Canonical Image Selection for Large-scale Flickr Photos using Hadoop
|
|
|
- Scarlett Hoover
- 10 years ago
- Views:
Transcription
1 Canonical Image Selection for Large-scale Flickr Photos using Hadoop Guan-Long Wu National Taiwan University, Taipei Nov. 10, Communication and Multimedia Lab ( 通 訊 與 多 媒 體 實 驗 室 ), Department of Computer Science and Information Engineering, NTU ( 台 大 資 訊 系 ) Note that parts of the slides are thanks to Prof. Winston Hsu and Liang-Chi Hsieh, CMLab, NTU Team Members (MiRA group, CMLab, NTU) Prof. Winston H. Hsu Liang-Chi Hsieh Kuan-Ting Chen Chien-Hsing Chiang Yi-Hsuan Yang Guan-Long Wu Chun-Sung Ferng Hsiu-Wen Hsueh Angela Charng-Rurng Tsai 2 1
2 Who am I? A senior undergraduate student of NTU CSIE Research Interests Multimedia (CMLab, NTU. Advisor: Winston H. Hsu) Artificial Intelligence (iagent Lab, NTU. Advisor: Jane Yung-jen Hsu) Bioinformatics (NYMU. Advisor: Yeou-Guang Tsay) Contact [email protected] 3 Outline Introduction context cues in social media Efficient image search result clustering Demo Concept of Hadoop Implementation Image Pairwise Image Similarity Affinity propagation Comparing with previous approaches Conclusions 4 2
3 Challenges and Opportunities from Large-Scale Social Media - Flickr (4B+ photos) - YouTube (25 hrs upload / min) - Web (10B videos watched / month) - Digital photos (50B / year) Growing practice of online media sharing Billion-scale magnitude Bringing profound impacts to new applications and user scenarios The technologies do not keep pace with the growth e.g., search, mining, visualization, and other promising applications 5 Rich Context Cues in Social Media Flickr Example notes object-level comments Visual features - color, texture - visual word Concept detectors (tower, sky, building) User-provided tags Time stamp yy/mm/dd Geotag Rich textual and visual cues, device metadata, and user interactions for social and organizing purposes Geo-locations, time, camera settings (e.g., shutter speed, focal length, flash, etc.) User-provided tags, descriptions, notes, etc. Comments, bookmarks,favorites (subjective) 6 3
4 Social Media Visualization Select canonical views to represent a landmark [Kennedy et al., WWW 08] Apply clustering algorithm (e.g. K-means) from tagged photos Select one image from each cluster (assumed to be visually dissimilar) Extremely time-consuming and NOT for online image search result clustering Pair-wise similarity Clustering algorithms 7 Efficient image search result clustering Feature Textual and visualbased Graph-based clustering Semantic image groups Organization Display Current Keyword-based N/A Image list Proposed Canonical Images Text-based similarity Browsing by image groups 8 4
5 Image Pairwise Image Similarity with MapReduce Goal Speeding up image pairwise cosine similarity calculation by MapReduce (Hadoop) over large-scale images, represented by large VWs Constructing similarity hyperlinks in image collections for visualization and improving search quality; offline computation tf-idf cut is more powerful than df-cut when dealing with VWs times speed-up over 18 Hadoop nodes with similar time (sec) MAP improv. (%) performance (MAP) (11K images with 10K 0% VWs) 20% 10% -10% -20% % thresholds for dropping visual words -40% 9 Cloud computing Leveraging MapReduce framework to scale up graph construction Computing huge image graph on a 18-node Hadoop cluster dataset Single machine Hadoop Platform Flickr11k 1.6hrs 83 secs Flickr550k unknown 42 mins 10 5
