Cloud and Big Data Standardisation
|
|
|
- Hugh Conley
- 10 years ago
- Views:
Transcription
1 Cloud and Big Data Standardisation EuroCloud Symposium ICS Track: Standards for Big Data in the Cloud 15 October 2013, Luxembourg Yuri Demchenko System and Network Engineering Group, University of Amsterdam
2 Outline Standardisation on Big Data Overview Research Data Alliance (RDA) and related initiatives PID and ORCID Overview NIST Big Data Working Group (NBD-WG) activities and deliverables Conceptual approach: Big Data Architecture Framework (BDAF) by UvA 15 October 2013, ICS2013 Big Data Standardisation Slide_2
3 Big Data Standardisation Initiatives First attempts by industry associations: ODCA, TMF Big Data and Data Analytics architectures By the major providers IBM, LexisNexis By the major Cloud Service Providers: AWS Big Data Services, Microsoft Azure HDInsight, LexisNexis HPCC Systems Research Data Alliance (RDA) Valuable work on Data Models, Metadata Registries, Trusted Registries and Metadata Research community initiatives PID (Persistent Identifier) ORCID (Open Researcher and Contributor ID) NIST Big Data Working Group (NBD-WG) Big Data Reference Architecture Big Data technology roadmap Standardisation goals Common vocabulary Capabilities Stakeholders and actors Technology Roadmap 15 October 2013, ICS2013 Big Data Standardisation 3
4 Research Data Alliance First Steps Joint initiative EC, NSF, NIST: launched October 2012 RDA1 March 2013 (Gothenburg), RDA2 Sept 2013 (Washington), RDA3 March 2014 (Dublin), RDA4 Sept 2014 (Amsterdam) Positioned as community forum and not standardisation body (currently) Working Groups created Data Foundation and Terminology Harmonization and Use of PID Information Types Data Type Registries Metadata Practical Policy (based on irods community practice) UPC (Universal Product Code) Code for Data Publication/Data Citation/Linking Repository Audit and Certification, Legal Interoperability Big Data Analytics (evaluation and study) Data Intensive Science Education and Skills development Number of application domains 15 October 2013, ICS2013 Big Data Standardisation 4
5 Persistent Identifier (PID) PID Persistent Identifier for Digital Objects Managed by European PID Consortium (EPIC) Superset of DOI - Digital Object Identifier ( Handle System by CNRI (Corporation for National Research Initiatives) for resolving DOI ( PID provides a mechanism to link data during the whole research data transformation cycle EPIC RESTful Web Service API published May October 2013, ICS2013 Big Data Standardisation 5
6 ORCID (Open Researcher and Contributor ID) ORCID is a nonproprietary alphanumeric code to uniquely identify scientific and other academic authors Launched October 2012 ORCID Statistics October 2013 Live ORCID ids 329,265 ORCID ids with at least one work 79,332 Works 2,205,971 Works with unique DOIs 1,267,083 Personal ORCID ORCID Scopus Author ID October 2013, ICS2013 Big Data Standardisation 6
7 NIST Big Data Working Group (NBD-WG) First deliverables target September September Workshop and F2F meeting Activities: Conference calls every day 17-19:00 (CET) by subgroup - Big Data Definition and Taxonomies Requirements (chair: Geoffrey Fox, Indiana Univ) Big Data Security Reference Architecture Technology Roadmap BigdataWG mailing list and useful documents Input documents Big Data Reference Architecture Requirements for 21 use cases Prospective ISO Big Data Study Committee to be started 15 October 2013, ICS2013 Big Data Standardisation 7
8 Data Provider NIST Big Data Reference Architecture Draft version 0.7, 26 Sept 2013 DATA SW Data Consumer S e c u r i t y & P r i v a c y M a n a g e m e n t I T VA L U E C H A I N DATA SW Big Data Application Provider Collection I N F O R M AT I O N VA L U E C H A I N Curation System Orchestrator Analytics Big Data Framework Provider Processing Frameworks (analytic tools, etc.) Horizontally Scalable Platforms (databases, etc.) Horizontally Scalable Infrastructures Horizontally Scalable (VM clusters) Visualization Vertically Scalable Vertically Scalable Vertically Scalable Access DATA SW Main Component Data Provider Big Data Application Provider Big Data Framework Provider Data Consumer System Orchestrator Physical and Virtual Resources (networking, computing, etc.) K E Y : Service Use DATA SW Big Data Information Flow SW Tools and Algorithms Transfer 15 October 2013, ICS2013 Big Data Standardisation 8
