Visual-based ID Verification by Signature Tracking
|
|
|
- Vernon George
- 10 years ago
- Views:
Transcription
1 Visual-based ID Verification by Signature Tracking Mario E. Munich and Pietro Perona California Institute of Technology
2 Outline Biometric ID Visual Signature Acquisition Description of the system Tracking results Signature Verification Dynamic Time Warping Experimental Results Conclusions and further work AVBPA99 - March 3rd, 999
3 Biometric ID Identification based on measurements of human biological characteristics Vision-based: Face Recognition [Taylor et. al.,turk & Pentland, Wiskott et.al.] Fingerprint Recognition [Jain et. al.] Other: Voice Recognition Signature Verification Iris Scanning [Daugman] Retina Scanning... AVBPA99 - March 3rd, 999 3
4 Why visual signature acquisition? Current I/O computer interfaces have limitations for decreasing their size. tablet digitizer screen keyboard Cell phone + PDA Future new I/O computer interfaces will involve Audio and Visual techniques. PDA camera mouse microphone Advantages: smaller size implementing them in VLSI. more natural way for people to communicate with computers. AVBPA99 - March 3rd, 999 4
5 Visual signature acquisition AVBPA99 - March 3rd, 999 5
6 Visual signature acquisition Preprocessing Pen Tip Tracker Ballpoint Detector Filter Signature Verification True! AVBPA99 - March 3rd, 999 6
7 Preprocessing Get the template of the pen tip Mouse-clicking (manual) Pen familiar to the system Unknown pen (size = 5x5 pixels) Get the portion of image where the pen tracker looks for the pen tip (size = 3x3 pixels) AVBPA99 - March 3rd, 999 7
8 Pen tip tracker Portion of the image extracted in order to compute correlation Predicted position of the pen tip Pen tip template Location of maximum correlation Predicted position of the pen tip The most likely position of the pen tip is given by the location of maximum correlation AVBPA99 - March 3rd, 999 8
9 Filter Predicts the position of the pen tip in the following image Speeds up computations Smoothes out the trajectory Estimates the position of the pen tip for missing frames Model of pen tip s dynamics dx dt dv dt da dt y(t) = = = = v(t) a(t) n a (t) x(t) + n y (t) where: x(t): D pen tip s position v(t): D pen tip s velocity a(t): D pen tip s acceleration y(t): location of max. correlation AVBPA99 - March 3rd, 999 9
10 Real Time Implementation Camera Pentium 30 Frame grabber PCI Bus The frame grabber is a PXC00 from Imagination. The system runs at 60 Hz with a total processing time of 5ms per frame. No calibration needed. AVBPA99 - March 3rd, 999 0
11 Acquired signatures Example signature Prototype Forgery AVBPA99 - March 3rd, 999
12 Signature Verification Off-line Signature Verification Works on a static image of the signature, i.e., the result of the act of signing. On-line Signature Verification Works on the dynamic process of generation of the signature, i.e., the action of signing itself. ( Automatic signature verification and writer identification, the state of the art, by M.Parizeau and R. Plamondon is a good survey paper) AVBPA99 - March 3rd, 999
13 Signature Verification New signature Comparison True signature or forgery? Prototype Training set AVBPA99 - March 3rd, 999 3
14 Signature Verification Previous work on Signature Verification using Dynamical Time Warping: Sato and Kogure, 98 Parizeau and Plamondon, 990 Huang and Yang, 995 Wirtz, 995 Nalwa, 997 Munich and Perona 98, AVBPA99 - March 3rd, 999 4
15 Signature Verification P (φ (t-)) v(t-) Signature (C ) Comparison of two signatures P (φ (t)) P (φ (t-)) Signature (C ) v(t) P (φ (t)) Similarity measure ( distance between C and C ) C = ( P D( C, C (),..., P ) d(( P = = Elementary distance of matching P (φ (t-)) with P (φ (t-)) and P (φ (t)) with P (φ (t)). P ( φ ( t)) T t= ( φ ( t )), ( φ ( t )) ),( ( φ ( t)), ( φ ( t)) )) ( T ) P ), C ( φ P ( φ ( t)) ( t)) P [ ] φ ( t) AVBPA99 - March 3rd, P = P ( P ( φ P () ( t)) P ( φ ( t )),..., P ( φ ( T ) P ( φ ( t )) ), φ ( t )) P P Matching function = ( φ φ ( t) ( t )) =
16 Dynamical Time Warping(DTW) Given C = (P (),,P (T )), C = (P (),,P (T )) and the distance function D(C,C ), DTW finds a warping function φ = [φ, φ ] T that minimizes the dissimilarity between C and C : φ = arg min D(C,C) φ with the following recursion [Bellman et.al.,957, Sakoe & Shiba,978]: D(t) = min {D(t ) + d((p( φ (t )),P ( φ (t )) ),(P ( φ (t)),p ( φ (t))))} φ(t ), φ (t ) Cumulated distance up to step t Cumulated distance up to step (t-) Elementary distance added by matching P (φ (t-)) with P (φ (t-)) and P (φ (t)) with P (φ (t)). AVBPA99 - March 3rd, 999 6
