In-Memory or Live Data: Which is Better?



Similar documents
In-Memory or Live Data: Which Is Better?

Empower Individuals and Teams with Agile Data Visualizations in the Cloud

Understanding the Value of In-Memory in the IT Landscape

Ignite Your Creative Ideas with Fast and Engaging Data Discovery

Using Tableau Software with Hortonworks Data Platform

<no narration for this slide>

Streamline your supply chain with data. How visual analysis helps eliminate operational waste

Business Intelligence for Excel

SAP HANA PLATFORM Top Ten Questions for Choosing In-Memory Databases. Start Here

QLIKVIEW DEPLOYMENT FOR BIG DATA ANALYTICS AT KING.COM

Data Mining, Predictive Analytics with Microsoft Analysis Services and Excel PowerPivot

SQL Server 2012 Performance White Paper

IBM Cognos Insight. Independently explore, visualize, model and share insights without IT assistance. Highlights. IBM Software Business Analytics

MITS Distributor Analytics

Empowering Teams and Departments with Agile Visualizations

hmetrix Revolutionizing Healthcare Analytics with Vertica & Tableau

Cisco Data Preparation

IBM Cognos TM1 Enterprise Planning, Budgeting and Analytics

Spreadsheets and OLAP

Optimize Oracle Business Intelligence Analytics with Oracle 12c In-Memory Database Option

Adobe Insight, powered by Omniture

Powerful analytics. and enterprise security. in a single platform. microstrategy.com 1

ElegantJ BI. White Paper. Considering the Alternatives Business Intelligence Solutions vs. Spreadsheets

CRM Analytics. SAP enhancement package 1 for SAP CRM 7.0. Gert Tackaert

ANALYTICS BUILT FOR INTERNET OF THINGS

Tuning Tableau Server for High Performance

Tuning Tableau and Your Database for Great Performance PRESENT ED BY

Big data big talk or big results?

The QlikView Business Discovery platform

IBM Cognos TM1. Enterprise planning, budgeting and analysis. Highlights. IBM Software Data Sheet

Sage 200 Business Intelligence Datasheet

Conventional BI Solutions Are No Longer Sufficient

Tableau and the Enterprise Data Warehouse: The Visual Approach to Business Intelligence

TECHNICAL PAPER. Infor10 ION BI: The Comprehensive Business Intelligence Solution

FIVE STEPS FOR DELIVERING SELF-SERVICE BUSINESS INTELLIGENCE TO EVERYONE CONTENTS

The Modern Approach to Business Intelligence

Extend the value of Microsoft Dynamics ERP with other technology innovations from Microsoft

IBM Cognos Express Essential BI and planning for midsize companies

WebFOCUS InfoDiscovery

Go Beyond Excel to Analyze Data. 5 Strategies For Improving Your Analytics

Ellie Fields and Bob Middleton January Rapid-Fire Business Intelligence

PowerPivot for Advanced Reporting and Dashboards

Big Data Integration: A Buyer's Guide

CRGroup Whitepaper: Digging through the Data. Reporting Options in Microsoft Dynamics GP

SAP HANA SAP s In-Memory Database. Dr. Martin Kittel, SAP HANA Development January 16, 2013

HOW INTERSYSTEMS TECHNOLOGY ENABLES BUSINESS INTELLIGENCE SOLUTIONS

Dell* In-Memory Appliance for Cloudera* Enterprise

Best Practices for Hadoop Data Analysis with Tableau

The Edge Editions of SAP InfiniteInsight Overview

Analytic Applications With PHP and a Columnar Database

CA Database Performance

Self-Service Business Intelligence: The hunt for real insights in hidden knowledge Whitepaper

EXECUTIVE SUMMARY. Tableau Software

Izenda & SQL Server Reporting Services

Sales Performance Management Using Salesforce.com and Tableau 8 Desktop Professional & Server

How to Choose and Deploy a Transformative BI Solution: The Irish Life Story

How To Handle Big Data With A Data Scientist

Winning with an Intuitive Business Intelligence Solution for Midsize Companies

Up Your R Game. James Taylor, Decision Management Solutions Bill Franks, Teradata

THE QLIKVIEW BUSINESS DISCOVERY PLATFORM

Desktop Activity Intelligence

300 Intelligence Reporting. Sage Intelligence Reporting Customer Frequently asked questions

Tagetik Extends Customer Value with SQL Server 2012

SalesLogix Advanced Analytics

Table of Contents Cicero, Inc. All rights protected and reserved.