9 [Dec 2012] 15 October 2013, ICS2013 Big Data Standardisation 9
10 Conceptual approach: Big Data Architecture Framework (BDAF) by UvA Big Data definition: From 5+1Vs to 5 parts Big Data Architecture Framework (BDAF) components Data Lifecycle Management model 15 October 2013, ICS2013 Big Data Standardisation 10
11 Improved: 5+1 V s of Big Data Volume Variety Structured Unstructured Multi-factor Probabilistic Linked Dynamic Changing data Changing model Linkage Variability Terabytes Records/Arch Tables, Files Distributed 6 Vs of Big Data Trustworthiness Authenticity Origin, Reputation Availability Accountability Velocity Batch Real/near-time Processes Streams Value Correlations Statistical Events Hypothetical Generic Big Data Properties Volume Variety Velocity Acquired Properties (after entering system) Value Veracity Variability Commonly accepted 3V s of Big Data Veracity 15 October 2013, ICS2013 Big Data Standardisation 11
12 Big Data Definition: From 5+1V to 5 Parts (1) (1) Big Data Properties: 5V Volume, Variety, Velocity, Value, Veracity Additionally: Data Dynamicity (Variability) (2) New Data Models Data linking, provenance and referral integrity Data Lifecycle and Variability/Evolution (3) New Analytics Real-time/streaming analytics, interactive and machine learning analytics (4) New Infrastructure and Tools High performance Computing, Storage, Network Heterogeneous multi-provider services integration New Data Centric (multi-stakeholder) service models New Data Centric security models for trusted infrastructure and data processing and storage (5) Source and Target High velocity/speed data capture from variety of sensors and data sources Data delivery to different visualisation and actionable systems and consumers Full digitised input and output, (ubiquitous) sensor networks, full digital control 15 October 2013, ICS2013 Big Data Standardisation 12
13 Big Data Definition: From 5V to 5 Parts (2) Refining Gartner definition Big data is (1) high-volume, high-velocity and high-variety information assets that demand (3) cost-effective, innovative forms of information processing for (5) enhanced insight and decision making Big Data (Data Intensive) Technologies are targeting to process (1) high-volume, high-velocity, high-variety data (sets/assets) to extract intended data value and ensure high-veracity of original data and obtained information that demand (3) cost-effective, innovative forms of data and information processing (analytics) for enhanced insight, decision making, and processes control; all of those demand (should be supported by) (2) new data models (supporting all data states and stages during the whole data lifecycle) and (4) new infrastructure services and tools that allows also obtaining (and processing data) from (5) a variety of sources (including sensor networks) and delivering data in a variety of forms to different data and information consumers and devices. (1) Big Data Properties: 5V (2) New Data Models (3) New Analytics (4) New Infrastructure and Tools (5) Source and Target 15 October 2013, ICS2013 Big Data Standardisation 13
14 Defining Big Data Architecture Framework Architecture vs Ecosystem Big Data undergo a number of transformations during their lifecycle Big Data fuel the whole transformation chain Data sources and data consumers, target data usage Multi-dimensional relations between Data models and data driven processes Infrastructure components and data centric services Architecture vs Architecture Framework (Stack) Separates concerns and factors Control and Management functions, orthogonal factors Architecture Framework components are inter-related Big Data Architecture Framework (BDAF) by UvA Architecture Framework and Components for the Big Data Ecosystem. SNE Technical Report , Version 0.2, 12 September 15 October 2013, ICS2013 Big Data Standardisation 14