17 Dynamical Time Warping φ φ (t) = j Recursion (for the discrete case): D(t) = D(i,j) = d((p ( φ (t )),P min φ(t ), φ (t ) ( φ (t )) ),(P {D(t ) + (i),p (j) ))} φ (t) = i Warping plane φ φ (t) = j φ (t) = i Local slope constraints D(i,j) = D(i,j) min D(i,j ) D(i,j ) d((i,j),(i,j)) d((i,j ),(i,j)) d((i,j ),(i,j)) AVBPA99 - March 3rd, 999 7
18 Dynamical Time Warping φ Maximum deviation from linear warping constraint Dynamical Time Warping solution φ (t) Global slope constraint φ (t) φ The algorithm is O(N) both in time and spatial complexity. Constraints could be used in order to reduce the complexity since they will reduce the number of nodes to be explored. AVBPA99 - March 3rd, 999 8
19 Dynamical Time Warping x(t) y(t) examples from s05 x(t) after DTW y(t) after DTW Alignment path AVBPA99 - March 3rd, 999 9
20 Dynamical Time Warping x(t) y(t) examples from s030 x(t) after DTW y(t) after DTW Correspondence AVBPA99 - March 3rd, 999 0
21 Signature alignment Main inertia axis of the signature In order to obtain some degree of invariance w.r.t. rotations, align the main inertia axis of the signature with the horizontal axis before performing DTW. AVBPA99 - March 3rd, 999
22 Evaluation of the SV system There are two types of errors to evaluate in order to asses the performance of the system: FAR (False Acceptance Rate): percentage of false signatures classified as true. FRR (False Rejection Rate): percentage of real signatures classified as false. AVBPA99 - March 3rd, 999
23 Evaluation of the SV system Error rate FRR FAR FRR Equal error rate (Indicator of the perf. of the system) Classif. Thres. Error trade-off curve FAR Ideal case: FAR = FRR = 0% AVBPA99 - March 3rd, 999 3
24 Experiments Collected a database of signatures 56 subjects 5-30 sample signatures per subject 0 signatures were collected per session, and each session took place on a different day 0 forgeries per subject each signature acquired with the real-time pen tracking system AVBPA99 - March 3rd, 999 4
25 Experiments The algorithm was tested as follows: Training set: 0 signatures per subject. Test set (true): remaining 5 signatures per subject. Test set (false): all 375 signatures from all other subjects ( random forgeries ). Test set (false): 0 intentional forgeries. AVBPA99 - March 3rd, 999 5
26 Experiments examples references False rejects False accepts AVBPA99 - March 3rd, 999 6
27 Results FRR FRR FAR FAR AVBPA99 - March 3rd, 999 7
28 Conclusions Presented the performance of a vision-based technique for personal identification. Demonstrated the feasibility of having such a system working in real-time with high performance in verification. AVBPA99 - March 3rd, 999 8
29 Future Work Evaluate different representations of the signature and different similarity measures in order to improve performance and achieve scale invariance. Overcome the lack of examples in order to extract more meaningful estimates of the generalization error. AVBPA99 - March 3rd, 999 9
30 Future Work Match all examples in a way such that the prototype would be a more robust representative of its class. Once we have the matching function, devise other similarity measures that improve performance. Collect a new, clean and bigger database of examples. AVBPA99 - March 3rd,
Biometric Authentication using Online Signatures
Biometric Authentication using Online Signatures Alisher Kholmatov and Berrin Yanikoglu [email protected], [email protected] http://fens.sabanciuniv.edu Sabanci University, Tuzla, Istanbul,
ECE 533 Project Report Ashish Dhawan Aditi R. Ganesan
Handwritten Signature Verification ECE 533 Project Report by Ashish Dhawan Aditi R. Ganesan Contents 1. Abstract 3. 2. Introduction 4. 3. Approach 6. 4. Pre-processing 8. 5. Feature Extraction 9. 6. Verification
Identity authentication using improved online signature verification method
Pattern Recognition Letters 26 (2005) 2400 2408 www.elsevier.com/locate/patrec Identity authentication using improved online signature verification method Alisher Kholmatov, Berrin Yanikoglu * Sabanci
Efficient on-line Signature Verification System
International Journal of Engineering & Technology IJET-IJENS Vol:10 No:04 42 Efficient on-line Signature Verification System Dr. S.A Daramola 1 and Prof. T.S Ibiyemi 2 1 Department of Electrical and Information
Biometric Authentication using Online Signature
University of Trento Department of Mathematics Outline Introduction An example of authentication scheme Performance analysis and possible improvements Outline Introduction An example of authentication
Keywords image processing, signature verification, false acceptance rate, false rejection rate, forgeries, feature vectors, support vector machines.
