RAPIDMINER FREE SOFTWARE FOR DATA MINING, ANALYTICS AND BUSINESS INTELLIGENCE. Luigi Grimaudo Database And Data Mining Research Group
|
|
|
- Stephen Washington
- 10 years ago
- Views:
Transcription
1 RAPIDMINER FREE SOFTWARE FOR DATA MINING, ANALYTICS AND BUSINESS INTELLIGENCE Luigi Grimaudo Database And Data Mining Research Group
2 Summary RapidMiner project Strengths How to use RapidMiner Operator highlights RapidMiner GUI References
3 RapidMiner Project A fully integrated environment for machine learning, data mining, text mining, predictive analytics and business intelligence It is distributed under the AGPL open source license and has been hosted by SourceForge since 2004 It can be used as a stand-alone application for data analysis or as a data mining engine for the integration into own code
4 RapidMiner Project Short History: The RapidMiner project started in 2001 with the name of YALE (Yet Another Learning Environment). The main contributors were Ralf Klinkenberg, Ingo Mierswa, and Simon Fischer from the Artificial Intelligence Unit of the University of Dortmund In 2006 Ingo Mierswa and Ralf Klinkenberg founded the company Rapid-I and on Tuesday, May 29th, 2007 it change the name of the software in RapidMiner Now Rapid-I ensures the maintenance and further development of RapidMiner and the support of its users
5 Strengths Data Integration, Analytical ETL, Data Analysis, and Reporting in one single tool Friendly and powerful graphical user interface for the design of analysis processes Repositories for process, data and metadata handling On-the-fly error recognition and quick fixes to help users Complete and flexible library with hundreds of data loading, data transformation, data modeling and data visualization methods Available open-source code (Java) to extend and modify the data mining and analysis system
6 Strengths Well-known machine learning library WEKA fully integrated in the core of the system Internal XML representation ensures standardized interchange format of processes Graphical process design for standard tasks and scripting language for arbitrary operations Access to data sources like Excel, Access, Oracle, IBM DB2, Microsoft SQL, Sybase, Ingres, MySQL, Postgres, SPSS, dbase, Text files and more Very powerful high-dimensional plotting facilities Several plugin already available and extension mechanisms enable the customization and the adaptation of operators
7 How to use RapidMiner RapidMiner can be used in several ways: As a standalone tool by means of the simple GUI, connecting the requested operators to build your process, executing it and getting its result directly in the RapidMiner enviroment As a batch process one can build the workflow by means of the GUI and then execute it running the RapidMiner script with the XML process as input As a Java API one can integrate the RapidMiner facilities in your own data mining or business intelligence code building the requested process directly inside the java code As an hybrid solution one can build the process with the GUI to executing and to managing it inside a Java code
8 Operator highlights Data mining modeling: Support Vector Machines (SVM), Rule learners Decision trees Bayes Gaussian Processes Neural Networks Evolutionary optimization Boosting Apriori FPGrowth Clustering and many others
9 Operator highlights ETL and OLAP: Aggregation Discretization Normalization Filter Sampling PCA Missing value replenishment Lot more
10 Operator highlights Evaluation: Cross-validation Leave-one-out Sliding time windows Back testing Significance tests ROC Etc.
11 RapidMiner GUI The GUI generates an XML file that defines the analytical processes the user wishes to apply to the data. This file is then read by the RapidMiner engine to run the analyses automatically. While these are running, the GUI can also be used to interactively control and inspect running processes.
12 RapidMiner GUI Perspectives Design Perspective: is the central RapidMiner perspective where all analysis processes are created and managed Result Perspective: If a process supplies results then RapidMiner takes you to this Result Perspective Welcome Perspective: first perspective when RapidMiner is lunched, where you can see the last executed processes and some logs.
13 Design Perspective In this view all the work steps (called operators) available in RapidMiner are presents and they are used as building block for every process. The repository section serves for the management and structuring of your analysis processes into projects and at the same time as both a source of data as well as of the associated metadata.
14 Design Perspective The process view shows the individual steps within the analysis process as well as their connections. New steps can be added to the current process. Connections between them can de defined and detached.
15 Operators Working with RapidMiner fundamentally consists in defining analysis process by indicating a succession of operators. The inputs and outputs of operators are generated and consumed by ports. Every operator is defined by its inputs, outputs, action performed and parameters.