6 Offline clustering Clustering and canonical (representative) image selection by Hadoop-based Affinity Propagation 11 On-the-fly image search result clustering Real-time image search result clustering by pulling from precomputed clusters Canonical images Rome 12 6
7 Demo! demo Canonical Images Thumbnails and image viewer 13 Image Pairwise Image Similarity with MapReduce Indexing phase: vector inverted index (utilize sparse vectors) d1 map (F1,(d1,2)) (F2,(d1,8)) (F1,[(d1,2),(d3,5)]) reduce d2 map (F2,(d2,4)) aggregation (F1,[(d1,2),(d3,5)]) d3 map (F1,(d3,5)) (F2,(d3,1)) (F2,[(d1,8),(d2,4), (d3,1)]) reduce (F2,[(d1,8),(d2,4), (d3,1)]) 14 7
8 Image Pairwise Image Similarity with MapReduce Calculation phase: inverted index pairwise similarity (F1,[(d1,2),(d3,5)]) ((d1,d2),[32]) reduce map ((d1,d3),10) ((d1,d2),32) aggregation ((d2,d3),[4]) reduce map (F2,[(d1,8),(d2,4), (d3,1)]) ((d1,d2),32) ((d1,d3),8) ((d2,d3),4) ((d1,d3),[10,8]) ((d2,d3),4) reduce ((d1,d3),18) 15 Affinity propagation [Frey et al., Science, 07] Data points can be exemplar (cluster center) or non-examplar (other data points). Message is passed between exemplar (centroid) and non-exemplar data points. The total number of clusters will be automatically found by the algorithm. 16 8
9 Hadoop Implementation of Affinity Propagation [Wang et al. ICHL 2008] S: similarity s(i, k) R: responsibility r(i, k) A: Availability a(i, k) InitMapper: Initiate Input File to Specific Format SA2RReducer: Calculate R from S and A Iteration CleanReducer: Find exemplars on image graph R2AReduer: Calculate A from R 17 Comparing with previous approaches Response Time Feature Scalability SRC-based[1] Fast Textural only No Onlineclustering[2] Slow Visual only No Our approach[3] Faster Textural and Visual Yes [1] Feng Jing et al., IGroup: web image search results clustering, ACM MM 2006 [2] Reinier H. van Leuken et al., Visual diversification of image search results, WWW 2009 [3] Hsieh et al., Canonical Image Selection and Efficient Image Graph Construction for Large- Scale Flickr Photos, ACM MM
10 Conclusions The proposed system can organizing image search results in semantic clusters at query time. The efficiency is achieved with the help of offline-computed image context graphs by distributed computing methods. 19 Acknowledgements National Center for High-Performance Computing (NCHC), Taiwan, for the Hadoop platform and technical supports in cloud computing 20 10
MALLET-Privacy Preserving Influencer Mining in Social Media Networks via Hypergraph
MALLET-Privacy Preserving Influencer Mining in Social Media Networks via Hypergraph Janani K 1, Narmatha S 2 Assistant Professor, Department of Computer Science and Engineering, Sri Shakthi Institute of
Map-Reduce for Machine Learning on Multicore
Map-Reduce for Machine Learning on Multicore Chu, et al. Problem The world is going multicore New computers - dual core to 12+-core Shift to more concurrent programming paradigms and languages Erlang,
Image Search by MapReduce
Image Search by MapReduce COEN 241 Cloud Computing Term Project Final Report Team #5 Submitted by: Lu Yu Zhe Xu Chengcheng Huang Submitted to: Prof. Ming Hwa Wang 09/01/2015 Preface Currently, there s
How Companies are! Using Spark
How Companies are! Using Spark And where the Edge in Big Data will be Matei Zaharia History Decreasing storage costs have led to an explosion of big data Commodity cluster software, like Hadoop, has made
Industry 4.0 and Big Data
Industry 4.0 and Big Data Marek Obitko, [email protected] Senior Research Engineer 03/25/2015 PUBLIC PUBLIC - 5058-CO900H 2 Background Joint work with Czech Institute of Informatics, Robotics and
Comparision of k-means and k-medoids Clustering Algorithms for Big Data Using MapReduce Techniques