15 Big Data Architecture Framework (BDAF) for Big Data Ecosystem (BDE) (1) Data Models, Structures, Types Data formats, non/relational, file systems, etc. (2) Big Data Management Big Data Lifecycle (Management) Model Big Data transformation/staging Provenance, Curation, Archiving (3) Big Data Analytics and Tools Big Data Applications Target use, presentation, visualisation (4) Big Data Infrastructure (BDI) Storage, Compute, (High Performance Computing,) Network Sensor network, target/actionable devices Big Data Operational support (5) Big Data Security Data security in-rest, in-move, trusted processing environments 15 October 2013, ICS2013 Big Data Standardisation 15
16 Big Data Architecture Framework (BDAF) Aggregated Relations between components (2) Col: Used By Row: Requires This Data Models & Structures Data Managmnt & Lifecycle BigData Infrastruct & Operations BigData Analytics & Applications BigData Security Data Models Structrs Data Managmnt & Lifecycle BigData Infrastr & Operations BigData Analytics & Applicatn BigData Security 15 October 2013, ICS2013 Big Data Standardisation 16
17 Big Data Infrastructure and Analytics Tools Big Data Infrastructure Heterogeneous multi-provider inter-cloud infrastructure Data management infrastructure Collaborative Environment (user/groups managements) Advanced high performance (programmable) network Security infrastructure Big Data Analytics High Performance Computer Clusters (HPCC) Analytics/processing: Realtime, Interactive, Batch, Streaming Big Data Analytics tools and applications 15 October 2013, ICS2013 Big Data Standardisation 17
18 Consumer Data Analitics Application Data Transformation/Lifecycle Model Data Model (1) Data Model (1) Data (inter)linking? PID/OID Identification Privacy, Opacity Data Storage Data Model (3) Common Data Model? Data Variety and Variability Semantic Interoperability Data Model (4) Data Source Data Collection& Registration Data Filter/Enrich, Classification Data Analytics, Modeling, Prediction Data Delivery, Visualisation Does Data Model changes along lifecycle or data evolution? Identifying and linking data Persistent identifier Traceability vs Opacity Referral integrity Data repurposing, Analitics re-factoring, Secondary processing 15 October 2013, ICS2013 Big Data Standardisation 18
19 Evolutional/Hierarchical Data Model Actionable Data Papers/Reports ORCID Archival Data Usable Data PID/DOI Processed Data (for target use) Processed Data (for target use) Processed Data (for target use) Classified/Structured Data Classified/Structured Data Classified/Structured Data Raw Data Topics for discussion, research and standardisation Common Data Model? Data interlinking? Fits to Graph data type? Metadata Referrals Control information Policy Data patterns 15 October 2013, ICS2013 Big Data Standardisation 19
Big Data Standardisation in Industry and Research
Big Data Standardisation in Industry and Research EuroCloud Symposium ICS Track: Standards for Big Data in the Cloud 15 October 2013, Luxembourg Yuri Demchenko System and Network Engineering Group, University
Overview NIST Big Data Working Group Activities
Overview NIST Big Working Group Activities and Big Architecture Framework (BDAF) by UvA Yuri Demchenko SNE Group, University of Amsterdam Big Analytics Interest Group 17 September 2013, 2nd RDA Plenary
Defining Architecture Components of the Big Data Ecosystem
Defining Architecture Components of the Big Data Ecosystem Yuri Demchenko SNE Group, University of Amsterdam 2 nd BDDAC2014 Symposium, CTS2014 Conference 19-23 May 2014, Minneapolis, USA Outline Big Data
Big Security for Big Data: Addressing Security Challenges for the Big Data Infrastructure
Big Security for Big : Addressing Security Challenges for the Big Infrastructure Yuri Demchenko SNE Group, University of Amsterdam On behalf of Yuri Demchenko, Canh Ngo, Cees de Laat, Peter Membrey, Daniil
Big Data course and Learning Model for Online education (LMO) at the Laureate Online Education (University of Liverpool)
