Understanding European versus U.S. temperature code ratings for solenoidoperated. A White Paper From ASCO



Similar documents
Breakthrough Solenoid Valve Technology for Upstream Oil and Gas Heating Equipment

Understanding the new lead-free water system regulations and choosing valves to comply

Effective Compliance. Selecting Solenoid Valves for Safety Systems. A White Paper From ASCO Valve, Inc. by David Park and George Wahlers

Hazardous Area Classifications and Protections

Hazardous Area Classifications and Protections

Making sense of Intrinsic Safety and Intrinsically Safe Tools

Pneumatic Proportional Valve Selection Made Simple

Integrated Automation Solutions

Explosion Protected White Paper Series #1: Imaging Challenges in Explosive Environments

Ex q Powder Filling. This is a technique primarily used for oil filled switch-gear. The spark is formed under oil and venting is controlled.

Fluid Automation Solutions

CONSULTING Training Courses

Rosemount 5300 and 5400 Series Terminal Compartment Spare Part Instruction

HAZARDOUS AREA TECHNICAL GUIDE

Basics of Explosion Protection

Isolating Barriers for our sensors A5S1 in Ex-areas Series D461

Customer Support. Superior Service Solutions for Your Laser and Laser Accessories. Superior Reliability & Performance


Electric motors can pose a serious threat when they are

Plug and Socket Devices CES 63 A Series 8579

INTERNATIONAL STANDARD

EX-TECH SAS CP/PB 150 EXPLOSIONPROOF MANUAL CALL POINT/ PUSH BOTTON TECHNICAL MANUAL

Instructions for Safe Use

Terminal Box. Specifications TNCN

Welcome to UL Protecting People, Products and Places

SULFUR RECOVERY UNIT. Thermal Oxidizer

Plug and Socket Devices SolConeX 16 A Series 8570

E-Seminar. Financial Management Internet Business Solution Seminar

GREATER THAN THE SUM OF OUR PARTS. Aftermarket Products, Services, and Training

Basic Fundamentals Of Safety Instrumented Systems

Today's world of increasing

NI Channel, 60 V, High-Speed, Sourcing Digital Output Module

Achieving Functional Safety with Global Resources and Market Reach

Hazardous Locations Training

Micro Motion 3098 Gas Specific Gravity Meter

distributing & controlling system solutions

Micro Motion ELITE CMFS Series Meter

How To Get A New Phone System For Your Business

BRAZILIAN CERTIFICATION SYSTEM

Cisco Blended Agent: Bringing Call Blending Capability to Your Enterprise

CONSUMERS' ACTIVITIES WITH MOBILE PHONES IN STORES

Overview of Standards for CO Detection Products

The face of consistent global performance

Reducing Cycle Times and Work in Process Management Costs: Aerospace and Defense Industry

Design, testing, certification, installation & maintenance

Project Management Salary Survey Seventh Edition Project Management Institute Newtown Square, Pennsylvania, USA

Customers have noticed that we are very responsive, meet our service level agreements, and are more cost conscious. MIKE ROBINSON

Valves for Safety Applications

How To Make A Pressure Relief Valve

2.12. page Products for Explosion hazardous Environment

NETCOM DRIVING DOWN THE COST OF BACKHAUL WITH AMDOCS CRAMER

IIB+H2 Flameproof Ex d enclosures EJB Aluminium & Stainless steel

Class/Division Hazardous Location

Lawson Business Intelligence. Solutions for Healthcare

Process of certification against the requirements of Annex C of ARP Roelof Viljoen Mining And Surface Certification CC

PLASTICS SERVICES. Safety You Can Rely On

Fluid Automation: The Unsung Contributor to Plant Economic Performance. A Management Brief From ASCO Numatics