Comparision of k-means and k-medoids Clustering Algorithms for Big Data Using MapReduce Techniques Subhashree K 1, Prakash P S 2 1 Student, Kongu Engineering College, Perundurai, Erode 2 Assistant Professor,
Map/Reduce Affinity Propagation Clustering Algorithm
Map/Reduce Affinity Propagation Clustering Algorithm Wei-Chih Hung, Chun-Yen Chu, and Yi-Leh Wu Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology,
UPS battery remote monitoring system in cloud computing
, pp.11-15 http://dx.doi.org/10.14257/astl.2014.53.03 UPS battery remote monitoring system in cloud computing Shiwei Li, Haiying Wang, Qi Fan School of Automation, Harbin University of Science and Technology
COMP9321 Web Application Engineering
COMP9321 Web Application Engineering Semester 2, 2015 Dr. Amin Beheshti Service Oriented Computing Group, CSE, UNSW Australia Week 11 (Part II) http://webapps.cse.unsw.edu.au/webcms2/course/index.php?cid=2411
Interactive person re-identification in TV series
Interactive person re-identification in TV series Mika Fischer Hazım Kemal Ekenel Rainer Stiefelhagen CV:HCI lab, Karlsruhe Institute of Technology Adenauerring 2, 76131 Karlsruhe, Germany E-mail: {mika.fischer,ekenel,rainer.stiefelhagen}@kit.edu
Optimization of Image Search from Photo Sharing Websites Using Personal Data
Optimization of Image Search from Photo Sharing Websites Using Personal Data Mr. Naeem Naik Walchand Institute of Technology, Solapur, India Abstract The present research aims at optimizing the image search
SURVEY REPORT DATA SCIENCE SOCIETY 2014
SURVEY REPORT DATA SCIENCE SOCIETY 2014 TABLE OF CONTENTS Contents About the Initiative 1 Report Summary 2 Participants Info 3 Participants Expertise 6 Suggested Discussion Topics 7 Selected Responses
Big Data: Image & Video Analytics
Big Data: Image & Video Analytics How it could support Archiving & Indexing & Searching Dieter Haas, IBM Deutschland GmbH The Big Data Wave 60% of internet traffic is multimedia content (images and videos)
Large-Scale Data Sets Clustering Based on MapReduce and Hadoop
Journal of Computational Information Systems 7: 16 (2011) 5956-5963 Available at http://www.jofcis.com Large-Scale Data Sets Clustering Based on MapReduce and Hadoop Ping ZHOU, Jingsheng LEI, Wenjun YE
An Overview of Knowledge Discovery Database and Data mining Techniques
An Overview of Knowledge Discovery Database and Data mining Techniques Priyadharsini.C 1, Dr. Antony Selvadoss Thanamani 2 M.Phil, Department of Computer Science, NGM College, Pollachi, Coimbatore, Tamilnadu,
Big Data and Analytics: Challenges and Opportunities
Big Data and Analytics: Challenges and Opportunities Dr. Amin Beheshti Lecturer and Senior Research Associate University of New South Wales, Australia (Service Oriented Computing Group, CSE) Talk: Sharif
Shareability and Locality Aware Scheduling Algorithm in Hadoop for Mobile Cloud Computing
Shareability and Locality Aware Scheduling Algorithm in Hadoop for Mobile Cloud Computing Hsin-Wen Wei 1,2, Che-Wei Hsu 2, Tin-Yu Wu 3, Wei-Tsong Lee 1 1 Department of Electrical Engineering, Tamkang University
Log Mining Based on Hadoop s Map and Reduce Technique
Log Mining Based on Hadoop s Map and Reduce Technique ABSTRACT: Anuja Pandit Department of Computer Science, [email protected] Amruta Deshpande Department of Computer Science, [email protected]
International Journal of Engineering Research ISSN: 2348-4039 & Management Technology November-2015 Volume 2, Issue-6
International Journal of Engineering Research ISSN: 2348-4039 & Management Technology Email: [email protected] November-2015 Volume 2, Issue-6 www.ijermt.org Modeling Big Data Characteristics for Discovering
