Hydrogen Bonds The electrostatic nature of hydrogen bonds



Similar documents
Non-Covalent Bonds (Weak Bond)

Section Activity #1: Fill out the following table for biology s most common elements assuming that each atom is neutrally charged.

Amino Acids. Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain. Alpha Carbon. Carboxyl. Group.

Role of Hydrogen Bonding on Protein Secondary Structure Introduction

Combinatorial Biochemistry and Phage Display

1 Peptide bond rotation

The strength of the interaction

H 2O gas: molecules are very far apart

Bonds. Bond Length. Forces that hold groups of atoms together and make them function as a unit. Bond Energy. Chapter 8. Bonding: General Concepts

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing.

1 The water molecule and hydrogen bonds in water

Myoglobin and Hemoglobin

Chapter 2 Polar Covalent Bonds: Acids and Bases

This class deals with the fundamental structural features of proteins, which one can understand from the structure of amino acids, and how they are

The peptide bond Peptides and proteins are linear polymers of amino acids. The amino acids are

INTERMOLECULAR FORCES

The peptide bond is rigid and planar

Built from 20 kinds of amino acids

Peptide Bonds: Structure

Chapter 13 - LIQUIDS AND SOLIDS

Use the Force! Noncovalent Molecular Forces

18.2 Protein Structure and Function: An Overview

CHAPTER 6 Chemical Bonding

Chemical Bonds and Groups - Part 1

Type of Chemical Bonds

Paper: 6 Chemistry University I Chemistry: Models Page: 2 of Which of the following weak acids would make the best buffer at ph = 5.0?

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 4 ENZYMATIC CATALYSIS

INTRODUCTION TO PROTEIN STRUCTURE

PROTEINS THE PEPTIDE BOND. The peptide bond, shown above enclosed in the blue curves, generates the basic structural unit for proteins.

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6, , , ,

(c) How would your answers to problem (a) change if the molecular weight of the protein was 100,000 Dalton?

Recap. Lecture 2. Protein conformation. Proteins. 8 types of protein function 10/21/10. Proteins.. > 50% dry weight of a cell

Chapter 2 Polar Covalent Bonds; Acids and Bases

IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon. V. Polypeptides and Proteins

VAPORIZATION IN MORE DETAIL. Energy needed to escape into gas phase GAS LIQUID. Kinetic energy. Average kinetic energy

Laboratory 11: Molecular Compounds and Lewis Structures

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

Peptide bonds: resonance structure. Properties of proteins: Peptide bonds and side chains. Dihedral angles. Peptide bond. Protein physics, Lecture 5

Peptide Bond Amino acids are linked together by peptide bonds to form polypepetide chain.

Chapter 10 Molecular Geometry and Chemical Bonding Theory

Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK

AP* Bonding & Molecular Structure Free Response Questions page 1

Polar Covalent Bonds and Hydrogen Bonds

Biological Molecules

Problem Set 1 KEY

Self Assessment_Ochem I

Name: Class: Date: 3) The bond angles marked a, b, and c in the molecule below are about,, and, respectively.

Bonding & Molecular Shape Ron Robertson

Acids and Bases: Molecular Structure and Acidity

4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided.

Chapter 8 Concepts of Chemical Bonding

Structure of proteins

Introduction, Noncovalent Bonds, and Properties of Water

EXPERIMENT 9 Dot Structures and Geometries of Molecules

ATOMS AND BONDS. Bonds

CHAPTER 10 THE SHAPES OF MOLECULES

5. Structure, Geometry, and Polarity of Molecules


Steffen Lindert, René Staritzbichler, Nils Wötzel, Mert Karakaş, Phoebe L. Stewart, and Jens Meiler

AP BIOLOGY 2008 SCORING GUIDELINES

Molecular Cell Biology

Chapter 4 Lecture Notes

KINETIC THEORY OF MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras

Protein Dynamics Intro

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n)

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment.

Helices From Readily in Biological Structures

A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys

Structure and Dynamics of Hydrogen-Bonded Systems October Hydrogen Bonds and Liquid Water

: : Solutions to Additional Bonding Problems

CHAPTER 10 THE SHAPES OF MOLECULES

Exercises Topic 2: Molecules

Chapter 2 The Chemical Context of Life

Chapter 9 - Covalent Bonding: Orbitals

2. Atoms with very similar electronegativity values are expected to form

Candidate Style Answer

Carbohydrates, proteins and lipids

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br.

CSC 2427: Algorithms for Molecular Biology Spring Lecture 16 March 10

Nafith Abu Tarboush DDS, MSc, PhD

Chapter 2 Polar Covalent Bond Covalent bond in which the electron pairs are not shared equally.

Disulfide Bonds at the Hair Salon

Chapter 2. Atomic Structure and Interatomic Bonding

6.5 Periodic Variations in Element Properties

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges.