16 Result Perspective Objects which are placed at the result ports at the right-hand side of a process are automatically displayed in the Result Perspective after the process is completed. Each currently opened and indicated result is displayed as an additional tab in this area.
17 Plot View One of the strongest features of RapidMiner are the numerous visualisation methods for data, other tables, modells and results offered in the Plot View.
18 References Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M. and Euler, T., Yale (now: RapidMiner): Rapid Prototyping for Complex Data Mining Tasks. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2006)
The basic data mining algorithms introduced may be enhanced in a number of ways.
DATA MINING TECHNOLOGIES AND IMPLEMENTATIONS The basic data mining algorithms introduced may be enhanced in a number of ways. Data mining algorithms have traditionally assumed data is memory resident,
An Introduction to Data Mining
An Introduction to Intel Beijing [email protected] January 17, 2014 Outline 1 DW Overview What is Notable Application of Conference, Software and Applications Major Process in 2 Major Tasks in Detail
PARAMETRIC COMPARISON OF DATA MINING TOOLS
PARAMETRIC COMPARISON OF DATA MINING TOOLS Neha Chauhan 1, Nisha Gautam 2 1 Student of Master of Technology, 2 Assistant Professor, Department of Computer Science and Engineering, AP Goyal Shimla University,
DATA MINING ALPHA MINER
DATA MINING ALPHA MINER AlphaMiner is developed by the E-Business Technology Institute (ETI) of the University of Hong Kong under the support from the Innovation and Technology Fund (ITF) of the Government
Radoop: Analyzing Big Data with RapidMiner and Hadoop
Radoop: Analyzing Big Data with RapidMiner and Hadoop Zoltán Prekopcsák, Gábor Makrai, Tamás Henk, Csaba Gáspár-Papanek Budapest University of Technology and Economics, Hungary Abstract Working with large
Introduction Predictive Analytics Tools: Weka
Introduction Predictive Analytics Tools: Weka Predictive Analytics Center of Excellence San Diego Supercomputer Center University of California, San Diego Tools Landscape Considerations Scale User Interface
An Introduction to WEKA. As presented by PACE
An Introduction to WEKA As presented by PACE Download and Install WEKA Website: http://www.cs.waikato.ac.nz/~ml/weka/index.html 2 Content Intro and background Exploring WEKA Data Preparation Creating Models/
DBTech Pro Workshop. Knowledge Discovery from Databases (KDD) Including Data Warehousing and Data Mining. Georgios Evangelidis
DBTechNet DBTech Pro Workshop Knowledge Discovery from Databases (KDD) Including Data Warehousing and Data Mining Dimitris A. Dervos [email protected] http://aetos.it.teithe.gr/~dad Georgios Evangelidis
The Prophecy-Prototype of Prediction modeling tool
The Prophecy-Prototype of Prediction modeling tool Ms. Ashwini Dalvi 1, Ms. Dhvni K.Shah 2, Ms. Rujul B.Desai 3, Ms. Shraddha M.Vora 4, Mr. Vaibhav G.Tailor 5 Department of Information Technology, Mumbai
Introduction to Data Mining
Introduction to Data Mining Jay Urbain Credits: Nazli Goharian & David Grossman @ IIT Outline Introduction Data Pre-processing Data Mining Algorithms Naïve Bayes Decision Tree Neural Network Association
IBM SPSS Modeler 15 In-Database Mining Guide
IBM SPSS Modeler 15 In-Database Mining Guide Note: Before using this information and the product it supports, read the general information under Notices on p. 217. This edition applies to IBM SPSS Modeler
Open Source Business Intelligence Intro
Open Source Business Intelligence Intro Stefano Scamuzzo Senior Technical Manager Architecture & Consulting Research & Innovation Division Engineering Ingegneria Informatica The Open Source Question In
DATA MINING USING PENTAHO / WEKA
DATA MINING USING PENTAHO / WEKA Yannis Angelis Channels & Information Exploitation Division Application Delivery Sector EFG Eurobank 1 Agenda BI in Financial Environments Pentaho Community Platform Weka
Data Mining Solutions for the Business Environment
Database Systems Journal vol. IV, no. 4/2013 21 Data Mining Solutions for the Business Environment Ruxandra PETRE University of Economic Studies, Bucharest, Romania [email protected] Over
GeoKettle: A powerful open source spatial ETL tool
GeoKettle: A powerful open source spatial ETL tool FOSS4G 2010 Dr. Thierry Badard, CTO Spatialytics inc. Quebec, Canada [email protected] Barcelona, Spain Sept 9th, 2010 What is GeoKettle? It is
SAS Business Intelligence Online Training
SAS Business Intelligence Online Training IQ Training facility offers best online SAS Business Intelligence training. Our SAS Business Intelligence online training is regarded as the best training in Hyderabad
Didacticiel Études de cas. Association Rules mining with Tanagra, R (arules package), Orange, RapidMiner, Knime and Weka.