Big Data course and Learning Model for Online education (LMO) at the Laureate Online Education (University of Liverpool) Yuri Demchenko (University of Amsterdam) Emanuel Gruengard (Laureate Online Education)
Defining the Big Data Architecture Framework (BDAF)
Defining the Big Architecture Framework (BDAF) Outcome of the Brainstorming Session at the University of Amsterdam Yuri Demchenko (facilitator, reporter), SNE Group, University of Amsterdam 17 July 2013,
Defining Architecture Components of the Big Data Ecosystem
Defining Architecture Components of the Big Data Ecosystem Yuri Demchenko, Cees de Laat System and Network Engineering Group University of Amsterdam Amsterdam, The Netherlands e-mail: {y.demchenko, C.T.A.M.deLaat}@uva.nl
NIST Big Data Phase I Public Working Group
NIST Big Data Phase I Public Working Group Reference Architecture Subgroup May 13 th, 2014 Presented by: Orit Levin Co-chair of the RA Subgroup Agenda Introduction: Why and How NIST Big Data Reference
Big Data and Data Intensive Science:
Big Data and Data Intensive Science: Infrastructure and Other Challenges Yuri Demchenko SNE Group, University of Amsterdam EENET Conference 4 October 2013, Tartu, Outline Big Data and Data Intensive Science
Architecture Framework and Components for the Big Data Ecosystem
System and Network Engineering Group, UvA UNIVERSITEIT VAN AMSTERDAM System and Network Engineering Architecture Framework and Components for the Big Data Ecosystem Draft Version 0.2 Yuri Demchenko, Canh
Survey of Big Data Architecture and Framework from the Industry
Survey of Big Data Architecture and Framework from the Industry NIST Big Data Public Working Group Sanjay Mishra May13, 2014 3/19/2014 NIST Big Data Public Working Group 1 NIST BD PWG Survey of Big Data
Standard Big Data Architecture and Infrastructure
Standard Big Data Architecture and Infrastructure Wo Chang Digital Data Advisor Information Technology Laboratory (ITL) National Institute of Standards and Technology (NIST) [email protected] May 20, 2016
DRAFT NIST Big Data Interoperability Framework: Volume 5, Architectures White Paper Survey
NIST Special Publication 1500-5 DRAFT NIST Big Data Interoperability Framework: Volume 5, Architectures White Paper Survey NIST Big Data Public Working Group Reference Architecture Subgroup Draft Version
Big Data Systems and Interoperability
Big Data Systems and Interoperability Emerging Standards for Systems Engineering David Boyd VP, Data Solutions Email: [email protected] Topics Shameless plugs and denials What is Big Data and Why
Open Cloud exchange (OCX)
Open Cloud exchange (OCX) Draft Proposal and Progress GN3plus JRA1 Task 2 - Network Architectures for Cloud Services Yuri Demchenko SNE Group, University of Amsterdam 10 October 2013, GN3plus Symposium,
ISO/IEC JTC1 SC32. Next Generation Analytics Study Group
November 13, 2013 ISO/IEC JTC1 SC32 Next Generation Analytics Study Group Title: Author: Project: Status: Big Data Efforts Keith W. Hare Discussion Paper References: 1/6 1 NIST Big Data Public Working
NIST Big Data Interoperability Framework: Volume 5, Architectures White Paper Survey
NIST Special Publication 1500-5 NIST Big Data Interoperability Framework: Volume 5, Architectures White Paper Survey Final Version 1 NIST Big Data Public Working Group Reference Architecture Subgroup This
EDISON Education for Data Intensive Science to Open New science frontiers
H2020 INFRASUPP-4 CSA Project EDISON Education for Data Intensive Science to Open New science frontiers Yuri Demchenko University of Amsterdam Outline Consortium members EDISON Project Concept and Objectives
NIST Big Data Public Working Group
NIST Big Data Public Working Group Requirements May 13, 2014 Arnab Roy, Fujitsu On behalf of the NIST BDWG S&P Subgroup S&P Requirements Emerging due to Big Data Characteristics Variety: Traditional encryption
Data Centric Systems (DCS)
Data Centric Systems (DCS) Architecture and Solutions for High Performance Computing, Big Data and High Performance Analytics High Performance Computing with Data Centric Systems 1 Data Centric Systems
Towards a common definition and taxonomy of the Internet of Things. Towards a common definition and taxonomy of the Internet of Things...