BIG DATA & ANALYTICS. Transforming the business and driving revenue through big data and analytics
BIG DATA & ANALYTICS Transforming the business and driving revenue through big data and analytics Collection, storage and extraction of business value from data generated from a variety of sources are
How To Handle Big Data With A Data Scientist
III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution
Overview on Graph Datastores and Graph Computing Systems. -- Litao Deng (Cloud Computing Group) 06-08-2012
Overview on Graph Datastores and Graph Computing Systems -- Litao Deng (Cloud Computing Group) 06-08-2012 Graph - Everywhere 1: Friendship Graph 2: Food Graph 3: Internet Graph Most of the relationships
MLg. Big Data and Its Implication to Research Methodologies and Funding. Cornelia Caragea TARDIS 2014. November 7, 2014. Machine Learning Group
Big Data and Its Implication to Research Methodologies and Funding Cornelia Caragea TARDIS 2014 November 7, 2014 UNT Computer Science and Engineering Data Everywhere Lots of data is being collected and
CLOUDDMSS: CLOUD-BASED DISTRIBUTED MULTIMEDIA STREAMING SERVICE SYSTEM FOR HETEROGENEOUS DEVICES
CLOUDDMSS: CLOUD-BASED DISTRIBUTED MULTIMEDIA STREAMING SERVICE SYSTEM FOR HETEROGENEOUS DEVICES 1 MYOUNGJIN KIM, 2 CUI YUN, 3 SEUNGHO HAN, 4 HANKU LEE 1,2,3,4 Department of Internet & Multimedia Engineering,
Using Data Mining and Machine Learning in Retail
Using Data Mining and Machine Learning in Retail Omeid Seide Senior Manager, Big Data Solutions Sears Holdings Bharat Prasad Big Data Solution Architect Sears Holdings Over a Century of Innovation A Fortune
Customer Case Study. Sharethrough
Customer Case Study Customer Case Study Benefits Faster prototyping of new applications Easier debugging of complex pipelines Improved overall engineering team productivity Summary offers a robust advertising
Machine Learning over Big Data
Machine Learning over Big Presented by Fuhao Zou [email protected] Jue 16, 2014 Huazhong University of Science and Technology Contents 1 2 3 4 Role of Machine learning Challenge of Big Analysis Distributed
Web Mining using Artificial Ant Colonies : A Survey
Web Mining using Artificial Ant Colonies : A Survey Richa Gupta Department of Computer Science University of Delhi ABSTRACT : Web mining has been very crucial to any organization as it provides useful
Cloud Computing and the Future of Internet Services. Wei-Ying Ma Principal Researcher, Research Area Manager Microsoft Research Asia
Cloud Computing and the Future of Internet Services Wei-Ying Ma Principal Researcher, Research Area Manager Microsoft Research Asia Computing as Utility Grid Computing Web Services in the Cloud What is
Recognition. Sanja Fidler CSC420: Intro to Image Understanding 1 / 28
Recognition Topics that we will try to cover: Indexing for fast retrieval (we still owe this one) History of recognition techniques Object classification Bag-of-words Spatial pyramids Neural Networks Object
Clustering Technique in Data Mining for Text Documents
Clustering Technique in Data Mining for Text Documents Ms.J.Sathya Priya Assistant Professor Dept Of Information Technology. Velammal Engineering College. Chennai. Ms.S.Priyadharshini Assistant Professor
Research on Clustering Analysis of Big Data Yuan Yuanming 1, 2, a, Wu Chanle 1, 2
Advanced Engineering Forum Vols. 6-7 (2012) pp 82-87 Online: 2012-09-26 (2012) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/aef.6-7.82 Research on Clustering Analysis of Big Data
XpoLog Competitive Comparison Sheet