In addition to being shorter than a single bond, the double bonds in ethylene don t twist the way single bonds do. In other words, the other atoms

NMR Nuclear Magnetic Resonance

Lecture 19: Proteins, Primary Struture

Section 3: Crystal Binding

CHEMISTRY BONDING REVIEW

Brønsted-Lowry Acids and Bases

A REVIEW OF GENERAL CHEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES

Why? Intermolecular Forces. Intermolecular Forces. Chapter 12 IM Forces and Liquids. Covalent Bonding Forces for Comparison of Magnitude

Structures of Proteins. Primary structure - amino acid sequence

Chemical Bonds. Chemical Bonds. The Nature of Molecules. Energy and Metabolism < < Covalent bonds form when atoms share 2 or more valence electrons.

Chapter 1 Structure and Bonding. Modified by Dr. Daniela Radu

Bonding in Elements and Compounds. Covalent

Chapter 2: The Chemical Context of Life

Transcription:

Hydrogen Bonds Hydrogen bonds have played an incredibly important role in the history of structural biology. Both the structure of DNA and of protein a-helices and b-sheets were predicted based largely on the hydrogen bonds these structures form. So understanding hydrogen bonds is clearly important, but much like the hydrophobic effect, hydrogen bonds are surprisingly complex and are not completely understood in every last detail. So take the things I will tell you with a grain of salt. The electrostatic nature of hydrogen bonds Hydrogen bonds are formed when an electronegative atom approaches a hydrogen atom bound to another electro-negative atom. The most common electro negative atoms in biochemical systems are oxygen (3.44) and nitrogen (3.04) while carbon (2.55) and hydrogen (2.22) are relatively electropositive (the electronegativity values are given on the Pauling scale, and don t have a direct physical meaning). A gradient in electronegativity along a covalent bond results in the more electronegative ions pulling shared electrons towards themselves resulting in an electric dipole along the bond. One obvious result of this is that the two dipoles will attract one another in the type of simple electrostatic dipole-dipole interaction we learned about earlier in class. As you know this interaction falls off with 1/r 3 so the interaction will only matter between nearest neighbors. This dipole-dipole interaction provides much of the source for a hydrogen bond s energy. Lets see how much energy this type of interaction is worth. For example in a helix the dipole along the peptide bond is roughly +0.4-0.4. With interatomic distances on the order of 1.5 Angstrom and a dielectric constant of 6 we get approximately 2kcal/mol

Hydrogen bonds have a covalent component At the same time hydrogen bonds tend to form with a geometry in which the hydrogen bond donor, the hydrogen and the hydrogen-bond acceptor are arranged in a straight line. In electrostatic terms this arrangement is clearly less favorable than an arrangement in which the two dipoles are folded over on top of one another to bring both positive charge centers directly into contact with the two negative charge centers. This is clearly not what is happening in the case of hydrogen bonds, so there has to be another component to hydrogen bonding beyond pure electrostatics. This additional contribution is covalent in nature. What is the evidence for this covalent nature? First, neutron scattering data shows that the distance between the nuclei of the hydrogen bond acceptor and the hydrogen itself can be as short as 1.8-1.9 Å, well below the sum of the atomic radii (e.g. 1.2Å for hydrogen and ~1.5Å for oxygen and nitrogen). You know that the Lennard-Jones potential rises with 1/r 12 if we get closer than the Van der Vaals radii. The only way these atoms can get closer to one another is if they are involved in a covalent bond. Secondly, Quantum mechanical calculations show that the free electron pairs found on nitrogen and oxygen are delocalized around the hydrogen nucleus similar to the way electrons are shared by bonded atoms in a normal covalent bond. This covalent component of the interaction is strongly orientation dependent, i.e. in order to get this covalent interaction the orbital with the free electron pairs of the hydrogen bond acceptor have to be aligned quite well just like the geometry of covalent bonding is rather restrictive. Below is a graph showing the results of a quantum mechanical simulation of the bonding strength between two water molecules as a function of the angle between the two water molecules. The interaction energy is clearly favorable if the free electron pairs of the acceptor molecule are pointing towards the donor but become equally unfavorable otherwise. Factors governing hydrogen bonding strength. So what does our basic physical picture of the hydrogen bond tell us about the relative strength of different hydrogen bonds? From the equation for the dipole-dipole interaction we see that the interaction energy depends on the square of the partial charges. So if we increase the polarization between the atoms involved in the hydrogen bond, the hydrogen bond should become much stronger. Fluorine is the most electronegative element (3.98 on the Pauling scale) and because of this fluorine forms some of the strongest hydrogen

bonds. For example, the hydrogen bond between HF and a fluoride ion (FH F-) is calculated to be 40 kcal/mol in the gas phase. In proteins some of the strongest hydrogen bonds are salt bridges that involve charged atoms. Salt bridges typically contribute energies of 3-4 kcal/mol and their contribution can be as high as 8 kcal/mol if the salt bridges are completely buried in a protein interior. The reason for the increase in the interaction strength when the salt bridge is buried inside a protein s interior should be clear to you; electrostatic interactions are inversely proportional to the dielectric constant of the surrounding medium. Another way in which we can boost the strength of a hydrogen bond is by using the polarizing effect of one hydrogen bond to increase the strength of the next. This effect has been studied extensively in water. Formation of the hydrogen bond results in shift of electron density, indicated by red arrows, so that the charge on the hydrogen-bond donor s oxygen atom increases and the charge on the acceptor s hydrogen atom decreases making both of them more attractive hydrogen bonding partners for the next water molecule. The result of this effect is the energy of adding successive water molecules to an existing cluster of hydrogen bonded water molecules increases with the size of the cluster.