10 Reasons to Choose Image-based ID Readers. White Paper

Capabilities Overview

E-Seminar. E-Commerce Internet Business Solution Seminar

Cisco 2-Port OC-3/STM-1 Packet-over-SONET Port Adapter

Global Effective Tax Rates

Thermocoax Isopad Heating Solutions for Hazardous Areas

Oilfield Services Measurement Solutions

White Paper. 10 Reasons to Choose Image-based Barcode Readers

PROCESS AUTOMATION REMOTE I/O SYSTEMS RPI REMOTE PROCESS INTERFACE IN THE SAFE AREA OR IN ZONE 2

Barcode Labeling in the Lab Closing the Loop of Patient Safety

THE COMPLETE SOLUTION for COFFEE MACHINES SOLENOID VALVES & PUMPS

Your gateway to international certification

Accuracy counts! SENSORS WITH ANALOG OUTPUT

DSV Air & Sea, Inc. Aerospace Sector. DSV Air & Sea, Inc. Aerospace

Compact pressure switch Flameproof enclosure Ex d Model PCA

Design of intrinsically safe systems

Get the benefits of Norgren s unique range of Online services

Zone Hazardous Location

WELCOME! Introduction. Celebrating. &PrimeRevenue. PrimeRevenue Hong Kong PrimeRevenue, Inc.

Terminal Boxes Series 8146

How To Build A Powerline Box Powerline Generator

Providing a complete Ethernet anywhere solution. IS Ethernet Solutions

Explosion proof enclosures

Whitepaper Modular Integration of Process Equipment Packages for Oil and Gas Facilities

On-Site Risk Management Audit Checklist for Program Level 3 Process

AMDOCS BILLING SYSTEM TRANSFORMATION DELIVERS NEW TRIPLE-PLAY SERVICES TO KAZAKHTELCOM CUSTOMERS

Cisco IOS Public-Key Infrastructure: Deployment Benefits and Features

Amdocs Field Service

OASIS PRODUCT GUIDE. Data Centre Cooling INDIRECT EVAPORATIVE COOLER. Data Centres. Telecoms. EPX technology. Class leading performance

ATEX Installation Instructions for Micro Motion ELITE CMFS Sensors

NetFlow Feature Acceleration

AMDOCS OSS HELPS OPTIMUS DELIVER SERVICE EXCELLENCE OVER NEXT GENERATION NETWORK AND FIBER-TO-THE-HOME INFRASTRUCTURE

Exceptional Accuracy and Durability for Tough Industrial Environments INDUSTRIAL FLOOR SCALES. VERTEX Industrial Floor Scales Heavy-Duty Design

RACK AND CONTAINER TRACKING SOLUTION

How To Be Successful In The Czech Republic

Intermec Devices for Hazardous Locations Selection Guide

Fisher FIELDVUE DVC6200 SIS Digital Valve Controller for Safety Instrumented Systems (SIS)

Reliable system operation: Explosion-proof AC asynchronous motors of category 2 (94/9/EC) in combination with frequency inverters from SEW

[NUGENESIS SAMPLE MANAGEMENT ] AMPLE IMPROVING LAB EFFICIENCY, ANAGEMENT ACCELERATING BUSINESS DECISIONS. bigstock.com $69

OCTOBER Russell-Parametric Cross-Sectional Volatility (CrossVol ) Indexes Construction and Methodology

SOLUTIONS FOR POWER TRANSMISSION. Kop-Flex Asset Management Program - AMP

The value of accredited certification

CISCO PIX SECURITY APPLIANCE LICENSING

Transcription:

Understanding European versus U.S. temperature code ratings for solenoidoperated valves by Manny Arceo A White Paper From ASCO 4