XpoLog Competitive Comparison Sheet New frontier in big log data analysis and application intelligence Technical white paper May 2015 XpoLog, a data analysis and management platform for applications' IT
Distributed Framework for Data Mining As a Service on Private Cloud
RESEARCH ARTICLE OPEN ACCESS Distributed Framework for Data Mining As a Service on Private Cloud Shraddha Masih *, Sanjay Tanwani** *Research Scholar & Associate Professor, School of Computer Science &
Learn to Personalized Image Search from the Photo Sharing Websites
Learn to Personalized Image Search from the Photo Sharing Websites ABSTRACT: Increasingly developed social sharing websites, like Flickr and Youtube, allow users to create, share, annotate and comment
The Rise of Industrial Big Data. Brian Courtney General Manager Industrial Data Intelligence
The Rise of Industrial Big Data Brian Courtney General Manager Industrial Data Intelligence Agenda Introduction Big Data for the industrial sector Case in point: Big data saves millions at GE Energy Seeking
International Journal of Advanced Engineering Research and Applications (IJAERA) ISSN: 2454-2377 Vol. 1, Issue 6, October 2015. Big Data and Hadoop
ISSN: 2454-2377, October 2015 Big Data and Hadoop Simmi Bagga 1 Satinder Kaur 2 1 Assistant Professor, Sant Hira Dass Kanya MahaVidyalaya, Kala Sanghian, Distt Kpt. INDIA E-mail: [email protected]
EMC Greenplum Driving the Future of Data Warehousing and Analytics. Tools and Technologies for Big Data
EMC Greenplum Driving the Future of Data Warehousing and Analytics Tools and Technologies for Big Data Steven Hillion V.P. Analytics EMC Data Computing Division 1 Big Data Size: The Volume Of Data Continues
Security and Trust in social media networks
!1 Security and Trust in social media networks Prof. Touradj Ebrahimi [email protected]! DMP meeting San Jose, CA, USA 11 January 2014 Social media landscape!2 http://www.fredcavazza.net/2012/02/22/social-media-landscape-2012/
Machine Learning using MapReduce
Machine Learning using MapReduce What is Machine Learning Machine learning is a subfield of artificial intelligence concerned with techniques that allow computers to improve their outputs based on previous
PLATFORA INTERACTIVE, IN-MEMORY BUSINESS INTELLIGENCE FOR HADOOP
PLATFORA INTERACTIVE, IN-MEMORY BUSINESS INTELLIGENCE FOR HADOOP Your business is swimming in data, and your business analysts want to use it to answer the questions of today and tomorrow. YOU LOOK TO
Big Data: Overview and Roadmap. 2015 eglobaltech. All rights reserved.
Big Data: Overview and Roadmap 2015 eglobaltech. All rights reserved. What is Big Data? Large volumes of complex and variable data that require advanced techniques and technologies to enable capture, storage,
ISSN: 2320-1363 CONTEXTUAL ADVERTISEMENT MINING BASED ON BIG DATA ANALYTICS
CONTEXTUAL ADVERTISEMENT MINING BASED ON BIG DATA ANALYTICS A.Divya *1, A.M.Saravanan *2, I. Anette Regina *3 MPhil, Research Scholar, Muthurangam Govt. Arts College, Vellore, Tamilnadu, India Assistant
Improving Data Processing Speed in Big Data Analytics Using. HDFS Method
Improving Data Processing Speed in Big Data Analytics Using HDFS Method M.R.Sundarakumar Assistant Professor, Department Of Computer Science and Engineering, R.V College of Engineering, Bangalore, India
Large-Scale Test Mining
Large-Scale Test Mining SIAM Conference on Data Mining Text Mining 2010 Alan Ratner Northrop Grumman Information Systems NORTHROP GRUMMAN PRIVATE / PROPRIETARY LEVEL I Aim Identify topic and language/script/coding
The Big Data Ecosystem at LinkedIn Roshan Sumbaly, Jay Kreps, and Sam Shah LinkedIn