Towards a common definition and taxonomy of the Internet of Things Contents Towards a common definition and taxonomy of the Internet of Things... 1 Introduction... 2 Common characteristics of Internet
Airline Applications of Business Intelligence Systems
Airline Applications of Business Intelligence Systems Mihai ANDRONIE* *Corresponding author Spiru Haret University Str. Ion Ghica 13, Bucharest 030045, Romania [email protected] DOI: 10.13111/2066-8201.2015.7.3.14
Reference Architecture, Requirements, Gaps, Roles
Reference Architecture, Requirements, Gaps, Roles The contents of this document are an excerpt from the brainstorming document M0014. The purpose is to show how a detailed Big Data Reference Architecture
locuz.com Big Data Services
locuz.com Big Data Services Big Data At Locuz, we help the enterprise move from being a data-limited to a data-driven one, thereby enabling smarter, faster decisions that result in better business outcome.
Cloud computing based big data ecosystem and requirements
Cloud computing based big data ecosystem and requirements Yongshun Cai ( 蔡 永 顺 ) Associate Rapporteur of ITU T SG13 Q17 China Telecom Dong Wang ( 王 东 ) Rapporteur of ITU T SG13 Q18 ZTE Corporation Agenda
NIST Big Data PWG & RDA Big Data Infrastructure WG: Implementation Strategy: Best Practice Guideline for Big Data Application Development
NIST Big Data PWG & RDA Big Data Infrastructure WG: Implementation Strategy: Best Practice Guideline for Big Data Application Development Wo Chang [email protected] National Institute of Standards and Technology
The InterNational Committee for Information Technology Standards INCITS Big Data
The InterNational Committee for Information Technology Standards INCITS Big Data Keith W. Hare JCC Consulting, Inc. April 2, 2015 Who am I? Senior Consultant with JCC Consulting, Inc. since 1985 High performance
Addressing Big Data Issues in Scientific Data Infrastructure
Addressing Big Issues in Scientific Infrastructure Yuri Demchenko, SNE Group, University of Amsterdam 21 May 2013, BDDAC2013 Workshop CTS2013 San Diego Outline Background to Big research at SNE/UvA Big
COMP9321 Web Application Engineering
COMP9321 Web Application Engineering Semester 2, 2015 Dr. Amin Beheshti Service Oriented Computing Group, CSE, UNSW Australia Week 11 (Part II) http://webapps.cse.unsw.edu.au/webcms2/course/index.php?cid=2411
Big Data and Analytics: Challenges and Opportunities
Big Data and Analytics: Challenges and Opportunities Dr. Amin Beheshti Lecturer and Senior Research Associate University of New South Wales, Australia (Service Oriented Computing Group, CSE) Talk: Sharif
ISSN:2321-1156 International Journal of Innovative Research in Technology & Science(IJIRTS)
Nguyễn Thị Thúy Hoài, College of technology _ Danang University Abstract The threading development of IT has been bringing more challenges for administrators to collect, store and analyze massive amounts
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON Overview * Introduction * Multiple faces of Big Data * Challenges of Big Data * Cloud Computing
Cloud Essentials for Architects using OpenStack
Cloud Essentials for Architects using OpenStack Course Overview Start Date 18th December 2014 Duration 2 Days Location Dublin Course Code SS906 Programme Overview Cloud Computing is gaining increasing
International Journal of Advanced Engineering Research and Applications (IJAERA) ISSN: 2454-2377 Vol. 1, Issue 6, October 2015. Big Data and Hadoop
ISSN: 2454-2377, October 2015 Big Data and Hadoop Simmi Bagga 1 Satinder Kaur 2 1 Assistant Professor, Sant Hira Dass Kanya MahaVidyalaya, Kala Sanghian, Distt Kpt. INDIA E-mail: [email protected]
Data collection architecture for Big Data
Data collection architecture for Big Data a framework for a research agenda (Research in progress - ERP Sense Making of Big Data) Wout Hofman, May 2015, BDEI workshop 2 Big Data succes stories bias our
OpenAIRE Research Data Management Briefing paper
OpenAIRE Research Data Management Briefing paper Understanding Research Data Management February 2016 H2020-EINFRA-2014-1 Topic: e-infrastructure for Open Access Research & Innovation action Grant Agreement
USING BIG DATA FOR INTELLIGENT BUSINESSES