1 Subject Association Rules mining with Tanagra, R (arules package), Orange, RapidMiner, Knime and Weka. This document extends a previous tutorial dedicated to the comparison of various implementations
Azure Machine Learning, SQL Data Mining and R
Azure Machine Learning, SQL Data Mining and R Day-by-day Agenda Prerequisites No formal prerequisites. Basic knowledge of SQL Server Data Tools, Excel and any analytical experience helps. Best of all:
Prof. Pietro Ducange Students Tutor and Practical Classes Course of Business Intelligence 2014 http://www.iet.unipi.it/p.ducange/esercitazionibi/
Prof. Pietro Ducange Students Tutor and Practical Classes Course of Business Intelligence 2014 http://www.iet.unipi.it/p.ducange/esercitazionibi/ Email: [email protected] Office: Dipartimento di Ingegneria
Quick start. A project with SpagoBI 3.x
Quick start. A project with SpagoBI 3.x Summary: 1 SPAGOBI...2 2 SOFTWARE DOWNLOAD...4 3 SOFTWARE INSTALLATION AND CONFIGURATION...5 3.1 Installing SpagoBI Server...5 3.2Installing SpagoBI Studio and Meta...6
DATA MINING TOOL FOR INTEGRATED COMPLAINT MANAGEMENT SYSTEM WEKA 3.6.7
DATA MINING TOOL FOR INTEGRATED COMPLAINT MANAGEMENT SYSTEM WEKA 3.6.7 UNDER THE GUIDANCE Dr. N.P. DHAVALE, DGM, INFINET Department SUBMITTED TO INSTITUTE FOR DEVELOPMENT AND RESEARCH IN BANKING TECHNOLOGY
Practical Data Science with Azure Machine Learning, SQL Data Mining, and R
Practical Data Science with Azure Machine Learning, SQL Data Mining, and R Overview This 4-day class is the first of the two data science courses taught by Rafal Lukawiecki. Some of the topics will be
SAP BusinessObjects Business Intelligence (BI) platform Document Version: 4.1, Support Package 3-2014-04-03. Report Conversion Tool Guide
SAP BusinessObjects Business Intelligence (BI) platform Document Version: 4.1, Support Package 3-2014-04-03 Table of Contents 1 Report Conversion Tool Overview.... 4 1.1 What is the Report Conversion Tool?...4
Knowledge Discovery in Data with FIT-Miner
Knowledge Discovery in Data with FIT-Miner Michal Šebek, Martin Hlosta and Jaroslav Zendulka Faculty of Information Technology, Brno University of Technology, Božetěchova 2, Brno {isebek,ihlosta,zendulka}@fit.vutbr.cz
A Tour of the Zoo the Hadoop Ecosystem Prafulla Wani
A Tour of the Zoo the Hadoop Ecosystem Prafulla Wani Technical Architect - Big Data Syntel Agenda Welcome to the Zoo! Evolution Timeline Traditional BI/DW Architecture Where Hadoop Fits In 2 Welcome to
Pentaho Data Mining Last Modified on January 22, 2007
Pentaho Data Mining Copyright 2007 Pentaho Corporation. Redistribution permitted. All trademarks are the property of their respective owners. For the latest information, please visit our web site at www.pentaho.org
Review on Data Mining Tools
IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 1 Issue 2, April 2014. Review on Data Mining Tools Heena Agrawal 1, Pratik Agrawal 2 1 Lecture/ComputerTechnology Department,
Welcome to the second half ofour orientation on Spotfire Administration.