International Journal of Computer Application and Engineering Technology Volume 3-Issue2, Apr 2014.Pp. 188-192 www.ijcaet.net OFFLINE SIGNATURE VERIFICATION SYSTEM -A REVIEW Pooja Department of Computer
SIGNATURE VERIFICATION
SIGNATURE VERIFICATION Dr. H.B.Kekre, Dr. Dhirendra Mishra, Ms. Shilpa Buddhadev, Ms. Bhagyashree Mall, Mr. Gaurav Jangid, Ms. Nikita Lakhotia Computer engineering Department, MPSTME, NMIMS University
STATIC SIGNATURE RECOGNITION SYSTEM FOR USER AUTHENTICATION BASED TWO LEVEL COG, HOUGH TRANSFORM AND NEURAL NETWORK
Volume 6, Issue 3, pp: 335343 IJESET STATIC SIGNATURE RECOGNITION SYSTEM FOR USER AUTHENTICATION BASED TWO LEVEL COG, HOUGH TRANSFORM AND NEURAL NETWORK Dipti Verma 1, Sipi Dubey 2 1 Department of Computer
Handwritten Signature Verification using Neural Network
Handwritten Signature Verification using Neural Network Ashwini Pansare Assistant Professor in Computer Engineering Department, Mumbai University, India Shalini Bhatia Associate Professor in Computer Engineering
FACE RECOGNITION BASED ATTENDANCE MARKING SYSTEM
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 2, February 2014,
Biometrics is the use of physiological and/or behavioral characteristics to recognize or verify the identity of individuals through automated means.
Definition Biometrics is the use of physiological and/or behavioral characteristics to recognize or verify the identity of individuals through automated means. Description Physiological biometrics is based
Establishing the Uniqueness of the Human Voice for Security Applications
Proceedings of Student/Faculty Research Day, CSIS, Pace University, May 7th, 2004 Establishing the Uniqueness of the Human Voice for Security Applications Naresh P. Trilok, Sung-Hyuk Cha, and Charles C.
Introduction to Pattern Recognition
Introduction to Pattern Recognition Selim Aksoy Department of Computer Engineering Bilkent University [email protected] CS 551, Spring 2009 CS 551, Spring 2009 c 2009, Selim Aksoy (Bilkent University)
DESIGN OF DIGITAL SIGNATURE VERIFICATION ALGORITHM USING RELATIVE SLOPE METHOD
DESIGN OF DIGITAL SIGNATURE VERIFICATION ALGORITHM USING RELATIVE SLOPE METHOD P.N.Ganorkar 1, Kalyani Pendke 2 1 Mtech, 4 th Sem, Rajiv Gandhi College of Engineering and Research, R.T.M.N.U Nagpur (Maharashtra),
LOCAL SURFACE PATCH BASED TIME ATTENDANCE SYSTEM USING FACE. [email protected]
LOCAL SURFACE PATCH BASED TIME ATTENDANCE SYSTEM USING FACE 1 S.Manikandan, 2 S.Abirami, 2 R.Indumathi, 2 R.Nandhini, 2 T.Nanthini 1 Assistant Professor, VSA group of institution, Salem. 2 BE(ECE), VSA
A colour Code Algorithm for Signature Recognition
Electronic Letters on Computer Vision and Image Analysis 6(1):1-12, 2007 A colour Code Algorithm for Signature Recognition Vinayak Balkrishana Kulkarni Department of Electronics Engineering. Finolex Academy
Comparison of Elastic Matching Algorithms for Online Tamil Handwritten Character Recognition
Comparison of Elastic Matching Algorithms for Online Tamil Handwritten Character Recognition Niranjan Joshi, G Sita, and A G Ramakrishnan Indian Institute of Science, Bangalore, India joshi,sita,agr @ragashrieeiiscernetin
3)Skilled Forgery: It is represented by suitable imitation of genuine signature mode.it is also called Well-Versed Forgery[4].