Introduction Solenoid valves are vital components of many process automation systems. Users must depend on these valves to operate flawlessly in hazardous or explosive environments; to comply with safety regulations; and to stay up and running for continuous, safe operation of the process and the plant. Understanding the differences between valves is critical in specifying and selecting the correct models. That s a useful skill for end-user application and process engineers, as well as for design engineers employed by original equipment manufacturers (OEMs). However, such understanding can be hard to come by. Particularly difficult for many buyers to work with: differences in valves temperature ratings. These T-code ratings are assigned by approval agencies in the U.S., Europe, and other regions worldwide as industrial globalization increases. This paper examines and explains differences among the world s major temperature ratings for solenoid valves. (Note that the ratings may apply to some other electrical devices as well.) It should serve as a concise guide to understanding and applying these ratings in order to correctly specify these components. The advantages of global approvals As more companies conduct their operations on a global scale, products that have received global ratings and approvals by appropriate standards bodies naturally become more popular. For solenoid valve purchasers, global approvals offer multiple advantages: Due to rationalization of parts, a single design/setup can be used in multiple regions. This simplifies end users supply chains. Users can specify one valve; track one SKU number; and be assured of consistent quality. 2

Companies with operations in multiple locations can simplify ordering and stocking of their spare parts and rebuild kits. Users can streamline training, operation and especially maintenance. All the above can help to cut costs and reduce inventory efforts. From the users point of view, the ideal approvals regimen would feature one global set of standards emanating from one agency or at least one set of common standards across multiple agencies. This ideal may be attained someday, but not soon. For the foreseeable future, users will be required to deal with multiple agencies issuing multiple ratings and approvals. Fortunately, some suppliers make it a point to get multiple approvals for the same valve. For example, ASCO valves with EV solenoids recently added ATEX and IECEx approvals to their existing UL- and CSA-approved products. A valve supplier that obtains multiple approvals certainly aids its users in their global stocking efforts. However, companies specifying and using these valves must deal with multiple temperature codes (T-codes) on each product. Users must interpret these ratings correctly to make the right specifying decisions. The approvals world For solenoid valve purchasers around the globe, key approval agencies with international profiles are UL in the United States, CSA in Canada, and ATEX and IECEx in Europe. Local agencies such as NEPSI or INMETRO typically accept test reports from these four major agencies and use the same standards, often under official cross-certification agreements. (See map next page.) Fortunately, as the map makes clear, local approvals almost invariably follow either U.S. or European methods. For this reason, knowledge of temperature ratings and approvals systems accepted in the U.S. and Europe will serve users well in making almost any valve specifying/purchasing decision. 3

CUTR ATEX, IECEx CSA UL, FM TIIS KOSHA NEPSI INMETRO Europe U.S. U.S. and Europe SANS ANZEx ANZEx INMETRO CSA NEPSI ATEX IECEx KOSHA CUTR TIIS SANS UL FM Australian Program for the Certification of Equipment for Explosive Atmospheres National Institute of Metrology, Quality and Technology Canadian Standards Association National Supervision and Inspection Center for Explosion Protection and Safety of Instrumentation (Devices for Use in) Explosive Atmospheres International Electrotechnical Commission System for Certification to Standards Relating to Equipment for Use in Explosive Atmospheres The Korea Occupational Safety and Health Agency Customs Union Technical Regulations Japanese Test/Certification Body South African National Standards Underwriters Laboratories Inc. Factory Mutual 4

Approvals from U.S. agencies In the U.S., approval types are based on area classification. These vary depending on the type of hazardous environment in which a given device can be used. U.S. systems focus on two basic explosion-proof area classifications: Class I, Division 1: where flammable gases, vapors, or liquids can exist under normal operating conditions Class I, Division 2: areas adjacent to Class I, Division 1 locations, where flammable gases, vapors, or liquids can be present occasionally Approvals from European agencies In contrast to U.S. area classifications, European systems group their approval types based on zones. Zone 0 and 1 are similar to the U.S. Class I, Division I certification, while Zone 2 is similar to Class I, Division 2. Each zone has a different method of protection for a given device flameproof enclosure, encapsulate, etc. Users may encounter four popular types of protection methods for valve products. These methods are designated by the protection methods d, m, e, and i: d A component that can ignite an environment containing explosive gas is placed in a metallic enclosure. If the component causes ignition of the explosive gas inside the box, the enclosure will be strong enough to contain the explosion without letting it propagate to the outside environment. This method is considered to offer the best protection in an explosion-proof environment. m A component that can cause ignition (via arcing or sparking) is encapsulated by a compound that prevents the explosive environment from being ignited. Thus potentially explosive gases and component arcing/sparking sources are isolated from one another. e Spacing between electrical parts is strictly controlled, so that a component cannot produce arcs or sparks that might cause ignition in an explosive environment. i Power levels of electrical components are so low that, even under fault conditions, there is not enough energy to produce ignition. An intrinsically safe barrier is required, but a full enclosure is not needed. This is also known as the intrinsically safe method. Users should develop a basic understanding of these codes to apply them correctly in specifying and/or purchasing solenoid valves. 5