Welcome to the second half ofour orientation on Spotfire Administration. In this presentation, I ll give a quick overview of the products that can be used to enhance a Spotfire environment: TIBCO Metrics,
OWB Users, Enter The New ODI World
OWB Users, Enter The New ODI World Kulvinder Hari Oracle Introduction Oracle Data Integrator (ODI) is a best-of-breed data integration platform focused on fast bulk data movement and handling complex data
Sunnie Chung. Cleveland State University
Sunnie Chung Cleveland State University Data Scientist Big Data Processing Data Mining 2 INTERSECT of Computer Scientists and Statisticians with Knowledge of Data Mining AND Big data Processing Skills:
RapidMiner Radoop Documentation
RapidMiner Radoop Documentation Release 2.3.0 RapidMiner April 30, 2015 CONTENTS 1 Introduction 1 1.1 Preface.................................................. 1 1.2 Basic Architecture............................................
Index Contents Page No. Introduction . Data Mining & Knowledge Discovery
Index Contents Page No. 1. Introduction 1 1.1 Related Research 2 1.2 Objective of Research Work 3 1.3 Why Data Mining is Important 3 1.4 Research Methodology 4 1.5 Research Hypothesis 4 1.6 Scope 5 2.
Name: Srinivasan Govindaraj Title: Big Data Predictive Analytics
Name: Srinivasan Govindaraj Title: Big Data Predictive Analytics Please note the following IBM s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice
An intelligent tool for expediting and automating data mining steps. Ourania Hatzi, Nikolaos Zorbas, Mara Nikolaidou and Dimosthenis Anagnostopoulos
An intelligent tool for expediting and automating data mining steps Ourania Hatzi, Nikolaos Zorbas, Mara Nikolaidou and Dimosthenis Anagnostopoulos Outline Data Mining, current tools An intelligent tool
Oracle Business Intelligence EE. Prab h akar A lu ri
Oracle Business Intelligence EE Prab h akar A lu ri Agenda 1.Overview 2.Components 3.Oracle Business Intelligence Server 4.Oracle Business Intelligence Dashboards 5.Oracle Business Intelligence Answers
How To Solve The Kd Cup 2010 Challenge
A Lightweight Solution to the Educational Data Mining Challenge Kun Liu Yan Xing Faculty of Automation Guangdong University of Technology Guangzhou, 510090, China [email protected] [email protected]
Data Mining Tools and Trends An Overview S.Hameetha Begum * Senior Lecturer, Dept of Computing, Muscat College, Oman
Mining Tools and Trends An Overview S.Hameetha Begum * Senior Lecturer, Dept of Computing, Muscat College, Oman Abstract Today Information Technology plays a vital role in every aspects of the human life.
ITG Software Engineering
IBM WebSphere Administration 8.5 Course ID: Page 1 Last Updated 12/15/2014 WebSphere Administration 8.5 Course Overview: This 5 Day course will cover the administration and configuration of WebSphere 8.5.
THE COMPARISON OF DATA MINING TOOLS
T.C. İSTANBUL KÜLTÜR UNIVERSITY THE COMPARISON OF DATA MINING TOOLS Data Warehouses and Data Mining Yrd.Doç.Dr. Ayça ÇAKMAK PEHLİVANLI Department of Computer Engineering İstanbul Kültür University submitted
A Comparative study of Techniques in Data Mining
A Comparative study of Techniques in Data Mining Manika Verma 1, Dr. Devarshi Mehta 2 1 Asst. Professor, Department of Computer Science, Kadi Sarva Vishwavidyalaya, Gandhinagar, India 2 Associate Professor
Open source framework for data-flow visual analytic tools for large databases
Open source framework for data-flow visual analytic tools for large databases D5.6 v1.0 WP5 Visual Analytics: D5.6 Open source framework for data flow visual analytic tools for large databases Dissemination
OpenText Actuate Big Data Analytics 5.2
OpenText Actuate Big Data Analytics 5.2 OpenText Actuate Big Data Analytics 5.2 introduces several improvements that make the product more useful, powerful and flexible for end users. A new data loading
A Case of Study on Hadoop Benchmark Behavior Modeling Using ALOJA-ML
www.bsc.es A Case of Study on Hadoop Benchmark Behavior Modeling Using ALOJA-ML Josep Ll. Berral, Nicolas Poggi, David Carrera Workshop on Big Data Benchmarks Toronto, Canada 2015 1 Context ALOJA: framework
Data Mining. Knowledge Discovery, Data Warehousing and Machine Learning Final remarks. Lecturer: JERZY STEFANOWSKI
Data Mining Knowledge Discovery, Data Warehousing and Machine Learning Final remarks Lecturer: JERZY STEFANOWSKI Email: [email protected] Data Mining a step in A KDD Process Data mining:
