Sampling based sensitivity analysis: a case study in aerospace engineering



Similar documents
Simple Predictive Analytics Curtis Seare

Univariate Regression

Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31)

Mesh Discretization Error and Criteria for Accuracy of Finite Element Solutions

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1

Modeling of inflatable dams partially filled with fluid and gas considering large deformations and stability

Service courses for graduate students in degree programs other than the MS or PhD programs in Biostatistics.

Section 3 Part 1. Relationships between two numerical variables

Lap Fillet Weld Calculations and FEA Techniques

In Search of Simulating Reality: Validation and Updating of FE Models for Structural Analysis

The elements used in commercial codes can be classified in two basic categories:

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics

DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES

4.3 Results Drained Conditions Undrained Conditions References Data Files Undrained Analysis of

3 Concepts of Stress Analysis

Distributed computing of failure probabilities for structures in civil engineering

Statistics on Structures 3. Robustness evaluation in CAE with software optislang and Statistics on Structures Application examples New features

business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar

Feature Commercial codes In-house codes

Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables 2

CAD-BASED DESIGN PROCESS FOR FATIGUE ANALYSIS, RELIABILITY- ANALYSIS, AND DESIGN OPTIMIZATION

MASTER DEGREE PROJECT

Solved with COMSOL Multiphysics 4.3

TRAVELING WAVE EFFECTS ON NONLINEAR SEISMIC BEHAVIOR OF CONCRETE GRAVITY DAMS

Iterative Solvers for Linear Systems

Linear Elastic Cable Model With Creep Proportional to Tension

Product-process interaction modeling of composite structures using As-Built information

Buckling of Spherical Shells

A spreadsheet Approach to Business Quantitative Methods

Statistics Graduate Courses

An Overview of the Finite Element Analysis

Integrated Resource Plan

Regression Modeling Strategies

How To Understand The Theory Of Probability

NUMERICAL METHODS TOPICS FOR RESEARCH PAPERS

Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements

Stress and deformation of offshore piles under structural and wave loading

Least Squares Estimation

Back to Elements - Tetrahedra vs. Hexahedra

Nonlinear Analysis Using Femap with NX Nastran

Applied Data Mining Analysis: A Step-by-Step Introduction Using Real-World Data Sets

Course in. Nonlinear FEM

DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.

BOFIRE A FEM-programm for non-linear analysis of structural members under fire conditions

Correlation key concepts:

Numerical analysis of metallic. hollow sphere structures

Bootstrapping Big Data

Corporate Defaults and Large Macroeconomic Shocks

NAPA/MAESTRO Interface. Reducing the Level of Effort for Ship Structural Design

Finite Element Method (ENGC 6321) Syllabus. Second Semester

The Fundamental Principles of Composite Material Stiffness Predictions. David Richardson

Figure CPT Equipment

SAFE A HEAD. Structural analysis and Finite Element simulation of an innovative ski helmet. Prof. Petrone Nicola Eng.

Chapter 13 Introduction to Nonlinear Regression( 非 線 性 迴 歸 )

Nonlinear analysis and form-finding in GSA Training Course

Imputing Values to Missing Data

Topology optimization based on graph theory of crash loaded flight passenger seats

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

Nonlinear Regression:

Data Mining mit der JMSL Numerical Library for Java Applications

Thermo-Mechanical Coupled Simulation with LS-DYNA

Practical Applications of Stochastic Modeling for Disability Insurance

Numerical Methods for Differential Equations

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

Integer Programming: Algorithms - 3

Chapter 7 Factor Analysis SPSS

Chapter 7: Simple linear regression Learning Objectives

Methodology For Illinois Electric Customers and Sales Forecasts:

Application of LS-DYNA Implicit for the Design of Plastic Components

NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Reliable FE-Modeling with ANSYS

8.2 Elastic Strain Energy

Stress Relaxation Study of Paper and Plastic Film based Packaging Material

STATISTICA Formula Guide: Logistic Regression. Table of Contents

We are often interested in the relationship between two variables. Do people with more years of full-time education earn higher salaries?

