Learning for Life and Work in a Complex World



Similar documents
Liron Pantanowitz, MD

Never Stand Stil Faculties of Science and Medicine

Education about and for S u s ta i n a b i l i t y i n A u s t r a l i a n B u s i n e s s

The Student Experience

VIRTUAL UNIVERSITIES FUTURE IMPLICATIONS FOR

Chapter 1 Introduction to Computer-Aided Learning

Virtual microscopy in pathology education

MINE4610. Mine Asset Management & Services. Course Outline

Benchmarking across universities: A framework for LMS analysis

School of Medicine, Dentistry and Biomedical Sciences

Information Technology in teaching student s perspective

MA EDUCATION MA Education: Childhood and Youth Studies MA Education: Higher Education MA Education: Leadership and Management MA Education: TESOL

Using a blogging tool to assess online discussions: an integrated assessment approach

Tourism, Travel and Events. Consultation Feedback Report

Tele9756 Advanced Networking Course Outline 2014

How to Excel in Phase

Case Based Scenarios: Evidence Based Teaching Learning Strategy in Nursing Education Pharmacology Course

Connections in Higher Education

Communicating with first year medical students to improve Communication Skills teaching in The University of the West Indies

Information Model Requirements of Post-Coordinated SNOMED CT Expressions for Structured Pathology Reports

Developing online discussion forums as student centred peer e-learning environments

Assessing the Impact of a Tablet-PC-based Classroom Interaction System

Effective Teaching Approaches in Diploma of Business Course

English (ESL) Course. Stage 6 Year 12. Unit: Module A Dialogue Strictly Ballroom UNIT OVERVIEW

INTENSIVE TEACHING IN LAW SUBJECTS

Flipped classroom in first year management accounting unit a case study

Course outline. Code: EDU101 Title: Human Development and Learning

INTRODUCTION. Chapter One

Creating socially inclusive online learning environments in higher education

Implementing Timely Interventions to Improve Students Learning Experience*

INTERACT INTEGRATE IMPACT

Information for New Scheme Teachers

The First Page is the Selection Criteria List. The pages that follow is an example of how to address the criteria.

Project management skills for engineers: industry perceptions and implications for engineering project management course

PROGRAMMME SPECIFICATION FOR MA in LEADERSHIP AND MANAGEMENT (HEALTH AND SOCIAL CARE SERVICES)

What do third-year Speech Pathology students think of student-centred learning?

THE EFFECTIVENESS OF USING LEARNING MANAGEMENT SYSTEMS AND COLLABORATIVE TOOLS IN WEB-BASED TEACHING OF PROGRAMMING LANGUAGES

How To Get A Phd At The University Of Sydney

IBCSG Tissue Bank Policy

The Concept of Project Success What 150 Australian project managers think D Baccarini 1, A Collins 2

The design of the AFTRS Curriculum is based on the following principles:

FULLY AUTOMATED PARALLEL DUAL STAINING DETECTION SYSTEM. ChromoPlex 1 Dual Detection for BOND

INFS5991 BUSINESS INTELLIGENCE METHODS

LIMS and workflow integration as impulse to establish Virtual Microscopy to daily clinical use

Evaluating Teaching Innovation

Nottingham Trent University Course Specification

JOB DESCRIPTION. 1. JOB TITLE: Senior Lecturer in Business and Management. 4. DEPARTMENT: Business Strategy, Finance and Entrepreneurship

How To Understand The Reactions Of Students Of The Layout And Graphics Design In Computer Course

An online professional network to support teachers information and communication technology development

REFLECTING ON EXPERIENCES OF THE TEACHER INDUCTION SCHEME

Nottingham Trent University Course Specification

Challenges of multisite video conferencing: The development of an alternative teaching/learning model

Establishing a Compensation Model in an Academic Pathology Department

A Carrick funded initiative. Presenters. Betty Leask, University of South Australia. Lyn Simpson, Queensland University of Technology

Usability and usefulness of ergonomics Web sites: a preliminary investigation

1 Introduction Background Methodology

Quality teaching in NSW public schools Discussion paper

Achievement and Satisfaction in a Computer-assisted Versus a Traditional Lecturing of an Introductory Statistics Course

Student Preferences for Learning College Algebra in a Web Enhanced Environment

MA APPLIED LINGUISTICS AND TESOL

Course outline. Code: BIM202 Title: Genes in Health and Disease

Accounting: A User Perspective GBAT9120

Programme Specification: MSc Electronic Commerce

A model to integrate pathology teaching using technology

Key Factors in Successful Research Degree Performance

A simple time-management tool for students online learning activities

Foundation Degree (Arts) Early Years Care and Education

Journal of Student Success and Retention Vol. 2, No. 1, October 2015 THE EFFECTS OF CONDITIONAL RELEASE OF COURSE MATERIALS ON STUDENT PERFORMANCE