SAP BusinessObjects Edge BI, Standard Package Preferred Business Intelligence Choice for Growing Companies

GET THE MOST FROM YOUR DATA WITH INTEGRATED BUSINESS INTELLIGENCE

A Comprehensive Review of Self-Service Data Visualization in MicroStrategy. Vijay Anand January 28, 2014

The Power of Predictive Analytics

Sage 200 Business Intelligence Datasheet

White Paper. Redefine Your Analytics Journey With Self-Service Data Discovery and Interactive Predictive Analytics

An Overview of SAP BW Powered by HANA. Al Weedman

The Right BI Tool for the Job in a non- SAP Applica9on Environment

Better Business Analytics with Powerful Business Intelligence Tools

How To Use Intelliplex

IBM Cognos TM1 Executive Viewer Fast self-service analytics

I N T E R S Y S T E M S W H I T E P A P E R INTERSYSTEMS CACHÉ AS AN ALTERNATIVE TO IN-MEMORY DATABASES. David Kaaret InterSystems Corporation

QLIKVIEW INTEGRATION TION WITH AMAZON REDSHIFT John Park Partner Engineering

How to Choose and Deploy a Transformative BI Solution: The Irish Life Story

PH Tech Transforms Its Healthcare Analytics with Analyzer From Strategy Companion Strategy Companion

A New Approach to Business Intelligence: Rapid-Fire BI

Business Intelligence & Product Analytics

Visualization Starter Pack from SAP Overview Enabling Self-Service Data Exploration and Visualization

Data Visualization Techniques

GROW YOUR ANALYTICS MATURITY

CitusDB Architecture for Real-Time Big Data

THE QLIKVIEW PRODUCT FAMILY

SYNTHESIO PRODUCT GUIDE THE EXPERIENCE RELEASE

SAP BusinessObjects Edge BI, Preferred Business Intelligence. SAP BusinessObjects Portfolio SAP Solutions for Small Businesses and Midsize Companies

Transcription:

In-Memory or Live Data: Which is Better? AUTHOR: Ellie Fields, Director Product Marketing, Tableau Software DATE: July 2011

The short answer is: both. Companies today are using both to deal with ever-larger volumes of data. For the business user, analyzing large data can be challenging simply because traditional tools are slow and cumbersome. Some companies are dealing with this by investing in fast, analytical databases that are distinct from their transactional systems. Others are turning to in-memory analytics, which lets users extract set of data and take advantage of the computing power on their local machine to speed up analytics and take query load off their transactional systems. This is especially important for SQL Server, which is often a critical part of the IT environment. So which approach is better? There are times when you need to work within the comfort of your own PC without touching the database. On the other hand, sometimes a live connection to your SQL database is exactly what you need. The most important thing is not whether you choose in-memory or live, but that you have the option to choose. Let s look at some scenarios where in-memory or live data might be preferable. In-Memory Data is Better When your database is too slow for interactive analytics Not all databases are as fast as we d like them to be. If you re working with live data and it s simply too slow for you to do interactive, speed-of-though analysis, then you may want to bring your data in memory on your local machine. The advantage of working interactively with your data is that you can follow your train of thought and explore new ideas without being constantly slowed down waiting for queries. When you need to take load off a transactional database Your database may be fast, it may be slow. But if it s the primary workhorse for your transactional systems, you may want to keep all non-transactional load off it. That includes analytics. Analytical queries can tax a transactional database and slow it down. So bring a set of that data in-memory to do fast analytics without compromising the speed of critical business systems. When you need to be offline Until the Internet comes to every part of the earth and sky, you re occasionally going to be offline. Get your work done even while not connected by bringing data in-memory so you can work with it right on your local machine. Just don t forget your power cord or battery you ll still need that! 1

A Live, Direct Data Connection is Better When you have a fast database You ve invested in making your SQL Server implementation blazing fast. Why should you have to move that data into another system to analyze it? You shouldn t. Leverage your database by connecting directly to it. Avoid data silos and ensure a single point of truth by pointing your analyses at a single, optimized database. You can give business people the power to ask and answer questions of massive data sets just by pointing to the source data. It s a simple, elegant and highly secure approach. When you need up-to-the minute data If things are changing so fast that you need to see them in real-time, you need a live connection to your data. All your operational dashboards can be hooked up directly to live data so you know when your plant is facing overutilization or when you re experiencing peak demand. And the Best Choice? Both, of Course. Even better is when you don t have to choose between in-memory and live connect. Instead of looking for a solution that supports one or the other, look for one that supports choice. You should be able to switch back and forth between in-memory and live connection as needed. Scenarios where this is useful: You want to use a sample of a massive data set to find trends and build your analysis. You bring a 5% sample of the data in-memory, explore it and create a set of views you want to share. Then you switch to a live connection so your reports are working directly against all the data. Publish your views, and now your colleagues can interact with your analysis and drill down to the part of the data most relevant to their work. You re flying to New York and want to do some analysis on the plane. You bring your entire data set, several million rows, into your local PC memory and work with it offline. When you get to New York, you reconnect to the live data again. You ve done your analysis offline and in-memory, but you are able to switch back to a live connection with a few clicks. 2

