, manufacturers and service providers have taken a significant step towards improving the quality of products and services, and optimizing their processes in order to maintain their competency and respond to market demands. Since the development of the concept of preventive maintenance and Total Productive Maintenance (TPM) in 1951 [1], maintenance practices have evolved from being organization-centric focused on quality, to customercentric focused on value creation and smart services. This evolution has led to the development of Prognostics and Health Management (PHM). PHM solutions are capable of transforming the data into desired information and knowledge about the invisible patterns of degradation in assets, and inconsistencies and inefficiencies of the processes. These patterns are mostly invisible, until a failure occurs [2]. The discovery of such underlying patterns avoids the costly failures and unplanned downtime of machinery. Such maintenance scheme leads to greater asset sustainability and eventually near-zero breakdown. Moreover, making these invisibles visible can help adjust and tune the processes to make them more consistent and efficient. Despite the inherent challenges of developing PHM for complex machinery and processes, this field of research has grown significantly and has facilitated the development of intelligent maintenance systems. In the past several years, the rapid advancement of Information and Communication Technologies (ICT) has facilitated the implementation of advanced sensors, data collection equipment, wireless communication devices and remote computing solutions. Such technologies, along with the advances in predictive analytics, are changing the face of the modern industry. Integrating advanced analytics with communication technologies in close conjunction with the physical machinery has been named cyber-physical systems (CPS) [3]. Since the creation of its concept, CPS has been an evergrowing terminology in today s evolving industry. It 2212-8271 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). doi:10.1016/j.procir.2015.08.026

4 Jay Lee et al. / Procedia CIRP 38 ( 2015 ) 3 7 addresses the integration of physical systems with computational models. Such scheme has a vast area of application including process control, energy, transportation, medical devices, military, automation, smart structures etc. [2]. Currently, the CPS concept is still under development. In the area of asset management, CPS has the potential to provide self-awareness and self-maintenance capabilities. The implementation of predictive analytics as part of the CPS framework enables the assets to continuously track their own performance and health status and predict potential failures. By implementing this predictive analytics along with a decision support system, proper services could be requested and actions taken to maximize the uptime, productivity and efficiency of the industrial systems. CPS, as the central hub for data management in fleet level, plays a critical role in achieving the above-mentioned goals. 2. Internet of Things and Evolution of Industries The Internet of Things (IoT) [4] is able to gather, sort, synchronize and organize the data from different sources within a factory or business. It provides a tether-free and connected data management platform with real-time streaming and processing capabilities. Such platform brings about the capability of implementing big data predictive analytics for transformation of data to information to knowledge to action through a CPS structure. The pipeline of data to action has the potential to create value in different sections of a business chain. For example, valuable information regarding the hidden degradation or inefficiency patterns within machines or manufacturing processes can lead to informed and effective maintenance decisions which can avoid costly failures and unplanned downtime. From business perspective, such platform can effectively be used for customer relation management, supply chain management, execution branch and enterprise resource planning. This is made possible through the collection and intelligent analysis of massive amount of data gathered from numerous sources including market trends, economical factors, current and future demands and enterprise resources. Figure 1 provides an schematic view of how big data analytics can create value within different sections of industries. In the next section, the structure of CPS along with its implementation aspects is discussed. 3. Cyber-physical Systems The CPS structure, proposed in [5], consists of five levels namely 5C architecture. This structure provides a guideline for the development of CPS for industrial applications. This CPS structure consists of two main components: 1) the advanced connectivity that ensures real-time data streamlining from the physical space to cyber space and feedback from the cyber space; and 2) intelligent data analytics that constructs the cyber space. The proposed 5C structure provides a workflow that shows how to construct a CPS system from the data acquisition to value creation. The framework of CPS in different levels is shown in Figure 2. The 5C structure consists of Smart Connection, Data-to-info Conversion, Cyber, Cognition and Configuration levels. Figure 1. The framework of big data analytics platform for predictive manufacturing [2]

Jay Lee et al. / Procedia CIRP 38 ( 2015 ) 3 7 5 Figure 2. Framework of a cyber-physical system in different levels from data to action [5] 3.1. Smart connection This level consists of seamless and tether-free methods to manage data acquisition systems, streamline, and transfer the data to the central server. Selecting proper sensors, data sources and transferring protocols (such as MTConnect [6]) in this level can have a significant impact on the performance of CPS in the next levels and the quality and accuracy of the knowledge discovered through the system. 3.2. Data-to-information conversion The core of such architecture is where the data is analysed and transformed into valuable knowledge. Recently, there has been an extensive focus on developing intelligent algorithms and data mining techniques. Such algorithms can be applied to various data sources, from machinery and process data to business and enterprise management data. 3.3. Cyber The cyber level acts as central information hub in this architecture. Information is being pushed to it from every source and compiled to establish a cyber space. Having massive information gathered, specific analytics have to be used to extract additional information that provides better insight over the status of individual machines among the fleet. 3.4. Cognition Implementing CPS upon this level generates a thorough knowledge of the monitored system. Proper presentation of the acquired knowledge to expert users supports the correct decision to be taken. 3.5. Configuration The configuration level is the feedback from cyber space to physical space and acts as supervisory control to make machines self-configure and self-adaptive. This stage acts as resilience control system (RCS) to apply the corrective and preventive decisions, which has been made in cognition level, to the monitored system. 4. Case study: Cyber-physical System-based Smart Machine Machining processes in the manufacturing industry represent a highly dynamic and complex situation for condition based maintenance (CBM) and PHM. A CNC machine can usually handle a wide range of materials with different hardness and geometric shapes and consequently requires different combinations of machine tool and cutting parameters to operate. Traditional PHM strategies are usually developed for a limited range of machine types and working conditions and thus cannot be used to effectively handle an entire manufacturing floor where machines can be utilized under a wide range of working regimes that cannot be modelled comprehensively beforehand. As a result, a CPS framework with the proposed 5C structure is developed for sawing processes. The developed CPS for machine tools can