Another example of this mechanism of hydrogen bonds that stabilize additional hydrogen bonds are the mutually stabilizing hydrogen bonds in DNA. Both AT and GC basepairs form one set of such hydrogen bonds. Forming one hydrogen bond polarizes the atoms involved in the second hydrogen bond, making that bond stronger, which in turn further polarizes and stabilizes the first hydrogen bond. One final example of this mechanism of hydrogen bond stabilization is the formation of helices. The alignment of all the peptide bond dipoles results in a net dipole of the helix, favoring the incorporation of additional residues into the helix. Overall contribution to protein stability Hydrogen bonds in which everything is just perfect can be incredibly strong So if we take a peptide made out of amino acids that favor helix formation (leucine, glu, ala etc. what do you think is the conformation they will adopt in water. Of course an alpha helix you might say, but surprisingly they don t! Virtually none of the random peptides will adopt alpha helices, much less beta sheets. The stability of these secondary structures is very close to zero (at best) and typically formation of secondary structure is disfavored. There is of course an entropic component, but even if we take that component out. (We can determine the enthalpic component for the formation of hydrogen bonds in water from heat capacity measurements). This enthalpy of hydrogen bond formation is still very close to zero. What could be the reason? Right our solvent is water, and water is an extremely good acceptor and donator of hydrogen bonds. So if we have a peptide that is unfolded in solution we can make a lot of geometrically perfect hydrogen bonds with a very polarized molecule, water. So the reason that hydrogen bonds do not have a net stabilizing effect on protein structure lies in the fact that in order to form peptide-peptide hydrogen bonds we need to disrupt another set of very favorable hydrogen bonds, those the peptide can make with water. The reason we still see so many hydrogen bonds in protein structures is that we need to bury the backbone of our protein in order to form a hydrophobic core. Placing the dipoles that form the hydrogen bonds into this hydrophobic environment is unfavorable, but we do not have a choice. Once in the hydrophobic core, the energy of interaction between the different hydrogen bonding partners increases (due to the low dielectric constant) so the interactions become quite strong making the protein quite rigid. As a matter of fact it energetically very unfavorable not to form a hydrogen bond.

So the overall effect of hydrogen bonds in proteins is that of providing structural rigidity, not stability. The ~2 kcal we loose if we do not form a hydrogen bond means that the probability of seeing a hydrogen bond broken is p not formed p formed -2kcal / mol = e RT = 0.035 In other words we would expect that in a 30 kd protein which has around 200 residues buried in the hydrophobic core only approximately 7 (i.e. 3.5%) would not form hydrogen bonds. This is pretty close to what is observed in a survey of the protein structural database. Non-satisfied hydrogen bonds in protein interior are very rare and if they are observed, they often are involved in substrate binding or play some catalytic role. Summary Rules of hydrogen bonding RULE 1: The greater the charges, the stronger the hydrogen bond. RULE 2: The shorter the distance the stronger the hydrogen bond. Hydrogen bond length is traditionally measured by the distance between the donor atom and the acceptor atom. By definition we say a hydrogen bond occurs if the distance between the donor and the acceptor atoms is shorter than the sum of the atomic radius of the acceptor atom (~1.5Å), the atomic radius of the hydrogen (1.2Å) and bond length between the donor atom and the hydrogen (~1Å). So the longest hydrogen bonds are ~3.5 Å. Anything longer would be considered a pure dipole-dipole interaction. Good hydrogen bonds have a distance of ~2.8 Å and some ultra-short hydrogen bonds have been reported with donor to acceptor distances of 2Å. RULE 3: Bonding angles matter, the more ideal the bonding angle, the stronger the hydrogen bond. This is an indication that hydrogen bonds have a partial covalent character. Think about where the lone pairs sit. The bond is ideal if the donor atom, the hydrogen the lone pair and the acceptor atom all lie on a straight line. Rule 4: Linear Networks of hydrogen bonds increase the Dipole moment and lead to stronger hydrogen bonds. The dipoles in hydrogen bonds are induced dipoles. Formation of a hydrogen bond further polarized the bonds RULE 5: Hydrogen bonds contribute little to overall protein stability, but they align molecular groups in a specific orientation giving proteins a defined structure. RULE6: Unsatisfied Hydrogen bonds in the protein interior are quite rare.