Volume 4, Issue 7, July 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A New Technique
Securing Electronic Medical Records Using Biometric Authentication
Securing Electronic Medical Records Using Biometric Authentication Stephen Krawczyk and Anil K. Jain Michigan State University, East Lansing MI 48823, USA {krawcz10,jain}@cse.msu.edu Abstract. Ensuring
Object Recognition and Template Matching
Object Recognition and Template Matching Template Matching A template is a small image (sub-image) The goal is to find occurrences of this template in a larger image That is, you want to find matches of
Support Vector Machines for Dynamic Biometric Handwriting Classification
Support Vector Machines for Dynamic Biometric Handwriting Classification Tobias Scheidat, Marcus Leich, Mark Alexander, and Claus Vielhauer Abstract Biometric user authentication is a recent topic in the
Multimedia Document Authentication using On-line Signatures as Watermarks
Multimedia Document Authentication using On-line Signatures as Watermarks Anoop M Namboodiri and Anil K Jain Department of Computer Science and Engineering Michigan State University East Lansing, MI 48824
Securing Electronic Medical Records using Biometric Authentication
Securing Electronic Medical Records using Biometric Authentication Stephen Krawczyk and Anil K. Jain Michigan State University, East Lansing MI 48823, USA, [email protected], [email protected] Abstract.
Novelty Detection in image recognition using IRF Neural Networks properties
Novelty Detection in image recognition using IRF Neural Networks properties Philippe Smagghe, Jean-Luc Buessler, Jean-Philippe Urban Université de Haute-Alsace MIPS 4, rue des Frères Lumière, 68093 Mulhouse,
Document Image Retrieval using Signatures as Queries
Document Image Retrieval using Signatures as Queries Sargur N. Srihari, Shravya Shetty, Siyuan Chen, Harish Srinivasan, Chen Huang CEDAR, University at Buffalo(SUNY) Amherst, New York 14228 Gady Agam and
MACHINE VISION MNEMONICS, INC. 102 Gaither Drive, Suite 4 Mount Laurel, NJ 08054 USA 856-234-0970 www.mnemonicsinc.com
MACHINE VISION by MNEMONICS, INC. 102 Gaither Drive, Suite 4 Mount Laurel, NJ 08054 USA 856-234-0970 www.mnemonicsinc.com Overview A visual information processing company with over 25 years experience
A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA
A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA N. Zarrinpanjeh a, F. Dadrassjavan b, H. Fattahi c * a Islamic Azad University of Qazvin - [email protected]
Open-Set Face Recognition-based Visitor Interface System
Open-Set Face Recognition-based Visitor Interface System Hazım K. Ekenel, Lorant Szasz-Toth, and Rainer Stiefelhagen Computer Science Department, Universität Karlsruhe (TH) Am Fasanengarten 5, Karlsruhe
International Journal of Advanced Information in Arts, Science & Management Vol.2, No.2, December 2014
Efficient Attendance Management System Using Face Detection and Recognition Arun.A.V, Bhatath.S, Chethan.N, Manmohan.C.M, Hamsaveni M Department of Computer Science and Engineering, Vidya Vardhaka College
Assignment 1 Biometric authentication
Assignment 1 Biometric authentication Internet Security and Privacy Alexandre Fustier Vincent Burger INTRODUCTION:...3 I. TYPES AND DESCRIPTION OF BIOMETRICS...4 1. PHYSIOLOGICAL BIOMETRIC...4 a. Fingerprints...4
T-REDSPEED White paper
T-REDSPEED White paper Index Index...2 Introduction...3 Specifications...4 Innovation...6 Technology added values...7 Introduction T-REDSPEED is an international patent pending technology for traffic violation
USER AUTHENTICATION USING ON-LINE SIGNATURE AND SPEECH
USER AUTHENTICATION USING ON-LINE SIGNATURE AND SPEECH By Stephen Krawczyk A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE
Method of Combining the Degrees of Similarity in Handwritten Signature Authentication Using Neural Networks
Method of Combining the Degrees of Similarity in Handwritten Signature Authentication Using Neural Networks Ph. D. Student, Eng. Eusebiu Marcu Abstract This paper introduces a new method of combining the
Signature Verification Why xyzmo offers the leading solution.