Note: IECEx vs. ATEX Temperature code ratings and other standards from Europe may refer to either or both IECEx approvals and ATEX approvals. IECEx is an industry group standard. It s the system used by the International Electrotechnical Commission (IEC) for certification to standards relating to equipment for use in explosive atmospheres. ATEX is a government standard. It s derived from European Union directives that regulate what equipment and work environments are permissible in an explosive atmosphere. How are these two different approvals applied to evaluating electrical equipment for purchase or specification? For practical purposes, IECEx and ATEX standards can be understood as essentially identical. T-codes: defined A T-code, or temperature code, states the maximum surface temperature that a component can reach in given conditions. (For the U.S., these are abnormal operating conditions and nominal voltage. For Europe, they are normal operating conditions and 10% over nominal voltage.) Basically, a valve s T-code offers temperature information that s critical to the safe operation of that valve. The process industries (including oil and gas, chemicals, power generation, and others) possess many hazardous locations where an explosion could cause extreme damage, as well as personal injury or loss of life. For example, oil refineries may carry flammable gases or vapors in ambient air: a textbook case of a hazardous industrial environment. For safety in such an environment, it s of paramount importance to determine if any component can become hot enough to ignite those gases or vapors. The minimum temperature at which a gas or vapor will ignite is known as its auto-ignition temperature (AIT). All flammable chemicals have a characteristic AIT. For ratings purposes, the surface temperature of a product such as a solenoid valve must not exceed 80% of the AIT for a specific gas or vapor. So T-code ratings are assigned to products used in hazardous environments. Their purpose is to help users determine if a given solenoid valve or other electrical device can be applied in a given hazardous application/location without reaching local AIT and thus causing gases or vapors present in that environment to ignite. 6

T-codes: compared Valves sourced from both the U.S. and Europe use similar-looking T-codes to indicate safe upper thermal limits. However, some differences can be found. Maximum temperature limits are the same for both areas except that in the U.S., the T-codes T2, T3, and T4 are further subdivided (see table below). Note also that in the U.S., codes are based on ambient temperature plus the temperature rise of the valve surface. (Here, temperature rise indicates the average increase in surface temperature above ambient temperature when the valve is operating.) By contrast, in Europe, codes are based on ambient temperature plus the temperature rise of the valve surface plus a safety margin of 5 C. Temperature Code Europe Temperature Code U.S. Maximum Surface Temperature C ( F) T1 T1 450 (842 ) T2 T2 300 (572 ) T2A 280 (536 ) T2B 260 (500 ) T2C 230 (446 ) T2D 215 (415 ) T3 T3 200 (392 ) T3A 180 (356 ) T3B 165 (329 ) T3C 160 (320 ) T4 T4 135 (275 ) T4A 120 (248 ) T5 T5 100 (212 ) T6 T6 85 (185 ) Again, certain U.S. T-codes are subdivided, with different temperatures for each. For instance, the European method has only one T2 code, at 300 C (572 F). By contrast, notice that the U.S. method lists ratings from T2 at that temperature through T2A at 280 C (536 F) down to T2D at 215 C (415 F). To avoid confusion in these or similar circumstances, some product labels state an actual temperature, instead of/in addition to a T-code. So a label may read not just T6, but also 85C or T85 (meaning maximum surface temp of 85 C) for greatest clarity. 7