Neither in-memory nor live connect is always the right answer. If you re forced to choose, you ll lose something every time. So don t choose or rather, choose as you go. Bring your data in-memory, then connect live. Or bring recent data in-memory and work offline. Work the way that makes sense for you. The Tableau Data Engine Tableau s Data Engine provides the ability to do ad-hoc analysis in-memory of millions of rows of data in seconds. The Data Engine is a high-performing analytics database on your PC. It has the speed benefits of traditional in-memory solutions without the limitations of traditional solutions that your data must fit in memory. There s no custom scripting needed to use the Data Engine. And of course, you can choose to use the Data Engine, or don t you can always connect live to your data. Data Engine to live connection and back The Data Engine is designed to directly integrate with Tableau s existing live connection technology, allowing users to toggle with a single click between a direct connection to a database and querying an extract of that data loaded into the Data Engine (and back). 3

Architecture-aware design The core Data Engine structure is a column-based representation using compression that supports execution of queries without decompression. Leveraging novel approaches from computer graphics, algorithms were carefully designed to allow full utilization of modern processors. The Tableau Data Engine also has been built to take advantage of all the different kinds of memory on a PC, so you can avoid the common limitation that data sets must fit into your computer s RAM memory. This means you can work with larger data sets. True ad-hoc queries The Data Engine was designed with a query language and query optimizer designed to support typical on-the-fly business analytics. When working with data at the speed of thought, it is common to need to run complex queries such as very large multi-dimensional filters or complex co-occurrence queries. Existing databases generally perform poorly on these types of queries, but the Data Engine processes them instantly. Robin Bloor, Ph.D. and founder of technology research firm the Bloor Group, writes: Because Tableau can now do analytics so swiftly and gives people the choice to connect directly to fast databases or use Tableau s in-memory data engine, it has become much more powerful in respect of data exploration and data discovery. This leads to analytical insights that would most likely have been missed before. Flexible data model One of the key differences of the Tableau Data Engine compared to other in-memory solutions is that it can operate on the data directly as it s represented in the database on disc. So there s no required data modeling and no scripting that needs to be done to use the Data Engine. One of the things that s so powerful about the Data Engine is you can define, just as with any other relational database, new calculated columns or you might think of it as sort of ad hoc data modeling at anytime. Instance load and connection time The Data Engine is unique in that once your data is loaded into the Data Engine, it has very fast start-up time. It only needs to read in that portion of the data which your queries actually touch. You might have a lot of data in the database that s not relevant to a particular analysis, but you are never going to wait for the Tableau Data Engine to read that data. 4

Because Tableau can now do analytics so swiftly and gives people the choice to connect directly to fast databases or use Tableau s in-memory data engine, it has become much more powerful in respect of data exploration and data discovery.this leads to analytical insights that would most likely have been missed before. The Customer Perspective National Motor Club uses Tableau to understand membership behavior, reduce costs and do a variety of other analyses. Matt Krzysiak, COO of National Motor Club, said, Our largest data set has about 70 million rows. Generally speaking we re working with data sets with hundreds of thousands or just a few million. We use SQL server as the back end database throughout our organization, and we lay Tableau on top of that. It seems to work very well for us. We used to do analysis the old fashioned way. We would ask the IT department for information, and they would give us results, usually through customer queries. With our previous tools trying to get an answer was a very iterative process that took lots of time. We would ask IT or an analyst for information, wait for the results, and look at the results. What used to take us hours, or days, or even weeks, now in Tableau with drag-and-drop features we can just rip through that stuff very quickly. - Robin Bloor, Ph.D and founder of The Bloor Group Recommendations Because of the variety of ways people need to work with data, we recommend that when choosing a business intelligence solution: Ensure it provides the option to take data in-memory to speed up your analytics. But don t limit yourself to a solution that requires you to bring all data in-memory before you can analyze it. Evaluate how easy it is to switch back and forth between in-memory and live connect: if you need to do custom scripting, it may take away most of the flexibility you got from your choice. Examine carefully the data size limitations of your in-memory solution. Choose an in-memory solution that lets you deal with very large data sets. 1 Analytics at the Speed of Thought, Robin Bloor, Ph.D, July 2011. 5