Ethar Ibrahim Elsaka
[email protected] 9348 Cherry Hill Rd., Apt 621 College Park MD, 20740 USA Tel: 240 581 2664 Ethar Ibrahim Elsaka Education PhD Student, Department of Computer Science, University of Maryland at College
WebFOCUS RStat. RStat. Predict the Future and Make Effective Decisions Today. WebFOCUS RStat
Information Builders enables agile information solutions with business intelligence (BI) and integration technologies. WebFOCUS the most widely utilized business intelligence platform connects to any enterprise
LISTE DES DOCUMENTS ORACLE
REFERENCES SQL SQL Reference A58225 A67790 a96540 b14200-01 b28286 Oracle Database SQL Quick Reference b14195-01 b28285 GETTING STARTED Getting started with Oracle Management Pack for Oracle Application
Automated Data Ingestion. Bernhard Disselhoff Enterprise Sales Engineer
Automated Data Ingestion Bernhard Disselhoff Enterprise Sales Engineer Agenda Pentaho Overview Templated dynamic ETL workflows Pentaho Data Integration (PDI) Use Cases Pentaho Overview Overview What we
Pentaho Data Integration 4 and MySQL. Matt Casters: Pentaho's Chief Data Integration Kettle Project Founder
Pentaho Data Integration 4 and MySQL Matt Casters: Pentaho's Chief Data Integration Kettle Project Founder MySQL User Conference, Tuesday April 13th, 2010 Agenda Pentaho: an introduction Pentaho Data Integration
Data Mining Analytics for Business Intelligence and Decision Support
Data Mining Analytics for Business Intelligence and Decision Support Chid Apte, T.J. Watson Research Center, IBM Research Division Knowledge Discovery and Data Mining (KDD) techniques are used for analyzing
In this presentation, you will be introduced to data mining and the relationship with meaningful use.
In this presentation, you will be introduced to data mining and the relationship with meaningful use. Data mining refers to the art and science of intelligent data analysis. It is the application of machine
MicroStrategy Course Catalog
MicroStrategy Course Catalog 1 microstrategy.com/education 3 MicroStrategy course matrix 4 MicroStrategy 9 8 MicroStrategy 10 table of contents MicroStrategy course matrix MICROSTRATEGY 9 MICROSTRATEGY
What is Data Mining? Data Mining (Knowledge discovery in database) Data mining: Basic steps. Mining tasks. Classification: YES, NO
What is Data Mining? Data Mining (Knowledge discovery in database) Data Mining: "The non trivial extraction of implicit, previously unknown, and potentially useful information from data" William J Frawley,
Introduction to Datawarehousing
DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI Master of Science in Engineering in Computer Science (MSE-CS) Seminars in Software and Services for the Information Society
Machine Learning. Chapter 18, 21. Some material adopted from notes by Chuck Dyer
Machine Learning Chapter 18, 21 Some material adopted from notes by Chuck Dyer What is learning? Learning denotes changes in a system that... enable a system to do the same task more efficiently the next
ORACLE OLAP. Oracle OLAP is embedded in the Oracle Database kernel and runs in the same database process
ORACLE OLAP KEY FEATURES AND BENEFITS FAST ANSWERS TO TOUGH QUESTIONS EASILY KEY FEATURES & BENEFITS World class analytic engine Superior query performance Simple SQL access to advanced analytics Enhanced
Distance Learning and Examining Systems
Lodz University of Technology Distance Learning and Examining Systems - Theory and Applications edited by Sławomir Wiak Konrad Szumigaj HUMAN CAPITAL - THE BEST INVESTMENT The project is part-financed
Cloud Ready Data: Speeding Your Journey to the Cloud
Cloud Ready Data: Speeding Your Journey to the Cloud Hybrid Cloud first Born to the cloud 3 Am I part of a Cloud First organization? Am I part of a Cloud First agency? The cloud applications questions
Extend your analytic capabilities with SAP Predictive Analysis
September 9 11, 2013 Anaheim, California Extend your analytic capabilities with SAP Predictive Analysis Charles Gadalla Learning Points Advanced analytics strategy at SAP Simplifying predictive analytics
Model Deployment. Dr. Saed Sayad. University of Toronto 2010 [email protected]. http://chem-eng.utoronto.ca/~datamining/
Model Deployment Dr. Saed Sayad University of Toronto 2010 [email protected] http://chem-eng.utoronto.ca/~datamining/ 1 Model Deployment Creation of the model is generally not the end of the project.