Three dimensional thermoset composite curing simulations involving heat conduction, cure kinetics, and viscoelastic stress strain response

CAE -Finite Element Method

CHAPTER 3 EXAMPLES: REGRESSION AND PATH ANALYSIS

Neue Entwicklungen in LS-OPT/Topology - Ausblick auf Version 2

Balancing Manufacturability and Optimal Structural Performance for Laminate Composites through a Genetic Algorithm

INVESTIGATION OF VISCOELASTICITY AND CURE SHRINKAGE IN AN EPOXY RESIN DURING PROCESSING

Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms

PREDICTION OF MACHINE TOOL SPINDLE S DYNAMICS BASED ON A THERMO-MECHANICAL MODEL

Introduction to Engineering System Dynamics

Benchmark Tests on ANSYS Parallel Processing Technology

MATHEMATICAL METHODS OF STATISTICS

Finite Element Method

Technology of EHIS (stamping) applied to the automotive parts production

MULTI-CRITERIA PROJECT PORTFOLIO OPTIMIZATION UNDER RISK AND SPECIFIC LIMITATIONS

Shell Elements in ABAQUS/Explicit

Multivariate Analysis of Ecological Data

Pragmatic multi-scale and multi-physics analysis of Charles Bridge in Prague

Transcription:

Sampling based sensitivity analysis: a case study in aerospace engineering Michael Oberguggenberger Arbeitsbereich für Technische Mathematik Fakultät für Bauingenieurwissenschaften, Universität Innsbruck In collaboration with INTALES GmbH Engineering Solutions Supported by ESA/ESTEC and The Austrian Research Promotion Agency (FFG) Weimarer Optimierungs- und Stochastiktage 6.0 15.-16. Oktober 2009 Oberguggenberger (Innsbruck) Optimierungs- und Stochastiktage Weimar 15.-16. Oktober 2009 1 / 15

Team ACOSTA 2009 Faculty of Civil Engineering Univ.-Prof. Dr. Michael Oberguggenberger Mag. Robert Winkler Stefan Schett Roland Traxl Faculty of Mathematics, Informatics and Physics Univ.-Prof. Dr. Alexander Ostermann Dipl.-Ing. Stefan Steidl Christoph Aichinger Andreas Grassl Katharina Riedinger Helene Roth Intales Engineering Solutions Dipl.-Ing. Dr. Herbert Haller Benoit Caillaud Thomas Charry Oberguggenberger (Innsbruck) Optimierungs- und Stochastiktage Weimar 15.-16. Oktober 2009 2 / 15

Introduction Issue: Understanding the behavior of engineering structures near the limit state, especially buckling of light weight shell structures Point of view: Absolute values of single indicators (e.g. knock down factors) or failure probabilities give little insight in the mechanisms of collapse Remedy: Better understanding by means of sensitivity analysis Situation: Numerical model is given by an Input-Output map Y = g(x 1,..., X d ) where the indicator Y is a function of the design parameters X 1,..., X d Goal: Sensitivity analysis of output with respect to input Oberguggenberger (Innsbruck) Optimierungs- und Stochastiktage Weimar 15.-16. Oktober 2009 3 / 15

Frontskirt of Ariane 5 Launcher DATA, INPUT OUTPUT Buckling load: depending on loads, material, geometry (currently 17 130 input variables) Flight critical behavior: investigation of (currently) 136 output variables Challenges: excessive computational cost IO-map continuous but non-differentiable Statistical distribution of input parameters unknown (nonparametric methods required) Scarce data: flight scenarios supplied by the architect Method of choice: Monte Carlo simulation, statistical indicators of dependence Oberguggenberger (Innsbruck) Optimierungs- und Stochastiktage Weimar 15.-16. Oktober 2009 4 / 15