Australian Medical Council Limited. Standards for Assessment and Accreditation of Primary Medical Programs by the Australian Medical Council 2012

Transcription:

Learning for Life and Work in a Complex World Volume 38 Refereed papers from the 38th HERDSA Annual International Conference 6-9 July 2015 Melbourne Convention and Exhibition Centre (MCEC), Melbourne, Australia Elms, J., Dowdell, S., Van Es, S., Kan, B. & Hawkins, N. (2015) A new tool to support interactive and collaborative education in histopathology. In T. Thomas, E. Levin, P. Dawson, K. Fraser & R. Hadgraft (Eds.), Research and Development in Higher Education: Learning for Life and Work in a Complex World, 38 (pp 151-160). Melbourne, Australia. 6-9 July 2015. Published 2015 by the Higher Education Research and Development Society of Australasia, Inc PO Box 27, MILPERRA NSW 2214, Australia www.herdsa.org.au ISSN 1441 001X ISBN 978-0-908557-96-7 This research paper was reviewed using a double blind peer review process that meets DIISR requirements. Two reviewers were appointed on the basis of their independence and they reviewed the full paper devoid of the authors names and institutions in order to ensure objectivity and anonymity. Papers were reviewed according to specified criteria, including relevance to the conference theme and sub-themes, originality, quality and presentation. Following review and acceptance, this full paper was presented at the international conference. Copyright 2015 HERDSA and the authors. Apart from any fair dealing for the purposes of research or private study, criticism or review, as permitted under the Copyright, Designs and Patent Act, 2005, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers at the address above.

A new tool to support interactive and collaborative education in histopathology Johanna Elms* BEST Network, School of Medical Sciences, University of New South Wales, Australia Email: j.elms@unsw.edu.au Stephanie Dowdell* BEST Network, School of Medical Sciences, University of New South Wales, Australia Simone Van Es School of Medical Sciences, University of New South Wales, Australia Betty Kan School of Medical Sciences, University of New South Wales, Australia Nicholas Hawkins School of Medical Sciences, University of New South Wales, Australia *These authors contributed equally to this paper For the past century, the discipline of pathology has used microscopic images of diseased tissue to allow students in biomedicine to develop an understanding of disease and disease processes. Technological advances in digital display of these images is rapidly transforming this field, and demanding a re-evaluation of traditional pedagogy. The Biomedical Skills and Education (BEST) Network, a collaborative group of university academics, has developed Slice, an annotation tool and image repository that enables students working individually to interact with digital histology slides and share annotations to facilitate discussion. We evaluated aspects of Slice as part of the Rational Use of Investigations course (RUI) at UNSW Australia. RUI is an elective for senior medical students that develops skills in the use and interpretation of medical investigations. A cohort of 16 students enrolled in the RUI course were divided into two groups, that undertook a traditional multi-header microscope teaching session or a lesson using the Slice online annotation tool. At two points during the course, both groups were given a 10-minute formative assessment. Results indicated that the group who had completed the Slice lesson performed better in recognising morphological features relevant to diagnosis. These results are supported by the finding that all students wanted more virtual annotation tools to aid histopathology learning and agreed that Slice allowed collaboration with peers and educators. This small study indicates that online tools that engage students through peer and teacher collaboration in class can improve student learning outcomes in histopathology. Annual Conference 2015 151

Keywords: Histopathology, Online Learning, Biomedical Education Introduction The last decade has seen increasing use of digitised images of glass microscope slides (whole slide images [WSI], virtual microscopy) instead of traditional microscopes in the teaching of the microscopic appearances of normal (histology) and diseased (histopathology) tissues (Hamilton et al, 2012). UNSW Australia has used a digital slide repository for over a decade (Kumar et al, 2004), and like many institutions worldwide (Dee et al, 2003; Kumar et al, 2004; Lee, 2005; Kumar et al, 2006; Triola and Holloway, 2011; Hamilton et al, 2012), whole slide images are at the core of the study of both histology and histopathology in our school. In 2012, four institutions (UNSW Australia, University of Queensland, University of Melbourne and James Cook University) along with the education technology company, Smart Sparrow formed the Biomedical, Education, Skills and Training (BEST) Network (www.best.edu.au) in order to developed collaborative teaching resources and technology for the biomedical sciences. Slice is a cloud-based image repository that was formed as a key component of the network, and is capable of hosting and delivering large (typically up to 4GB) whole slide images via the internet to any site worldwide. In the discipline of histopathology, teaching is traditionally performed around a multi-header microscope, where up to eight individuals use separate eyepieces to view the same glass slide. The navigation of that slide is controlled by one individual operating the main microscope typically the teacher. That person also typically controls a lighted pointer that they can move around the field of view to highlight features on the slide to their students. The Slice platform offers the potential to significantly alter training in the discipline of histopathology, because it can replicate and potentially extend the experience of the multiheader session. Using Slice, students and teachers have the ability to mark and describe regions of interest on whole slide images (Figure 1). These annotations are captured on layers separate to the actual image, and can be shared easily between students and teachers. Annual Conference 2015 152