Dynamic (Biometric) Signature Verification The signature is the last remnant of the hand-written document in a digital world, and is considered an acceptable and trustworthy means of authenticating all
Signature verification using Kolmogorov-Smirnov. statistic
Signature verification using Kolmogorov-Smirnov statistic Harish Srinivasan, Sargur N.Srihari and Matthew J Beal University at Buffalo, the State University of New York, Buffalo USA {srihari,hs32}@cedar.buffalo.edu,[email protected]
TIETS34 Seminar: Data Mining on Biometric identification
TIETS34 Seminar: Data Mining on Biometric identification Youming Zhang Computer Science, School of Information Sciences, 33014 University of Tampere, Finland [email protected] Course Description Content
Palmprint Recognition. By Sree Rama Murthy kora Praveen Verma Yashwant Kashyap
Palmprint Recognition By Sree Rama Murthy kora Praveen Verma Yashwant Kashyap Palm print Palm Patterns are utilized in many applications: 1. To correlate palm patterns with medical disorders, e.g. genetic
International Year of Light 2015 Tech-Talks BREGENZ: Mehmet Arik Well-Being in Office Applications Light Measurement & Quality Parameters
www.led-professional.com ISSN 1993-890X Trends & Technologies for Future Lighting Solutions ReviewJan/Feb 2015 Issue LpR 47 International Year of Light 2015 Tech-Talks BREGENZ: Mehmet Arik Well-Being in
A Prototype For Eye-Gaze Corrected
A Prototype For Eye-Gaze Corrected Video Chat on Graphics Hardware Maarten Dumont, Steven Maesen, Sammy Rogmans and Philippe Bekaert Introduction Traditional webcam video chat: No eye contact. No extensive
Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example.
An Example 2 3 4 Outline Objective: Develop methods and algorithms to mathematically model shape of real world objects Categories: Wire-Frame Representation Object is represented as as a set of points
Building an Advanced Invariant Real-Time Human Tracking System
UDC 004.41 Building an Advanced Invariant Real-Time Human Tracking System Fayez Idris 1, Mazen Abu_Zaher 2, Rashad J. Rasras 3, and Ibrahiem M. M. El Emary 4 1 School of Informatics and Computing, German-Jordanian
HAND GESTURE BASEDOPERATINGSYSTEM CONTROL
HAND GESTURE BASEDOPERATINGSYSTEM CONTROL Garkal Bramhraj 1, palve Atul 2, Ghule Supriya 3, Misal sonali 4 1 Garkal Bramhraj mahadeo, 2 Palve Atule Vasant, 3 Ghule Supriya Shivram, 4 Misal Sonali Babasaheb,
AUTOMATED ATTENDANCE CAPTURE AND TRACKING SYSTEM
Journal of Engineering Science and Technology EURECA 2014 Special Issue January (2015) 45-59 School of Engineering, Taylor s University AUTOMATED ATTENDANCE CAPTURE AND TRACKING SYSTEM EU TSUN CHIN*, WEI
High-Performance Signature Recognition Method using SVM
High-Performance Signature Recognition Method using SVM Saeid Fazli Research Institute of Modern Biological Techniques University of Zanjan Shima Pouyan Electrical Engineering Department University of
National Performance Evaluation Facility for LADARs
National Performance Evaluation Facility for LADARs Kamel S. Saidi (presenter) Geraldine S. Cheok William C. Stone The National Institute of Standards and Technology Construction Metrology and Automation
CS231M Project Report - Automated Real-Time Face Tracking and Blending
CS231M Project Report - Automated Real-Time Face Tracking and Blending Steven Lee, [email protected] June 6, 2015 1 Introduction Summary statement: The goal of this project is to create an Android
The Scientific Data Mining Process
Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In
CS 534: Computer Vision 3D Model-based recognition
CS 534: Computer Vision 3D Model-based recognition Ahmed Elgammal Dept of Computer Science CS 534 3D Model-based Vision - 1 High Level Vision Object Recognition: What it means? Two main recognition tasks:!