6 Jay Lee et al. / Procedia CIRP 38 ( 2015 ) 3 7 be used to process and analyse machining data, evaluate the health condition of critical components (e.g. tool cutter) and further improves the overall equipment efficiency and reliability by predicting upcoming failures, scheduling maintenance beforehand and adaptive control. In factories, manufacturing processes start with sawing large pieces of material into designated sizes. Due to the upstream nature of the sawing process, the quality and speed of sawing affect the entire production and any error could be propagated to the following steps and result in bad quality products. On the contrast, performing accurate cuts require slower cutting process, which hampers the productivity of the whole manufacturing line. Therefore, while it is not possible to maximize these two requirements at the same time, an optimal balance between surface quality and speed has to be achieved. In such situation, the health status of band sawing machine and its components play significant role in both speed and quality of cuts. Thus, availability of exact health information from the machine will provide significant help on maintaining the cutting speed and accuracy. As shown in figure 3, in the connectivity level, data is acquired from machines through both add-on sensors and controller signals. In addition to the add-on vibration, acoustic emission, temperature and current sensors, 20 control variables such as blade speed, cutting time and blade height have been pulled out of the PLC controller to provide a clear understanding of the working status of each machine. The data is now processed in the industrial computer connected to each machine. In the conversion level, the industrial computer further performs feature extraction and data preparation. The feature extraction consists of extracting conventional time-domain and frequency domain features such as RMS, kurtosis, frequency band energy percentage, etc. from vibration and acoustic signals. Calculated features along with other machine state data is being sent through Ethernet or Wi-Fi network to the cloud server where the feature values are managed and stored in the database. In the cyber level, cloud server performs an adaptive clustering method [7] to segment the blade performance history (from when a new blade was installed to now) into discrete working regimes based on the relative change of the features comparing to the normal baseline and the local noise distribution (figure 4). The adaptive clustering method compares current values of the features with the baseline and historical working regimes. It identifies the most suitable cluster from the history to match with the current working condition. Although, if none being found, the algorithm generates a new cluster as a new working regime and generate related health models for that regime. Further, if the same working condition happens, the algorithm has its signatures in memory and will automatically cluster the new data into that specific working regime [7]. The health stages can be further utilized in the cognition level and configuration level for optimization purposes. For example, when the blade is new, a higher cutting speed can be used for high productivity without hampering the quality, while after certain amount of degradation has been detected, a more moderate cutting should be applied to ensure quality. To Figure 3. Overall Cyber Physical System setup for band saw Machines

Jay Lee et al. / Procedia CIRP 38 ( 2015 ) 3 7 7 help such decision making process, Web and ios-based user interfaces have been also developed so that the health information of each connected machine tool can be accessed in real time (figure 5). level functions such as maintenance scheduling and optimized control to achieve higher overall system productivity and reliability. The capabilities of the 5C architecture has briefly demonstrated through a case study of CNC saw machines. The case study shows the integration of the 5C architecture for processing and managing a fleet of CNC sawing machines which are commonly used in manufacturing. Current integration of the 5C CPS architecture is in its incipient stage therefore advancement in all 5 levels of the architecture are practical. The cyber level, specifically, has high potential for advancement by developing new algorithms for fleet level analysis of machines performance over distributed data management systems. References [1] Chan, F. T. S., H. C. W. Lau, R. W. L. Ip, H.K. Chan, S. Kong. "Implementation of total productive maintenance: A case study.. International Journal of Production Economics. 2005, 95.1: 71-94. Figure 4. Adaptive health state recognition for blade condition (each color represent a cluster of feature values for a specific working regime) [2] Lee, J., E., Lapira, B., Bagheri, H. A., Kao. Recent advances and trends in predictive manufacturing systems in big data environment. Manufacturing Letters, 2013, 1.1: 38-41. [3] Shi, J., J., Wan, H., Yan, H. Suo. "A survey of cyberphysical systems." Wireless Communications and Signal Processing (WCSP), 2011 International Conference on. IEEE, 2011. [4] Kopetz, H. Internet of things. In: Real-time systems (pp. 307-323). Springer US. 2011. Figure 5. User interface for real-time access of machine health information 5. Conclusion This paper discussed current trends toward implementing cyber-physical systems in the manufacturing industry. As managing industrial big data has become a challenging tasks for factories, designing a generic architecture for implementing CPS in manufacturing is necessary. The 5C architecture that is discussed in this article is able to automate and centralize data processing, health assessment and prognostics. This architecture covers all necessary steps from acquiring data, processing the information, presenting to the users and supporting decision making. Furthermore the health information generated by the system can be used for higher [5] Lee, J., B., Bagheri, H. A., Kao. "A cyber-physical systems architecture for industry 4.0-based manufacturing systems." Manufacturing Letters, 2015, 3: 18-23. [6] Vijayaraghavan, A., W., Sobel, A.,Fox, D., Dornfeld, P., Warndorf. Improving machine tool interoperability using standardized interface protocols: MTConnect. In: Proceedings of the 2008 international symposium on flexible automation (ISFA), 2008, Atlanta, GA, USA. [7] Yang, S., B., Bagheri, H. A., Kao, J., Lee. "A Unified Framework and Platform for Designing of Cloud-based Machine Health Monitoring and Manufacturing Systems.", Journal of Manufacturing Science and Engineering, 2015