The Big Data Ecosystem at LinkedIn Roshan Sumbaly, Jay Kreps, and Sam Shah LinkedIn Presented by :- Ishank Kumar Aakash Patel Vishnu Dev Yadav CONTENT Abstract Introduction Related work The Ecosystem Ingress
Apache MRQL (incubating): Advanced Query Processing for Complex, Large-Scale Data Analysis
Apache MRQL (incubating): Advanced Query Processing for Complex, Large-Scale Data Analysis Leonidas Fegaras University of Texas at Arlington http://mrql.incubator.apache.org/ 04/12/2015 Outline Who am
Analytics in the Cloud. Peter Sirota, GM Elastic MapReduce
Analytics in the Cloud Peter Sirota, GM Elastic MapReduce Data-Driven Decision Making Data is the new raw material for any business on par with capital, people, and labor. What is Big Data? Terabytes of
Analyzing Big Data with AWS
Analyzing Big Data with AWS Peter Sirota, General Manager, Amazon Elastic MapReduce @petersirota What is Big Data? Computer generated data Application server logs (web sites, games) Sensor data (weather,
HadoopTM Analytics DDN
DDN Solution Brief Accelerate> HadoopTM Analytics with the SFA Big Data Platform Organizations that need to extract value from all data can leverage the award winning SFA platform to really accelerate
Where is... How do I get to...
Big Data, Fast Data, Spatial Data Making Sense of Location Data in a Smart City Hans Viehmann Product Manager EMEA ORACLE Corporation August 19, 2015 Copyright 2014, Oracle and/or its affiliates. All rights
Analysis of Social Media Streams
Fakultätsname 24 Fachrichtung 24 Institutsname 24, Professur 24 Analysis of Social Media Streams Florian Weidner Dresden, 21.01.2014 Outline 1.Introduction 2.Social Media Streams Clustering Summarization
Scalable Developments for Big Data Analytics in Remote Sensing
Scalable Developments for Big Data Analytics in Remote Sensing Federated Systems and Data Division Research Group High Productivity Data Processing Dr.-Ing. Morris Riedel et al. Research Group Leader,
Steven C.H. Hoi. School of Computer Engineering Nanyang Technological University Singapore
Steven C.H. Hoi School of Computer Engineering Nanyang Technological University Singapore Acknowledgments: Peilin Zhao, Jialei Wang, Hao Xia, Jing Lu, Rong Jin, Pengcheng Wu, Dayong Wang, etc. 2 Agenda
Tackling Big Data with MATLAB Adam Filion Application Engineer MathWorks, Inc.
Tackling Big Data with MATLAB Adam Filion Application Engineer MathWorks, Inc. 2015 The MathWorks, Inc. 1 Challenges of Big Data Any collection of data sets so large and complex that it becomes difficult
Recommending News Articles using Cosine Similarity Function Rajendra LVN 1, Qing Wang 2 and John Dilip Raj 1
Paper 1886-2014 Recommending News s using Cosine Similarity Function Rajendra LVN 1, Qing Wang 2 and John Dilip Raj 1 1 GE Capital Retail Finance, 2 Warwick Business School ABSTRACT Predicting news articles
Realizing a Vision Interesting Student Projects
Realizing a Vision Interesting Student Projects Do you want to be part of a revolution? We are looking for exceptional students who can help us realize a big vision: a global, distributed storage system
Parallel Programming Map-Reduce. Needless to Say, We Need Machine Learning for Big Data
Case Study 2: Document Retrieval Parallel Programming Map-Reduce Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Carlos Guestrin January 31 st, 2013 Carlos Guestrin
Exploring Big Data in Social Networks
Exploring Big Data in Social Networks [email protected] ([email protected]) INWEB National Science and Technology Institute for Web Federal University of Minas Gerais - UFMG May 2013 Some thoughts about
The basic data mining algorithms introduced may be enhanced in a number of ways.