In both methodologies above, ambient temperatures are significant factors in T-code calculations. Since the European method adds that extra 5 C, some valve manufacturers label a valve with one maximum ambient temperature rating based on U.S. approvals, and another based on European approvals. Manufacturers go to the trouble of seeking these multiple approvals to keep the same T-code and thus prevent user confusion. Example: a product label might list a maximum ambient rating of 80 C (T5) under U.S.-type approvals. However, to keep the consistent T5 rating, the same product might also bear European-type approvals where the maximum ambient rating might be listed as 74 C. Tip: check the maximum ambient temperature rating for the worst case your installation might encounter. If characteristics are otherwise similar, then select your valve according to the lower maximum ambient temperature listed on its label. T-codes: beyond the label Note that markings on a label may have multiple T-codes to try to cover every real-world contingency for the entire range of industrial environments (see Figure 1). Example: for certain applications in some locations, the maximum ambient temperature of the facility may actually be lower than the rated maximum ambient temperature of the solenoid valve. Since U.S. T-codes, for example, are based on temperature rise plus maximum ambient temperature, the valve would actually outperform its nominal T-code rating. Suppose a valve or other product is rated for T4A (120 C), with a maximum ambient rating of 95 C. If in reality the facility reaches a maximum ambient temperature of only 60 C, the product might actually deserve a T6 (85 C) rating in that situation. If conditions at the facility where the valve will be used might qualify as this kind of special circumstance, consult the valve manufacturer before specifying a final purchase. Figure 1: labels may have multiple T-codes to cover every realworld contingency. 8

Conclusion At first glance, the cryptic temperature codes printed on valve labels might seem confusing. However, using the simple explanations and pointers above, the buyer or specifier can easily select the correct ratings for a given valve and its intended application and location. Matching the right solenoid valve to the right environment helps ensure safe, efficient performance. Users can also help ensure compliance and reliable performance by making sure valves are properly tested. Query a prospective supplier about the development and testing regimen a given valve has undergone: Is it extensive? Does it test all production units, or only a few? Does it subject tested units to extreme conditions? Do tested conditions match those found on your sites? Takeaways Where operating globally, seek solenoid valves with multiple T-code approvals Local agencies usually accept approvals from the top four agencies in North America and Europe (UL, CSA, ATEX, IECEx) If U.S. and Euro T-code ratings differ, select the lower rating that meets your site s maximum ambient temperature For exceptionally low ambient temperatures and other special circumstances, consult your valve manufacturer 9

Global Contacts www.ascovalve.com ASCO Headquarters (U.S.A.) Tel: 800-972-ASCO (2726) or +1 973-966-2000 info-valve@asco.com Global Headquarters Regional Headquarters Manufacturing & Key Offices Other Worldwide Locations Australia (61) 2-9-451-7077 Italy (39) 02-356931 Brazil (55) 11-4208-1700 Japan (81) 798-65-6361 Canada (1) 519-758-2700 Mexico (52) 55-5809-5640 China (86) 21-3395-0000 Netherlands (31) 33-277-7911 Czech Republic (420) 235-090-061 Singapore (65) 6556-1100 Dubai - UAE (971) 4-811-8200 South Korea (82) 2-3483-1570 France (33) 1-47-14-32-00 Spain (34) 942-87-6100 Germany (49) 7237-9960 Turkey (90) 216-577-3107 India (91) 44-39197300 United Kingdom (44) 1695-713600 4 The ASCO logo is a trademark of Automatic Switch Co. The Emerson logo is a trademark and service mark of Emerson Electric Co. All other trademarks are the properties of their respective owners. 2015 ASCO Valve, Inc. All rights reserved. Printed in the U.S.A. 1431043