Figure 1: Use of annotations by a student to elaborate and share knowledge. This screen grab shows a high power view of a duodenal biopsy in the central viewer window. A student has identified a particular cell type at the request of the teacher, and has made notes regarding its function. This ability to annotate images in real time provides a significant improvement on the traditional light pointer, and because the annotations remain permanently associated with the image, they can be viewed at a later date by student or teacher. Likewise, virtual imaging frees students from technical issues of focus and spatial disorientation that are common with the use of the multiheader microscope. For these reasons, we speculated that student learning of histopathological features on slides may be improved by use of the Slice tool. Final year medical students at UNSW Australia with an interest in pathology are given the opportunity to undertake a eight week course designed to develop basic interpretive skills in the field of diagnostic histopathology. The Rational Use of Investigation (RUI) course is case-based. Under the supervision of a pathologist, students work in teams to interpret microscope slides of diseased tissue, along with clinical information from that case, to form a diagnosis and report their findings to the class. Multiheader microscope sessions have been an important part of the course, in which students get direct training and feedback from their teacher regarding the identification and interpretation of morphological features in tissue sections relevant to their case. Thus the RUI course provided an opportunity to assess the ability of the Slice tool to replicate or extend the learning experience provided by traditional multiheader sessions. Annual Conference 2015 153

Methods User Group All students enrolled in the RUI course at UNSW in 2014 (n=16) agreed to participate in this study, and provided informed consent to do so (UNSW HREC # HC13197). The students were then allocated to two groups of eight, based on alphabetical order of their surname. Technology The Slice image bank and annotation tool developed by the BEST Network allows users to: View histopathology slides online (www.best.edu.au/slice) and to navigate around those slides in a manner similar to using a conventional microscope, including pan and zoom. Annotate the virtual slide by placing pins or drawing polygons to select a region on a private layer. Add textual information about the region of the image associated with a pin or polygon. Share the specific annotated image and zoom level via a link (URL) provided by the platform. Glass slides that were to be used in multiheader sessions were digitised so that comparable images were used in both multiheader and Slice (virtual microscopy) sessions. Deployment The two groups of students were allocated to either a Slice annotation lesson or a histopathology teaching lesson on the multi-header microscope. A total of 24 different virtual slides were used over four teaching sessions. The same slides were used for both Slice and multiheader classes. The groups interchanged between learning activities in each teaching session so that all users had access to both teaching methods. While generally students had the opportunity to view slides in both the real and virtual sessions, some slides were identified beforehand by teachers as cases that would be used for assessment in this trial. Access to those slides was controlled, so that students only saw them in either the real or virtual settings, based on their group, and students were not aware these would be the assessment slides. For those slides, teachers in both the real and virtual sessions had agreed on the key elements that should be taught to their students, and that those elements would form the basis of the subsequent evaluation. The duration of teaching on those slides was also agreed to prior to the teaching sessions. In this way, we sought to minimise bias introduced by differences in emphasis between teachers. The multiheader microscope session was led by a pathologist guiding students through the slides with all users visualising the same histopathology slide and discussing the various Annual Conference 2015 154

points of interest. Students were asked questions to gauge understanding throughout the session. During the computer-based Slice lessons, users had access to the Slice image bank through private log-ins and were able to utilise the annotation tool. An anatomical pathologist guided students through the session using the lead computer before students used the Slice annotation tool to mark and describe regions of interest. Students could paste links to their annotations to a discussion board on the Moodle learning management system. The pathologist then used the Moodle interface to access and discuss the students work in realtime by projecting the annotations via the lead computer for the class. Feedback was given in verbal or written form via these classes or online discussion on Moodle. Evaluation The evaluation of learning outcomes using the two different teaching modalities was additional to the students summative course assessment. Therefore only two data collection points occurred, at weeks 3 and 5 of the course. A short, formative assessment with 5 questions based on a selected assessment images from the Slice repository was given to both groups to evaluate whether there were differences in the comprehension of key morphological features in a selected case. In both instances, the assessment related to a previously selected case that had been recently (<60min) discussed with the teacher, either around the multiheader microscope or using the Slice viewing tool. The nature of the teaching format (multiheader or Slice) on which each student group had received prior teaching about the assessment image varied between the two assessment time points. This served to control for any a priori differences in ability between the groups. Students were not aware of which case would be assessed. After the assessment, data regarding the student experience of the different learning modalities was also collected by a short questionnaire. All assessment responses were evaluated by one teacher (NH). Results Formative assessments Both assessments were completed by all 16 students. Results showed that the average mark for students who completed the Slice lesson first was higher for both exams (Figure 2), although the relatively small numbers meant that this difference was not statistically significant. Annual Conference 2015 155