DATA MINING TECHNOLOGIES AND IMPLEMENTATIONS The basic data mining algorithms introduced may be enhanced in a number of ways. Data mining algorithms have traditionally assumed data is memory resident,
Moving From Hadoop to Spark
+ Moving From Hadoop to Spark Sujee Maniyam Founder / Principal @ www.elephantscale.com [email protected] Bay Area ACM meetup (2015-02-23) + HI, Featured in Hadoop Weekly #109 + About Me : Sujee
Client Based Power Iteration Clustering Algorithm to Reduce Dimensionality in Big Data
Client Based Power Iteration Clustering Algorithm to Reduce Dimensionalit in Big Data Jaalatchum. D 1, Thambidurai. P 1, Department of CSE, PKIET, Karaikal, India Abstract - Clustering is a group of objects
Hortonworks & SAS. Analytics everywhere. Page 1. Hortonworks Inc. 2011 2014. All Rights Reserved
Hortonworks & SAS Analytics everywhere. Page 1 A change in focus. A shift in Advertising From mass branding A shift in Financial Services From Educated Investing A shift in Healthcare From mass treatment
ANALYTICS IN BIG DATA ERA
ANALYTICS IN BIG DATA ERA ANALYTICS TECHNOLOGY AND ARCHITECTURE TO MANAGE VELOCITY AND VARIETY, DISCOVER RELATIONSHIPS AND CLASSIFY HUGE AMOUNT OF DATA MAURIZIO SALUSTI SAS Copyr i g ht 2012, SAS Ins titut
Semantic Video Annotation by Mining Association Patterns from Visual and Speech Features
Semantic Video Annotation by Mining Association Patterns from and Speech Features Vincent. S. Tseng, Ja-Hwung Su, Jhih-Hong Huang and Chih-Jen Chen Department of Computer Science and Information Engineering
Leveraging BlobSeer to boost up the deployment and execution of Hadoop applications in Nimbus cloud environments on Grid 5000
Leveraging BlobSeer to boost up the deployment and execution of Hadoop applications in Nimbus cloud environments on Grid 5000 Alexandra Carpen-Amarie Diana Moise Bogdan Nicolae KerData Team, INRIA Outline
ConTag: Conceptual Tag Clouds Video Browsing in e-learning
ConTag: Conceptual Tag Clouds Video Browsing in e-learning 1 Ahmad Nurzid Rosli, 2 Kee-Sung Lee, 3 Ivan A. Supandi, 4 Geun-Sik Jo 1, First Author Department of Information Technology, Inha University,
Big RDF Data Partitioning and Processing using hadoop in Cloud
Big RDF Data Partitioning and Processing using hadoop in Cloud Tejas Bharat Thorat Dept. of Computer Engineering MIT Academy of Engineering, Alandi, Pune, India Prof.Ranjana R.Badre Dept. of Computer Engineering
BIG DATA TRENDS AND TECHNOLOGIES
BIG DATA TRENDS AND TECHNOLOGIES THE WORLD OF DATA IS CHANGING Cloud WHAT IS BIG DATA? Big data are datasets that grow so large that they become awkward to work with using onhand database management tools.