HENRI COANDA AIR FORCE ACADEMY ROMANIA INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER AFASES 2015 Brasov, 28-30 May 2015 GENERAL M.R. STEFANIK ARMED FORCES ACADEMY SLOVAK REPUBLIC USING BIG DATA FOR INTELLIGENT
Data Refinery with Big Data Aspects
International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 7 (2013), pp. 655-662 International Research Publications House http://www. irphouse.com /ijict.htm Data
Big Data Analytics Platform @ Nokia
Big Data Analytics Platform @ Nokia 1 Selecting the Right Tool for the Right Workload Yekesa Kosuru Nokia Location & Commerce Strata + Hadoop World NY - Oct 25, 2012 Agenda Big Data Analytics Platform
MEDICAL DATA MINING. Timothy Hays, PhD. Health IT Strategy Executive Dynamics Research Corporation (DRC) December 13, 2012
MEDICAL DATA MINING Timothy Hays, PhD Health IT Strategy Executive Dynamics Research Corporation (DRC) December 13, 2012 2 Healthcare in America Is a VERY Large Domain with Enormous Opportunities for Data
Big Data & Security. Aljosa Pasic 12/02/2015
Big Data & Security Aljosa Pasic 12/02/2015 Welcome to Madrid!!! Big Data AND security: what is there on our minds? Big Data tools and technologies Big Data T&T chain and security/privacy concern mappings
Big Data and Complex Networks Analytics. Timos Sellis, CSIT Kathy Horadam, MGS
Big Data and Complex Networks Analytics Timos Sellis, CSIT Kathy Horadam, MGS Big Data What is it? Most commonly accepted definition, by Gartner (the 3 Vs) Big data is high-volume, high-velocity and high-variety
Standardization Requirements Analysis on Big Data in Public Sector based on Potential Business Models
, pp. 165-172 http://dx.doi.org/10.14257/ijseia.2014.8.11.15 Standardization Requirements Analysis on Big Data in Public Sector based on Potential Business Models Suwook Ha 1, Seungyun Lee 2 and Kangchan
The 4 Pillars of Technosoft s Big Data Practice
beyond possible Big Use End-user applications Big Analytics Visualisation tools Big Analytical tools Big management systems The 4 Pillars of Technosoft s Big Practice Overview Businesses have long managed
FITMAN Future Internet Enablers for the Sensing Enterprise: A FIWARE Approach & Industrial Trialing
FITMAN Future Internet Enablers for the Sensing Enterprise: A FIWARE Approach & Industrial Trialing Oscar Lazaro. [email protected] Ainara Gonzalez [email protected] June Sola [email protected]
BIG DATA Alignment of Supply & Demand Nuria de Lama Representative of Atos Research &
BIG DATA Alignment of Supply & Demand Nuria de Lama Representative of Atos Research & Innovation 04-08-2011 to the EC 8 th February, Luxembourg Your Atos business Research technologists. and Innovation
EL Program: Smart Manufacturing Systems Design and Analysis
EL Program: Smart Manufacturing Systems Design and Analysis Program Manager: Dr. Sudarsan Rachuri Associate Program Manager: K C Morris Strategic Goal: Smart Manufacturing, Construction, and Cyber-Physical
The Platform is the Planet
The Platform is the Planet IoT Solutions in a Heterogeneous World Kevin Miller ([email protected]) Principal Program Manager, Azure IoT IoT Solutions Until Now Most earlier successful IoT deployments
Cloud and Big Data initiatives. Mark O Connell, EMC
Object storage PRESENTATION systems: TITLE GOES the underpinning HERE of Cloud and Big Data initiatives Mark O Connell, EMC SNIA Legal Notice The material contained in this tutorial is copyrighted by the
Cloud Computing Standards: Overview and ITU-T positioning
ITU Workshop on Cloud Computing (Tunis, Tunisia, 18-19 June 2012) Cloud Computing Standards: Overview and ITU-T positioning Dr France Telecom, Orange Labs Networks & Carriers / R&D Chairman ITU-T Working
A Big Picture for Big Data
Supported by EU FP7 SCIDIP-ES, EU FP7 EarthServer A Big Picture for Big Data FOSS4G-Europe, Bremen, 2014-07-15 Peter Baumann Jacobs University rasdaman GmbH [email protected] Our Stds Involvement
Standards for Big Data in the Cloud
Standards for Big Data in the Cloud International Cloud Symposium 15/10/2013 Carola Carstens (Project Officer) DG CONNECT, Unit G3 Data Value Chain European Commission Outline 1) Data Value Chain Unit
What happens when Big Data and Master Data come together?