Percent correct 100 90 80 70 60 50 40 30 20 Slice MH 10 0 Cohort 1 Cohort 2 Cohort 2 Cohort 1 Assessment 1 Assessment Number Assessment 2 Figure 2: Assessment results for student groups. Students undertook an interactive Slice Annotation lesson (Slice), or a multi-header microscope lesson (MH) and were given a 10 minute exam with 5 questions at the end of the lesson on one slide from that session. Both groups received the same assessment, which asked them to identify histopathological features relevant to the case. Data for the student groups shows the average percentage of correct responses for each assessment (mean +/- standard deviation). Performance following the multiheader session was less irrespective of the student cohort exposed to that teaching modality. Student evaluation survey Following the completion of each concept quiz, students voluntarily evaluated their experience of the two teaching methods. Students stated that the use of Slice and the annotation tool added to their understanding of the subject matter, reporting that the ability to receive feedback regarding areas of misconception was particularly valuable for learning. The questions and results are summarised below Table 1 and 2. Table 1: Student responses to Questionnaire 2. Item SD * D A SA Favourable to Slice (%) I was comfortable using Slice 0 0 5 5 100 Annual Conference 2015 156

It was easier to discuss slides in class using the 1 5 3 1 60 multiheader than when using Slice Being able to annotate images in Slice assisted my 4 6 100 learning I found sharing annotations in class helped my 6 4 100 understanding of the slides I received better feedback on my understanding of 6 3 1 60 the slides in the multi-header session than in the Slice session I was comfortable using the multiheader 3 6 1 30 I was more comfortable using Slice than the multiheader The functionality of Slice (viewing, annotation, sharing images) helped me learn about the slides * Multiple choice responses to the questions were either: Disagree (D), Agree (A) or Strongly Agree (SA). Percentage of the 11 respondents who were favourable to the Slice tool. Table 2: Student responses to Questionnaire 2. Item D * A SA Favourable to Slice (%) Slice allowed me to collaborate with my classmates 0 7 4 100 Slice allowed me to collaborate with my lecturer 0 4 7 100 Using the annotation software improved my digital 3 5 3 73 or online skills I have received feedback in the Slice class that 3 6 2 73 helped me in my assessments Using Slice in class made the lesson more interesting 1 2 8 91 than the multiheader microscope I liked using Slice 3 8 100 The annotation tool was easy to use 7 4 100 I would like more virtual annotation tools in my learning 4 6 100 8 2 100 5 6 100 * Multiple choice responses to the questions were either: Disagree (D), Agree (A) or Strongly Agree (SA). Percentage of the 11 respondents who were favourable to the Slice tool. Annual Conference 2015 157

Discussion Here we have used the functionalities of the Slice image bank and annotate tool to enhance learning in the context of small group teaching in histopathology. Evaluation of student performance at two separate time points showed a trend towards better student performance after lessons using the Slice tools compared to the multi-header microscope session. Interestingly, for at least one of the assessments the performance of students was relatively poor for both modalities, though this may reflect issues in standard setting rather than pedagogy per se. Questionnaire data revealed that students related their understanding and exam performance to use of the Slice annotation tool and the ability to gain feedback by sharing their annotations in Slice with peers and teacher. Over two thirds of students preferred the feedback they received on Slice to that of the multiheader session, and the majority of students found it easier to discuss slides in class using Slice. Several aspects of the study design reported here require further consideration. While the small class size for the RUI course lends itself to use of multiheader microscopes as a teaching modality, as is typical of postgraduate pathology training, it necessarily limits the power of the study to achieve statistically significant results. The trends seen in this current study thus require replication with a larger student base. Despite its small size, our study has the clear advantage of offering a direct comparison of student performance between the two learning modalities, based on the same slides and students. Others who have postulated an increase in performance by students who learn using virtual microscopy have often done so on the basis of indirect comparison with historical controls from previous years or on different student cohorts (Krippendorf and Lough, 2005). Another consideration in the study design was the allocation of students to test groups on the basis of alphabetical order of surname. No consideration was given to prior performance in their degree, prior experience in histopathological assessment, nor interest in the discipline. However, variation in group performance was unlikely to reflect inherent differences in the two cohorts, since results were better for the group that had been exposed to the assessment case through the Slice tool, even though that group varied between assessments. Microscopes remain integral to the work of a range of disciplines, including diagnostic histopathology and microbiology. Thus a potential downside for the use of virtual microscopy solutions in undergraduate training is the potential lack of microscopy skills amongst graduates. In reporting on another interactive virtual slide platform, Wang et al (2012) noted that only 11% of their study cohort were concerned about this lack of microscopy skills. In the current study, over 90% of our students valued time on the Slice sessions more than the multi-header microscope, suggesting again that lack of practical microscopy skills is not a major concern for students. It is likely that the university sector will become increasingly reliant on online microscopy tools, both because of the benefits they bring to student experience and comprehension, and because of their resource efficiency. Disciplines which regard microscopy as a key skill, such as pathology, will increasingly need Annual Conference 2015 158

