This lecture. Introduction to information retrieval. Making money with information retrieval. Some technical basics. Link analysis.
|
|
|
- Collin Walters
- 10 years ago
- Views:
Transcription
1
2 This lecture Introduction to information retrieval. Making money with information retrieval. Some technical basics. Link analysis. CSC401/2511 Spring
3 Information retrieval systems Information retrieval (IR): n. searching for documents or information in documents. Question-answering: respond with a specific answer to a question (e.g., Wolfram Alpha). Document retrieval: find documents relevant to a query, ranked by relevance (e.g., bing or Google). Text analytics/data mining: General organization of large textual databases (e.g., Lexis-Nexis, OpenText, MedSearch,.) CSC401/2511 Spring
4 Terminology Information retrieval has slightly different terminology than the tasks we ve seen previously: Document: a book, article, web page, or paragraph Collection: Term: Stop word: (depending on the task and data). a corpus of documents a word type a functional (non-content) word (e.g., the) CSC401/2511 Spring
5 Query types Different kinds of questions can be asked. Factoid questions, e.g., How often were the peace talks in Ireland delayed or disrupted as a result of acts of violence? Narrative (open-ended) questions, e.g., Can you tell me about contemporary interest in the Greek philosophy of stoicism? Complex/hybrid questions, e.g., Who was involved in the Schengen agreement to eliminate border controls in Western Europe and what did they hope to accomplish? CSC401/2511 Spring
6 Question answering (QA) Which woman has won more than 1 Nobel prize? (Marie Curie) Question Answering (QA) usually involves a specific answer to a question. CSC401/2511 Spring
7 Document retrieval vs IR One strategy is to turn question answering into information retrieval (IR) and let the human complete the task. CSC401/2511 Spring
8 Question answering (QA) CSC401/2511 Spring
9 Knowledge-based QA 1. Build a structured semantic representation of the query. Extract times, dates, locations, entities using regular expressions. Fit to well-known templates. CSC401/2511 Spring Query databases with these semantics. Ontologies (Wikipedia infoboxes). Restaurant review databases. Calendars. Movie schedules.
10 IR-based QA CSC401/2511 Spring
11 IR-based QA Information retrieval Question answering CSC401/2511 Spring
12 IBM s Watson Human 1 Game Control System Clue Grid Decisions to Buzz and Bet Strategy Watson s Game Controller Text-to-Speech Clue & Category Answers & Confidences Watson s QA Engine 2,880 IBM Power750 Compute Cores 15 TB of Memory Human 2 Clues, Scores & Other Game Data Content equivalent to ~ 1,000,000 books source: A Brief Overview and Thoughts for Healthcare Education and Performance Improvement by the IBM Watson team CSC401/2511 Spring
13 IBM s Watson: search This man became the 44 th President of the United States in 2008 CSC401/2511 Spring
14 IBM s Watson: search Title-oriented search: In some cases, the solution is in the title of highly-ranked documents. E.g., This pizza delivery boy celebrated New Year s at Applied Cryogenics. CSC401/2511 Spring
15 IBM s Watson: selection Once candidates have been gathered from various sources and methods, rank them according to various scores (IBM Watson uses >50 scoring metrics). In cell division, mitosis splits the nucleus & cytokinesis splits this liquid cushioning the nucleus CSC401/2511 Spring
16 IBM s Watson: selection One aspect of Jeopardy! is that answers are often posed with puns that have to be disambiguated. Bilbo shouldn t have played riddles in the dark with this shady character from WordNet s Synonym-sets CSC401/2511 Spring
17 How to make money out of this? CSC401/2511 Spring
18 Making money before search Advertisers used to pay for banner ads that did not depend on user queries. CPM (Cost per mille): Pay for each ad display. CPC (Cost per click): Pay when user clicks an ad. CTR (Click through rate): Fraction of ad displays that result in click-throughs. CPA (Cost per action): Pay only when user makes online purchase after click-through. CSC401/2511 Spring
19 Making money with search Advertisers now bid for keywords. Ads are displayed for the highest bidders when a query contains those keywords. PPC (Pay per click): CPC for ads served based on a ranking of bid keywords and user interest (e.g., Google AdWords). (it s a bit more complicated ) CSC401/2511 Spring
20 How are ads ranked? Today, a two-bid process is typical. First, organizations bid on keywords By itself, this can lead to abuse, monopolization, and irrelevant content. Second, we re-rank based on relevance based on click-through. CSC401/2511 Spring
21 How are ads ranked? Advertiser Bid CTR Ad rank Rank Paid A $ (minimum) B $ $2.68 C $ $1.51 D $ $0.51 Bid: amount determined by advertiser for keyword. CTR: click-through rate an approximation of relevance. Ad rank: Bid CTR trades off advertiser and user interests. Rank: actual rank. Paid: Minimum amount necessary to maintain rank + 1. CSC401/2511 Spring
22 How are ads ranked? Advertiser Bid CTR Ad rank Rank Paid A $ (minimum) B $ $2.68 C $ $1.51 D $ $0.51 Paid: Minimum amount necessary to maintain rank + 1. Paid r CTR r = Bid r+1 CTR r+1 + $0.01 Paid r = Bid r+1 CTR r+1 CTR r + $0.01 E.g., Paid 1 = $ $0.01 = $1.51 CSC401/2511 Spring