Journal of Chemical and Pharmaceutical Research, 2015, 7(3):1388-1392. Research Article. E-commerce recommendation system on cloud computing
Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2015, 7(3):1388-1392 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 E-commerce recommendation system on cloud computing
Deep Learning Meets Heterogeneous Computing. Dr. Ren Wu Distinguished Scientist, IDL, Baidu [email protected]
Deep Learning Meets Heterogeneous Computing Dr. Ren Wu Distinguished Scientist, IDL, Baidu [email protected] Baidu Everyday 5b+ queries 500m+ users 100m+ mobile users 100m+ photos Big Data Storage Processing
PhoCA: An extensible service-oriented tool for Photo Clustering Analysis
paper:5 PhoCA: An extensible service-oriented tool for Photo Clustering Analysis Yuri A. Lacerda 1,2, Johny M. da Silva 2, Leandro B. Marinho 1, Cláudio de S. Baptista 1 1 Laboratório de Sistemas de Informação
Associate Professor, Department of CSE, Shri Vishnu Engineering College for Women, Andhra Pradesh, India 2
Volume 6, Issue 3, March 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Special Issue
Introduction to Data Mining
Introduction to Data Mining 1 Why Data Mining? Explosive Growth of Data Data collection and data availability Automated data collection tools, Internet, smartphones, Major sources of abundant data Business:
An analysis of suitable parameters for efficiently applying K-means clustering to large TCPdump data set using Hadoop framework
An analysis of suitable parameters for efficiently applying K-means clustering to large TCPdump data set using Hadoop framework Jakrarin Therdphapiyanak Dept. of Computer Engineering Chulalongkorn University
E6893 Big Data Analytics Lecture 2: Big Data Analytics Platforms
E6893 Big Data Analytics Lecture 2: Big Data Analytics Platforms Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science Mgr., Dept. of Network Science and Big Data
Data Warehousing and Data Mining
Data Warehousing and Data Mining Winter Semester 2010/2011 Free University of Bozen, Bolzano DW Lecturer: Johann Gamper [email protected] DM Lecturer: Mouna Kacimi [email protected] http://www.inf.unibz.it/dis/teaching/dwdm/index.html
Big Data on Microsoft Platform
Big Data on Microsoft Platform Prepared by GJ Srinivas Corporate TEG - Microsoft Page 1 Contents 1. What is Big Data?...3 2. Characteristics of Big Data...3 3. Enter Hadoop...3 4. Microsoft Big Data Solutions...4
2015 The MathWorks, Inc. 1
25 The MathWorks, Inc. 빅 데이터 및 다양한 데이터 처리 위한 MATLAB의 인터페이스 환경 및 새로운 기능 엄준상 대리 Application Engineer MathWorks 25 The MathWorks, Inc. 2 Challenges of Data Any collection of data sets so large and complex
Outline. What is Big data and where they come from? How we deal with Big data?
What is Big Data Outline What is Big data and where they come from? How we deal with Big data? Big Data Everywhere! As a human, we generate a lot of data during our everyday activity. When you buy something,
Petabyte Scale Data at Facebook. Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013
Petabyte Scale Data at Facebook Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013 Agenda 1 Types of Data 2 Data Model and API for Facebook Graph Data 3 SLTP (Semi-OLTP) and Analytics
Customized Report- Big Data
GINeVRA Digital Research Hub Customized Report- Big Data 1 2014. All Rights Reserved. Agenda Context Challenges and opportunities Solutions Market Case studies Recommendations 2 2014. All Rights Reserved.
Oracle Advanced Analytics 12c & SQLDEV/Oracle Data Miner 4.0 New Features
Oracle Advanced Analytics 12c & SQLDEV/Oracle Data Miner 4.0 New Features Charlie Berger, MS Eng, MBA Sr. Director Product Management, Data Mining and Advanced Analytics [email protected] www.twitter.com/charliedatamine
Predictive Analytics
Predictive Analytics How many of you used predictive today? 2015 SAP SE. All rights reserved. 2 2015 SAP SE. All rights reserved. 3 How can you apply predictive to your business? Predictive Analytics is
From GWS to MapReduce: Google s Cloud Technology in the Early Days
Large-Scale Distributed Systems From GWS to MapReduce: Google s Cloud Technology in the Early Days Part II: MapReduce in a Datacenter COMP6511A Spring 2014 HKUST Lin Gu [email protected] MapReduce/Hadoop
SOCIAL NETWORK DATA ANALYTICS
SOCIAL NETWORK DATA ANALYTICS SOCIAL NETWORK DATA ANALYTICS Edited by CHARU C. AGGARWAL IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA Kluwer Academic Publishers Boston/Dordrecht/London