to provide formal training for entry level professionals, in order to address this emerging skills deficit. While nearly all students in the current study were comfortable with both the Slice and multiheader sessions, the large majority found Slice interactive lessons both more interesting and more facile than multiheader microscope sessions. In a similar study at Queens University Belfast in 2006 (Hamilton et al., 2012), 88% of students said they would prefer to use virtual microscopy over traditional microscopy in the classroom. Student s digital literacy and previous exposure to virtual slide platforms may have influenced these results, thus future studies will need to assess the impact of student digital literacy on assessment outcomes. However, the positive response of students to virtual microscopy interactive lessons shows that not only is there educational value in incorporating virtual microscopy tools in student assessment, but that students want and enjoy this experience. While the focus of this study was on improving recognition of key morphological features of disease, it is also noteworthy that all students in this study also agreed that Slice allowed them to collaborate with classmates and teachers. It is possible that this improved collaboration was a key driver to more effective learning. Certainly, planned further developments of the Slice tool will build on the implicit benefit of the online space by enhancing the capacity to for student-student and student teacher collaboration around learning from images. It is likely that benefits seen here in the context of training in histopathology may be generalisable to all disciplines in which interpretation of image data is a fundamental professional skill. Acknowledgements The authors wish to acknowledge the support of Diane Vukelic and the BEST Network in making the Slice image bank available for this trial. References Dee, F.R, Lehman, J.M., Consoer, D., Leaven, T., Cohen, M.B. (2003). Implementation of virtual microscope slides in the annual pathobiology of cancer workshop laboratory. Hum Pathol, 34(5), 430-436. Hamilton, P. W., Wang, Y., and McCullough, S. J. (2012). Virtual microscopy and digital pathology in training and education. APMIS, 120(4), 305-15. Krippendorf, B. B., and Lough, J. (2005). Complete and rapid switch from light microscopy to virtual microscopy for teaching medical histology. Anat Rec B New Anat, 285(1), 19-25. Kumar, R. K., Freeman, B., Velan, G. M., and De Permentier, P. J. (2006). Integrating histology and histopathology teaching in practical classes using virtual slides."anat Rec B New Anat, 289(4), 128-33. Kumar, R. K., Velan, G. M., Korell, S. O., Kandara, M., Dee, F. R., and Wakefield, D. (2004). Virtual microscopy for learning and assessment in pathology. J Pathol, 204(5), 613-8. Lee, S. H. (2005). Virtual microscopy: applications to hematology education and training. Hematology, 10 Suppl 1, 151-3. Annual Conference 2015 159

Triola, M. M. & Holloway, W. J. 2011. Enhanced virtual microscopy for collaborative education. BMC Med Educ, 11, 4. Wang, Y., Williamson, K. E., Kelly, P. J., James, J. A., and Hamilton, P. W. (2012). SurfaceSlide: a multitouch digital pathology platform. PLoS One, 7(1), e30783. Copyright 2015 Elms, J., Dowdell, S., Van Es, S., Kan, B., Hawkins, N. The authors assign to HERDSA and educational non-profit institutions a non-exclusive license to use this document for personal use and in courses of instruction provided that the article is used in full and this copyright statement is reproduced. The authors also grant a non-exclusive license to HERDSA to publish this document in full on the World Wide Web (prime site and mirrors) and within the portable electronic format HERDSA 2015 conference proceedings. Any other usage is prohibited without the express permission of the authors. Annual Conference 2015 160