AN IMPROVED DOUBLE CODING LOCAL BINARY PATTERN ALGORITHM FOR FACE RECOGNITION
AN IMPROVED DOUBLE CODING LOCAL BINARY PATTERN ALGORITHM FOR FACE RECOGNITION Saurabh Asija 1, Rakesh Singh 2 1 Research Scholar (Computer Engineering Department), Punjabi University, Patiala. 2 Asst.
A secure face tracking system
International Journal of Information & Computation Technology. ISSN 0974-2239 Volume 4, Number 10 (2014), pp. 959-964 International Research Publications House http://www. irphouse.com A secure face tracking
Template-based Eye and Mouth Detection for 3D Video Conferencing
Template-based Eye and Mouth Detection for 3D Video Conferencing Jürgen Rurainsky and Peter Eisert Fraunhofer Institute for Telecommunications - Heinrich-Hertz-Institute, Image Processing Department, Einsteinufer
VEHICLE TRACKING USING ACOUSTIC AND VIDEO SENSORS
VEHICLE TRACKING USING ACOUSTIC AND VIDEO SENSORS Aswin C Sankaranayanan, Qinfen Zheng, Rama Chellappa University of Maryland College Park, MD - 277 {aswch, qinfen, rama}@cfar.umd.edu Volkan Cevher, James
Multimodal Biometric Recognition Security System
Multimodal Biometric Recognition Security System Anju.M.I, G.Sheeba, G.Sivakami, Monica.J, Savithri.M Department of ECE, New Prince Shri Bhavani College of Engg. & Tech., Chennai, India ABSTRACT: Security
Anomaly Detection and Predictive Maintenance
Anomaly Detection and Predictive Maintenance Rosaria Silipo Iris Adae Christian Dietz Phil Winters [email protected] [email protected] [email protected] [email protected]
Part-Based Recognition
Part-Based Recognition Benedict Brown CS597D, Fall 2003 Princeton University CS 597D, Part-Based Recognition p. 1/32 Introduction Many objects are made up of parts It s presumably easier to identify simple
The Role of Size Normalization on the Recognition Rate of Handwritten Numerals
The Role of Size Normalization on the Recognition Rate of Handwritten Numerals Chun Lei He, Ping Zhang, Jianxiong Dong, Ching Y. Suen, Tien D. Bui Centre for Pattern Recognition and Machine Intelligence,
Using Four-Quadrant Charts for Two Technology Forecasting Indicators: Technology Readiness Levels and R&D Momentum
Using Four-Quadrant Charts for Two Technology Forecasting Indicators: Technology Readiness Levels and R&D Momentum Tang, D. L., Wiseman, E., & Archambeault, J. Canadian Institute for Scientific and Technical
Tracking of Small Unmanned Aerial Vehicles
Tracking of Small Unmanned Aerial Vehicles Steven Krukowski Adrien Perkins Aeronautics and Astronautics Stanford University Stanford, CA 94305 Email: [email protected] Aeronautics and Astronautics Stanford
(I) s(t) = s 0 v 0 (t t 0 ) + 1 2 a (t t 0) 2 (II). t 2 = t 0 + 2 v 0. At the time. E kin = 1 2 m v2 = 1 2 m (a (t t 0) v 0 ) 2
Mechanics Translational motions of a mass point One-dimensional motions on the linear air track LD Physics Leaflets P1.3.3.8 Uniformly accelerated motion with reversal of direction Recording and evaluating
HANDS-FREE PC CONTROL CONTROLLING OF MOUSE CURSOR USING EYE MOVEMENT
International Journal of Scientific and Research Publications, Volume 2, Issue 4, April 2012 1 HANDS-FREE PC CONTROL CONTROLLING OF MOUSE CURSOR USING EYE MOVEMENT Akhil Gupta, Akash Rathi, Dr. Y. Radhika
Effects of Time Normalization on the Accuracy of Dynamic Time Warping
Effects of Time Normalization on the Accuracy of Dynamic Time Warping Olaf Henniger Sascha Müller Abstract This paper revisits Dynamic Time Warping, a method for assessing the dissimilarity of time series.