Oracle Advanced Analytics Oracle R Enterprise & Oracle Data Mining
Oracle Advanced Analytics Oracle R Enterprise & Oracle Data Mining R The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated
DATA MINING AND WAREHOUSING CONCEPTS
CHAPTER 1 DATA MINING AND WAREHOUSING CONCEPTS 1.1 INTRODUCTION The past couple of decades have seen a dramatic increase in the amount of information or data being stored in electronic format. This accumulation
Big Data & Security. Aljosa Pasic 12/02/2015
Big Data & Security Aljosa Pasic 12/02/2015 Welcome to Madrid!!! Big Data AND security: what is there on our minds? Big Data tools and technologies Big Data T&T chain and security/privacy concern mappings
Chapter 5. Warehousing, Data Acquisition, Data. Visualization
Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization 5-1 Learning Objectives
Comparative Study in Building of Associations Rules from Commercial Transactions through Data Mining Techniques
Third International Conference Modelling and Development of Intelligent Systems October 10-12, 2013 Lucian Blaga University Sibiu - Romania Comparative Study in Building of Associations Rules from Commercial
<Insert Picture Here> Introducing Data Modeling and Design with Oracle SQL Developer Data Modeler
Introducing Data Modeling and Design with Oracle SQL Developer Data Modeler Sue Harper Senior Principle Product Manager 1 The following is intended to outline our general product
Knowledge Discovery Process and Data Mining - Final remarks
Knowledge Discovery Process and Data Mining - Final remarks Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Lecture 14 SE Master Course 2008/2009
Analytics on Big Data
Analytics on Big Data Riccardo Torlone Università Roma Tre Credits: Mohamed Eltabakh (WPI) Analytics The discovery and communication of meaningful patterns in data (Wikipedia) It relies on data analysis
Oracle Business Intelligence Foundation Suite 11g Essentials Exam Study Guide
Oracle Business Intelligence Foundation Suite 11g Essentials Exam Study Guide Joshua Jeyasingh Senior Technical Account Manager WW A&C Partner Enablement Objective & Audience Objective Help you prepare
Analytics. For Anyone. Be Heroic Turn Data into Action
Analytics. For Anyone. Be Heroic Turn Data into Action Progressive businesses must accelerate time-to-value not only to thrive, but survive. Analytics on big data is no longer just a competitive advantage.
and BI Services Overview CONTACT W: www.qualia.hr E: [email protected] M: +385 (91) 2010 075 A: Lastovska 23, 10000 Zagreb, Croatia
and BI Services Overview CONTACT W: www.qualia.hr E: [email protected] M: +385 (91) 2010 075 A: Lastovska 23, 10000 Zagreb, Croatia Reports *web business intelligence software Easy to use, easy to deploy.
COURSE RECOMMENDER SYSTEM IN E-LEARNING
International Journal of Computer Science and Communication Vol. 3, No. 1, January-June 2012, pp. 159-164 COURSE RECOMMENDER SYSTEM IN E-LEARNING Sunita B Aher 1, Lobo L.M.R.J. 2 1 M.E. (CSE)-II, Walchand
An Overview of Knowledge Discovery Database and Data mining Techniques
An Overview of Knowledge Discovery Database and Data mining Techniques Priyadharsini.C 1, Dr. Antony Selvadoss Thanamani 2 M.Phil, Department of Computer Science, NGM College, Pollachi, Coimbatore, Tamilnadu,
RapidMiner. Business Analytics Applications. Data Mining Use Cases and. Markus Hofmann. Ralf Klinkenberg. Rapid-I / RapidMiner.