Input Data Simplified Model Example: original 17 variables Description of input parameters i Parameter X i Mean µ i 1 Initial temperature 293 K 2 Step1 thermal loading cylinder1 450 K 3 Step1 thermal loading cylinder2 350 K 4 Step1 thermal loading cylinder3 150 K 5 Step1 thermal loading sphere1 150 K 6 Step1 thermal loading sphere2 110 K 7 Step2 hydrostatic pressure cylinder3 0.4 MPa 8 Step2 hydrostatic pressure sphere1 0.4 MPa 9 Step2 hydrostatic pressure sphere2 0.4 MPa 10 Step3 aerodynamic pressure 0.05 MPa 11 Step4 booster loads y-direction node1 40000 N 12 Step4 booster loads y-direction node2 20000 N 13 Step4 booster loads z-direction node1 3.e6 N 14 Step4 booster loads z-direction node2 1.e6 N 15 Step4 mechanical loads x-direction 100 N 16 Step4 mechanical loads y-direction 50 N 17 Step4 mechanical loads z-direction 300 N Oberguggenberger (Innsbruck) Optimierungs- und Stochastiktage Weimar 15.-16. Oktober 2009 5 / 15

Input Data Simplified Model Example: original 17 variables Description of input parameters i Parameter X i Mean µ i 1 Initial temperature 293 K 2 Step1 thermal loading cylinder1 450 K 3 Step1 thermal loading cylinder2 350 K 4 Step1 thermal loading cylinder3 150 K 5 Step1 thermal loading sphere1 150 K 6 Step1 thermal loading sphere2 110 K 7 Step2 hydrostatic pressure cylinder3 0.4 MPa 8 Step2 hydrostatic pressure sphere1 0.4 MPa 9 Step2 hydrostatic pressure sphere2 0.4 MPa 10 Step3 aerodynamic pressure 0.05 MPa 11 Step4 booster loads y-direction node1 40000 N 12 Step4 booster loads y-direction node2 20000 N 13 Step4 booster loads z-direction node1 3.e6 N 14 Step4 booster loads z-direction node2 1.e6 N 15 Step4 mechanical loads x-direction 100 N 16 Step4 mechanical loads y-direction 50 N 17 Step4 mechanical loads z-direction 300 N Input: Uniform distributions with spread ±15% of nominal value Oberguggenberger (Innsbruck) Optimierungs- und Stochastiktage Weimar 15.-16. Oktober 2009 5 / 15

Description of Output Variables Output measured at 3 rings (100 finite elements each) and aggregated: Oberguggenberger (Innsbruck) Optimierungs- und Stochastiktage Weimar 15.-16. Oktober 2009 6 / 15

Description of Output Variables Output measured at 3 rings (100 finite elements each) and aggregated: Typical output variables: Local variables: Translations, rotations and stresses, plastic/logarithmic strains, elastic/plastic strain energy densities... Global variables: Summarized elastic/plastic strain energy densities, eigenvalues of the stiffness matrix... Oberguggenberger (Innsbruck) Optimierungs- und Stochastiktage Weimar 15.-16. Oktober 2009 6 / 15

Preliminary Analysis Scatter Plots Input vs. elastic strain energy density: ring 2 min (left) max (right) Oberguggenberger (Innsbruck) Optimierungs- und Stochastiktage Weimar 15.-16. Oktober 2009 7 / 15

Statistical Indicators Disadvantage: Scatterplots do not eliminate the influence of scale and of interaction of input variables. Remedy: Statistical indicators that remove these effects. Oberguggenberger (Innsbruck) Optimierungs- und Stochastiktage Weimar 15.-16. Oktober 2009 8 / 15

Statistical Indicators Disadvantage: Scatterplots do not eliminate the influence of scale and of interaction of input variables. Remedy: Statistical indicators that remove these effects. Indicators in use (X i vs. Y ): CC Pearson correlation coefficient; PCC partial correlation coefficient; SRC standardized regression coefficient; RCC Spearman rank correlation coefficient; PRCC partial rank correlation coefficient; SRRC standardized rank regression coefficient. Oberguggenberger (Innsbruck) Optimierungs- und Stochastiktage Weimar 15.-16. Oktober 2009 8 / 15

Partial Rank Correlation Coefficients Example PCCs and PRCCs: 1. For each input variable X i, construct linear regression models X i = α 0 + j i α j X j, Ŷ = β 0 + j i β j X j. 2. Compute the residuals e Xi X i = X i X i, e Y X i = Y Ŷ. 3. Compute the correlation coefficient of the residuals PCC : ρ Xi,Y X i = ρ(e Xi X i, e Y X i ). 4. Apply procedure to ranks in place of raw data PRCC. 5. Assessment of significance: Resampling of computed data gives bootstrap confidence intervals at no additional cost. Oberguggenberger (Innsbruck) Optimierungs- und Stochastiktage Weimar 15.-16. Oktober 2009 9 / 15