Determining optimal window size for texture feature extraction methods
IX Spanish Symposium on Pattern Recognition and Image Analysis, Castellon, Spain, May 2001, vol.2, 237-242, ISBN: 84-8021-351-5. Determining optimal window size for texture feature extraction methods Domènec
NFC & Biometrics. Christophe Rosenberger
NFC & Biometrics Christophe Rosenberger OUTLINE GREYC - E-payment & Biometrics Contactless transactions Biometric authentication Solutions Perspectives 2 GREYC Research Lab Research Group in Computer science,
COEFFICIENT OF KINETIC FRICTION
COEFFICIENT OF KINETIC FRICTION LAB MECH 5.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult
Signature-based Biometric Authentication
Abstract Signature-based Biometric Authentication Srikanta Pal 1, Umapada Pal 2 and Michael Blumenstein 1 1 School of Information and Communication Technology, Griffith University, Gold Coast, Australia.
Tracking Groups of Pedestrians in Video Sequences
Tracking Groups of Pedestrians in Video Sequences Jorge S. Marques Pedro M. Jorge Arnaldo J. Abrantes J. M. Lemos IST / ISR ISEL / IST ISEL INESC-ID / IST Lisbon, Portugal Lisbon, Portugal Lisbon, Portugal
The Development of a Pressure-based Typing Biometrics User Authentication System
The Development of a Pressure-based Typing Biometrics User Authentication System Chen Change Loy Adv. Informatics Research Group MIMOS Berhad by Assoc. Prof. Dr. Chee Peng Lim Associate Professor Sch.
VEHICLE LOCALISATION AND CLASSIFICATION IN URBAN CCTV STREAMS
VEHICLE LOCALISATION AND CLASSIFICATION IN URBAN CCTV STREAMS Norbert Buch 1, Mark Cracknell 2, James Orwell 1 and Sergio A. Velastin 1 1. Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE,
How To Fix Out Of Focus And Blur Images With A Dynamic Template Matching Algorithm
IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 10 April 2015 ISSN (online): 2349-784X Image Estimation Algorithm for Out of Focus and Blur Images to Retrieve the Barcode
Error Log Processing for Accurate Failure Prediction. Humboldt-Universität zu Berlin
Error Log Processing for Accurate Failure Prediction Felix Salfner ICSI Berkeley Steffen Tschirpke Humboldt-Universität zu Berlin Introduction Context of work: Error-based online failure prediction: error
Article. Electronic Signature Forensics. Copyright Topaz Systems Inc. All rights reserved.
Article Electronic Signature Forensics Copyright Topaz Systems Inc. All rights reserved. For Topaz Systems, Inc. trademarks and patents, visit www.topazsystems.com/legal. Table of Contents Overview...
NAVIGATING SCIENTIFIC LITERATURE A HOLISTIC PERSPECTIVE. Venu Govindaraju
NAVIGATING SCIENTIFIC LITERATURE A HOLISTIC PERSPECTIVE Venu Govindaraju BIOMETRICS DOCUMENT ANALYSIS PATTERN RECOGNITION 8/24/2015 ICDAR- 2015 2 Towards a Globally Optimal Approach for Learning Deep Unsupervised
Palmprint Recognition with PCA and ICA
Abstract Palmprint Recognition with PCA and ICA Tee Connie, Andrew Teoh, Michael Goh, David Ngo Faculty of Information Sciences and Technology, Multimedia University, Melaka, Malaysia [email protected]
Automatic Extraction of Signatures from Bank Cheques and other Documents
Automatic Extraction of Signatures from Bank Cheques and other Documents Vamsi Krishna Madasu *, Mohd. Hafizuddin Mohd. Yusof, M. Hanmandlu ß, Kurt Kubik * *Intelligent Real-Time Imaging and Sensing group,
DYNAMIC FUZZY PATTERN RECOGNITION WITH APPLICATIONS TO FINANCE AND ENGINEERING LARISA ANGSTENBERGER
DYNAMIC FUZZY PATTERN RECOGNITION WITH APPLICATIONS TO FINANCE AND ENGINEERING LARISA ANGSTENBERGER Kluwer Academic Publishers Boston/Dordrecht/London TABLE OF CONTENTS FOREWORD ACKNOWLEDGEMENTS XIX XXI
Automatic Labeling of Lane Markings for Autonomous Vehicles
Automatic Labeling of Lane Markings for Autonomous Vehicles Jeffrey Kiske Stanford University 450 Serra Mall, Stanford, CA 94305 [email protected] 1. Introduction As autonomous vehicles become more popular,
BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES
BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES 123 CHAPTER 7 BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES 7.1 Introduction Even though using SVM presents