RapidMiner Data Mining Use Cases and Business Analytics Applications Edited by Markus Hofmann Institute of Technology Blanchardstown, Dublin, Ireland Ralf Klinkenberg Rapid-I / RapidMiner Dortmund, Germany
Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing
Introduction to Data Mining and Machine Learning Techniques Iza Moise, Evangelos Pournaras, Dirk Helbing Iza Moise, Evangelos Pournaras, Dirk Helbing 1 Overview Main principles of data mining Definition
Bussiness Intelligence and Data Warehouse. Tomas Bartos CIS 764, Kansas State University
Bussiness Intelligence and Data Warehouse Schedule Bussiness Intelligence (BI) BI tools Oracle vs. Microsoft Data warehouse History Tools Oracle vs. Others Discussion Business Intelligence (BI) Products
BIG DATA SOLUTION DATA SHEET
BIG DATA SOLUTION DATA SHEET Highlight. DATA SHEET HGrid247 BIG DATA SOLUTION Exploring your BIG DATA, get some deeper insight. It is possible! Another approach to access your BIG DATA with the latest
Introduction. Fact Sheet RapidMiner and RapidAnalytics. Business Analytics fast and powerful
Fact Sheet RapidMiner and RapidAnalytics Business Analytics fast and powerful What is RapidMiner? RapidMiner is a complete business analytics workbench with a strong focus on data mining, text mining,
Introduction to Data Mining
Introduction to Data Mining José Hernández ndez-orallo Dpto.. de Systems Informáticos y Computación Universidad Politécnica de Valencia, Spain [email protected] Horsens, Denmark, 26th September 2005
A Systemic Artificial Intelligence (AI) Approach to Difficult Text Analytics Tasks
A Systemic Artificial Intelligence (AI) Approach to Difficult Text Analytics Tasks Text Analytics World, Boston, 2013 Lars Hard, CTO Agenda Difficult text analytics tasks Feature extraction Bio-inspired
LSC @ LDAPCON. 2011. Sébastien Bahloul
LSC @ LDAPCON. 2011 Sébastien Bahloul About me Developer and software architect 10 years experience in IAM Recently hired as product manager by a French security editor, Dictao, providing : personal and
Essential Elements of a Master Data Management Architecture
Essential Elements of a Master Data Management Architecture ABSTRACT Building master data management (MDM) into an IT infrastructure is not as simple as buying a product and plugging it in. Rather, selecting
Adam Rauch Partner, LabKey Software [email protected]. Extending LabKey Server Part 1: Retrieving and Presenting Data
Adam Rauch Partner, LabKey Software [email protected] Extending LabKey Server Part 1: Retrieving and Presenting Data Extending LabKey Server LabKey Server is a large system that combines an extensive set
Log Mining Based on Hadoop s Map and Reduce Technique
Log Mining Based on Hadoop s Map and Reduce Technique ABSTRACT: Anuja Pandit Department of Computer Science, [email protected] Amruta Deshpande Department of Computer Science, [email protected]
Business Information System Courses Description
Business Information System Courses Description 1903101 Fundamentals of Information Technology: (Prerequisite none) Information Technology components, computer hardware: memory, CPU, machine cycle. numbering
Deploying MATLAB -based Applications David Willingham Senior Application Engineer
Deploying MATLAB -based Applications David Willingham Senior Application Engineer 2014 The MathWorks, Inc. 1 Data Analytics Workflow Access Files Explore & Discover Data Analysis & Modeling Share Reporting
ANALYTICS CENTER LEARNING PROGRAM
Overview of Curriculum ANALYTICS CENTER LEARNING PROGRAM The following courses are offered by Analytics Center as part of its learning program: Course Duration Prerequisites 1- Math and Theory 101 - Fundamentals
Application Performance Monitoring for WhatsUp Gold v16.1 User Guide
Application Performance Monitoring for WhatsUp Gold v16.1 User Guide Contents Table of Contents Introduction APM Overview... 1 Learning about APM terminology... 2 Getting Started with APM... 3 Application
An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015
An Introduction to Data Mining for Wind Power Management Spring 2015 Big Data World Every minute: Google receives over 4 million search queries Facebook users share almost 2.5 million pieces of content
BarTender Integration Methods. Integrating BarTender s Printing and Design Functionality with Your Custom Application WHITE PAPER
BarTender Integration Methods Integrating BarTender s Printing and Design Functionality with Your Custom Application WHITE PAPER Contents Introduction 3 Integrating with External Data 4 Importing Data
Analysis Tools and Libraries for BigData
+ Analysis Tools and Libraries for BigData Lecture 02 Abhijit Bendale + Office Hours 2 n Terry Boult (Waiting to Confirm) n Abhijit Bendale (Tue 2:45 to 4:45 pm). Best if you email me in advance, but I
Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing
5.5 Copyright 2011 Pearson Education, Inc. publishing as Prentice Hall. Figure 5-2
Class Announcements TIM 50 - Business Information Systems Lecture 15 Database Assignment 2 posted Due Tuesday 5/26 UC Santa Cruz May 19, 2015 Database: Collection of related files containing records on