What happens when Big Data and Master Data come together? Jeremy Pritchard Master Data Management fgdd 1 What is Master Data? Master data is data that is shared by multiple computer systems. The Information
Scalable End-User Access to Big Data http://www.optique-project.eu/ HELLENIC REPUBLIC National and Kapodistrian University of Athens
Scalable End-User Access to Big Data http://www.optique-project.eu/ HELLENIC REPUBLIC National and Kapodistrian University of Athens 1 Optique: Improving the competitiveness of European industry For many
Big Data for Government Symposium http://www.ttcus.com
@TECHTrain Big Data for Government Symposium http://www.ttcus.com Linkedin/Groups: Technology Training i Corporation NIST Big Data NIST Bi D t Public Working Group p Wo Chang, NIST, [email protected] Ro
Defining Generic Architecture for Cloud Infrastructure as a Service Model
Defining Generic Architecture for Cloud Infrastructure as a Service Model Yuri Demchenko 1 University of Amsterdam Science Park 904, Amsterdam, The Netherlands E-mail: [email protected] Cees de Laat University
How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning
How to use Big Data in Industry 4.0 implementations LAURI ILISON, PhD Head of Big Data and Machine Learning Big Data definition? Big Data is about structured vs unstructured data Big Data is about Volume
Big Data Strategy Issues Paper
Big Data Strategy Issues Paper MARCH 2013 Contents 1. Introduction 3 1.1 Where are we now? 3 1.2 Why a big data strategy? 4 2. Opportunities for Australian Government agencies 5 2.1 What the future looks
TRANSFoRm: Vision of a learning healthcare system
TRANSFoRm: Vision of a learning healthcare system Vasa Curcin, Imperial College London Theo Arvanitis, University of Birmingham Derek Corrigan, Royal College of Surgeons Ireland TRANSFoRm is partially
Klarna Tech Talk: Mind the Data! Jeff Pollock InfoSphere Information Integration & Governance
Klarna Tech Talk: Mind the Data! Jeff Pollock InfoSphere Information Integration & Governance IBM s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice
BIG. Big Data Analysis John Domingue (STI International and The Open University) Big Data Public Private Forum
Big Data Analysis John Domingue (STI International and The Open University) Project co-funded by the European Commission within the 7th Framework Program (Grant Agreement No. 257943) 1 The Data landscape
SURFsara Data Services
SURFsara Data Services SUPPORTING DATA-INTENSIVE SCIENCES Mark van de Sanden The world of the many Many different users (well organised (international) user communities, research groups, universities,
Standards for Big Data in the Cloud
Standards for Big Data in the Cloud James Kobielus Chair, CSCC Big Data Working Group Big Data Evangelist, Senior Program Director, Product Marketing, Big Data Analytics, IBM [email protected] 15 October
Service Road Map for ANDS Core Infrastructure and Applications Programs
Service Road Map for ANDS Core and Applications Programs Version 1.0 public exposure draft 31-March 2010 Document Target Audience This is a high level reference guide designed to communicate to ANDS external
User Needs and Requirements Analysis for Big Data Healthcare Applications
User Needs and Requirements Analysis for Big Data Healthcare Applications Sonja Zillner, Siemens AG In collaboration with: Nelia Lasierra, Werner Faix, and Sabrina Neururer MIE 2014 in Istanbul: 01-09-2014