Cryptographic key generation using handwritten signature
Cryptographic key generation using handwritten signature M. Freire-Santos a, J. Fierrez-Aguilar a, J. Ortega-Garcia a a ATVS-Biometrics Research Lab., Escuela Politecnica Superior, Universidad Autonoma
Tracking in flussi video 3D. Ing. Samuele Salti
Seminari XXIII ciclo Tracking in flussi video 3D Ing. Tutors: Prof. Tullio Salmon Cinotti Prof. Luigi Di Stefano The Tracking problem Detection Object model, Track initiation, Track termination, Tracking
Chapter 5 Input. Chapter 5 Objectives. What Is Input? What Is Input? The Keyboard. The Keyboard
Chapter 5 Objectives Chapter 5 Input Define input List characteristics of of a keyboard Describe different mouse types and how they work Summarize how pointing devices work Explain how a digital camera
RESEARCH ON SPOKEN LANGUAGE PROCESSING Progress Report No. 29 (2008) Indiana University
RESEARCH ON SPOKEN LANGUAGE PROCESSING Progress Report No. 29 (2008) Indiana University A Software-Based System for Synchronizing and Preprocessing Eye Movement Data in Preparation for Analysis 1 Mohammad
TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA
2015 School of Information Technology and Electrical Engineering at the University of Queensland TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA Schedule Week Date
Intrusion Log Sharing University of Wisconsin-Madison
Intrusion Log Sharing University of Wisconsin-Madison John Bethencourt ([email protected]) Jason Franklin ([email protected]) Mary Vernon ([email protected]) 1 Talk Outline Background: Blacklists,
Capacity of an RCE-based Hamming Associative Memory for Human Face Recognition
Capacity of an RCE-based Hamming Associative Memory for Human Face Recognition Paul Watta Department of Electrical & Computer Engineering University of Michigan-Dearborn Dearborn, MI 48128 [email protected]
Tutorial for proteome data analysis using the Perseus software platform
Tutorial for proteome data analysis using the Perseus software platform Laboratory of Mass Spectrometry, LNBio, CNPEM Tutorial version 1.0, January 2014. Note: This tutorial was written based on the information
Statistical Analysis of Signature Features with Respect to Applicability in Off-line Signature Verification
Statistical Analysis of Signature Features with Respect to Applicability in Off-line Signature Verification BENCE KOVARI, HASSAN CHARAF Department of Automation and Applied Informatics Budapest University
Alternative Biometric as Method of Information Security of Healthcare Systems
Alternative Biometric as Method of Information Security of Healthcare Systems Ekaterina Andreeva Saint-Petersburg State University of Aerospace Instrumentation Saint-Petersburg, Russia [email protected]
Voice Authentication for ATM Security
Voice Authentication for ATM Security Rahul R. Sharma Department of Computer Engineering Fr. CRIT, Vashi Navi Mumbai, India [email protected] Abstract: Voice authentication system captures the
Signature Region of Interest using Auto cropping
ISSN (Online): 1694-0784 ISSN (Print): 1694-0814 1 Signature Region of Interest using Auto cropping Bassam Al-Mahadeen 1, Mokhled S. AlTarawneh 2 and Islam H. AlTarawneh 2 1 Math. And Computer Department,
Machine Learning for Medical Image Analysis. A. Criminisi & the InnerEye team @ MSRC
Machine Learning for Medical Image Analysis A. Criminisi & the InnerEye team @ MSRC Medical image analysis the goal Automatic, semantic analysis and quantification of what observed in medical scans Brain
Taking Inverse Graphics Seriously
CSC2535: 2013 Advanced Machine Learning Taking Inverse Graphics Seriously Geoffrey Hinton Department of Computer Science University of Toronto The representation used by the neural nets that work best
Approximate Object Location and Spam Filtering on Peer-to-Peer Systems
Approximate Object Location and Spam Filtering on Peer-to-Peer Systems Feng Zhou, Li Zhuang, Ben Y. Zhao, Ling Huang, Anthony D. Joseph and John D. Kubiatowicz University of California, Berkeley The Problem