CCs, RCCs, PCCs, PRCCs, SRCs, SRRCs Input vs. elastic strain energy density: ring 2 min (left) max (right) Oberguggenberger (Innsbruck) Optimierungs- und Stochastiktage Weimar 15.-16. Oktober 2009 10 / 15

95%-Bootstrap Confidence Intervals Input vs. elastic strain energy density: ring 2 min (left) max (right) Oberguggenberger (Innsbruck) Optimierungs- und Stochastiktage Weimar 15.-16. Oktober 2009 11 / 15

Evaluation and Extensions Evaluation Selection of variables according to significance in at least one criterion; refined assessment by multicriteria decision analysis; further numerical analysis using selected variables. Oberguggenberger (Innsbruck) Optimierungs- und Stochastiktage Weimar 15.-16. Oktober 2009 12 / 15

Evaluation and Extensions Evaluation Selection of variables according to significance in at least one criterion; refined assessment by multicriteria decision analysis; further numerical analysis using selected variables. Extension (work in progress): Modelling of material parameters by stochastic field: Widely used autocovariance function C(ρ) = σ 2 exp( ρ /l) at spatial lag ρ. Questions: Change of sensitivities when material is stochastic; dependence of sensitivities on field parameters σ and l; sensitivity of output with respect to field parameters σ and l. Oberguggenberger (Innsbruck) Optimierungs- und Stochastiktage Weimar 15.-16. Oktober 2009 12 / 15

Monte Carlo in Iterative Solvers Idea: Perform Monte Carlo parameter variation not with initial values, but at a later stage in the iterations. Linear equations: Solutions for neighboring systems obtained by a splitting of the stiffness-matrix. Oberguggenberger (Innsbruck) Optimierungs- und Stochastiktage Weimar 15.-16. Oktober 2009 13 / 15

Monte Carlo in Iterative Solvers Idea: Perform Monte Carlo parameter variation not with initial values, but at a later stage in the iterations. Linear equations: Solutions for neighboring systems obtained by a splitting of the stiffness-matrix. Nonlinear equations and load incremental algorithms: do p % of required iteration with average values of input parameters; perform Monte Carlo variation of input parameters; obtain equilibrium state for each MC realization of parameters; perform remaining (1-p) % of iterations. Oberguggenberger (Innsbruck) Optimierungs- und Stochastiktage Weimar 15.-16. Oktober 2009 13 / 15

Monte Carlo in Iterative Solvers Idea: Perform Monte Carlo parameter variation not with initial values, but at a later stage in the iterations. Linear equations: Solutions for neighboring systems obtained by a splitting of the stiffness-matrix. Nonlinear equations and load incremental algorithms: do p % of required iteration with average values of input parameters; perform Monte Carlo variation of input parameters; obtain equilibrium state for each MC realization of parameters; perform remaining (1-p) % of iterations. Example: Thin cylindrical roof, loaded with a central point-force. Output: central displacement; Input: Young s modulus, Poisson s ratio, load. Oberguggenberger (Innsbruck) Optimierungs- und Stochastiktage Weimar 15.-16. Oktober 2009 13 / 15

Numerical Acceleration Results Relative error in CCs and PCCs vs. point of parameter variation; 0... variation at initial step, 1... variation at final step. Oberguggenberger (Innsbruck) Optimierungs- und Stochastiktage Weimar 15.-16. Oktober 2009 14 / 15

Outlook Understanding the reliability of structures by means of sensitivity analysis Powerful tool: Monte Carlo simulation plus statistical indicators Fairly low computational cost: relatively small sample size suffices Assessment of statistical significance by resampling at no additional cost Non-parametric method Wide range of applicability Oberguggenberger (Innsbruck) Optimierungs- und Stochastiktage Weimar 15.-16. Oktober 2009 15 / 15