Synergies between the Big Data Value (BDV) Public Private Partnership and the Helix Nebula Initiative (HNI)
Synergies between the Big Data Value (BDV) Public Private Partnership and the Helix Nebula Initiative (HNI) Sergio Andreozzi Strategy & Policy Manager, EGI.eu The Helix Nebula Initiative & PICSE: Towards
Building the Internet of Things Jim Green - CTO, Data & Analytics Business Group, Cisco Systems
Building the Internet of Things Jim Green - CTO, Data & Analytics Business Group, Cisco Systems Brian McCarson Sr. Principal Engineer & Sr. System Architect, Internet of Things Group, Intel Corp Mac Devine
TECHNICAL SPECIFICATION: FEDERATED CERTIFIED SERVICE BROKERAGE OF EU PUBLIC ADMINISTRATION CLOUD
REALIZATION OF A RESEARCH AND DEVELOPMENT PROJECT (PRE-COMMERCIAL PROCUREMENT) ON CLOUD FOR EUROPE TECHNICAL SPECIFICATION: FEDERATED CERTIFIED SERVICE BROKERAGE OF EU PUBLIC ADMINISTRATION CLOUD ANNEX
UniGR Workshop: Big Data «The challenge of visualizing big data»
Dept. ISC Informatics, Systems & Collaboration UniGR Workshop: Big Data «The challenge of visualizing big data» Dr Ir Benoît Otjacques Deputy Scientific Director ISC The Future is Data-based Can we help?
USC PRICE SCHOOL OF PUBLIC POLICY COURSE SYLLABUS: PPD 654 INFORMATION TECHNOLOGY MANAGEMENT IN THE PUBLIC SECTOR
UNIVERSITY OF SOUTHERN CALIFORNIA USC PRICE SCHOOL OF PUBLIC POLICY COURSE SYLLABUS: PPD 654 INFORMATION TECHNOLOGY MANAGEMENT IN THE PUBLIC SECTOR Fall 2014 Instructor: Ali Farahani, Ph.D., [email protected]
Bringing Strategy to Life Using an Intelligent Data Platform to Become Data Ready. Informatica Government Summit April 23, 2015
Bringing Strategy to Life Using an Intelligent Platform to Become Ready Informatica Government Summit April 23, 2015 Informatica Solutions Overview Power the -Ready Enterprise Government Imperatives Improve
Horizon 2020. Research e-infrastructures Excellence in Science Work Programme 2016-17. Wim Jansen. DG CONNECT European Commission
Horizon 2020 Research e-infrastructures Excellence in Science Work Programme 2016-17 Wim Jansen DG CONNECT European Commission 1 Before we start The material here presented has been compiled with great
IBM Solution Framework for Lifecycle Management of Research Data. 2008 IBM Corporation
IBM Solution Framework for Lifecycle Management of Research Data Aspects of Lifecycle Management Research Utilization of research paper Usage history Metadata enrichment Usage Pattern / Citation Collaboration
Big Data, Integration and Governance: Ask the Experts
Big, Integration and Governance: Ask the Experts January 29, 2013 1 The fourth dimension of Big : Veracity handling data in doubt Volume Velocity Variety Veracity* at Rest Terabytes to exabytes of existing
Addressing Big Data Issues in Scientific Data Infrastructure
Addressing Big Data Issues in Scientific Data Infrastructure Yuri Demchenko, Paola Grosso, Cees de Laat System and Network Engineering Group University of Amsterdam Amsterdam, The Netherlands e-mail: {y.demchenko,
A Roadmap for Future Architectures and Services for Manufacturing. Carsten Rückriegel Road4FAME-EU-Consultation Meeting Brussels, May, 22 nd 2015
A Roadmap for Future Architectures and Services for Manufacturing Carsten Rückriegel Road4FAME-EU-Consultation Meeting Brussels, May, 22 nd 2015 Road4FAME in a nutshell Road4FAME = Development of a Strategic