23 Aside highest paying search terms (according to $69.10 mesothelioma treatment options $66.46 mesothelioma risk $65.85 personal injury lawyer michigan $65.74 michigan personal injury attorney $62.59 student loans consolidation $61.44 car accident attorney los angeles $61.26 mesothelioma survival rate $60.96 treatment of mesothelioma $59.44 online car insurance quotes $59.39 arizona dui lawyer CSC401/2511 Spring
24 Back to basics. How do we find the right documents for a query? CSC401/2511 Spring
25 Queries A query is a textual key which orders a specific subset of documents (or answers) in a collection. Historically, these were highly structured in a logical language, but in modern search engines queries are more often streams of syntactically disconnected keywords. A boolean query is a logical combination of boolean membership predicates. Brutus AND Caesar AND NOT Calpurnia CSC401/2511 Spring
26 Term-document incidence Anthony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth ANTHONY BRUTUS CAESAR CALPURNIA CLEOPATRA MERCY WORSER For the query Brutus AND Caesar AND NOT Calpurnia, (Brutus) (Caesar) (Not Calpurnia) (Bitwise AND) CSC401/2511 Spring
27 Boolean Queries and big collections If we have 1 million documents, each with 1000 tokens 1 billion tokens at most 1 billion 1 s in the matrix. If we have 500,000 distinct terms, the term-document incidence matrix will have 500,000,000,000 elements. There will be << 1 billion 1s in this matrix. Very sparse and a waste of space. Can there be a better way? CSC401/2511 Spring
28 Inverted index Given a query word, the inverted index for that word gives us all documents that contain that word in either the title, the abstract (summary), some hidden metadata, or the entire text. More sophisticated versions also include the frequency and positions of the query word in each document. Matlab query Inverted index D 1 documents How does one construct such indices? CSC401/2511 Spring
29 Inverted index construction 1. Collect the documents to be indexed. Friends, Romans, countrymen So let it be with Caesar 2. Tokenize the text. Friends Romans countrymen So 3. Do preprocessing and normalization, resulting in the indexing terms. friend roman countryman so 4. Create a dictionary (hash) of documents given terms. CSC401/2511 Spring
30 Simple conjunctive query Given the query Brutus AND Calpurnia, 1. Locate Brutus in the dictionary. Retrieve documents list. 2. Locate Calpurnia in the dictionary. Retrieve documents list. 3. Intersect the two document lists. Return the result to the user. Linear in the lengths of document lists. (if lists are sorted) CSC401/2511 Spring
31 Constructing indices Spiders (aka. Robots, bots, crawlers) start with root (seed) URLs. Follow all links on these pages recursively. Novel pages are processed and indexed. Despite the exponential growth in memory across depth, breadth-first search is quite popular. Depth-first search is linear in depth, but can get lost. Trivia: If you click on the first contentful link in any Wikipedia page, you will eventually be led to the Philosophy article. CSC401/2511 Spring
32 Increasing entropy? Boolean retrieval is precise and was very popular for decades (it still is used for structured data, like desktop file search). The amount and value of unstructured data (i.e., text) has grown faster than structured data on the web Unstructured Structured Data volume Market cap (data from Chris Manning) Data volume Market cap CSC401/2511 Spring
33 Zipf s law on the web These variables have Zipfian distributions: Number of links to and links from a page. Length of web pages. Number of web page hits. (graph from Ray Mooney) CSC401/2511 Spring
34 New challenges for IR on the web Distributed data: Documents spread over millions of web servers. Volatile data: Document change or disappear frequently and rapidly. Large volume: Petabytes of data. Poor quality: No editorial control, false information, poor writing, typographic errours. Heterogeneity: Various media, languages, encodings. Unstructured: No uniform structure, HTML errors, CSC401/2511 Spring duplicate documents.
35 Detecting duplicates duplicates The user will become annoyed when many top-ranking hits are identical/similar. Nearly-identical pages can be determined by hashing E.g., don t index en.m.wikipedia.org/wiki/ if you ve indexed en.wikipedia.org/wiki/. Zero marginal relevance occurs when a highly relevant document becomes irrelevant by being ranked below a (near-)duplicate. CSC401/2511 Spring
36 Detecting duplicates duplicates Compute similarity with some edit-distance measure. Syntactic similarity (e.g., overlap of bigrams) easier to measure than semantic similarity. If this measure is above some threshold θ for some pair of documents, we consider them duplicates. Jaccard coefficient: J A, B = A B A B Is a measure of similarity on [0.. 1] J A, A = 1 J A, B = 0 iff A B = CSC401/2511 Spring
37 Jaccard coefficient on 2-grams Documents: d 1 : Jack London went to Toronto d 2 : Jack London went to the city of Toronto d 3 : Jack went from Toronto to London J d 1, d 2 = 3 8 = J d 1, d 3 = 0 CSC401/2511 Spring
38 Link analysis When we re crawling the web and indexing, we want to retain some record of similarity between (non-duplicate) documents in terms of their link structure. This will help in searching. CSC401/2511 Spring
39 Bibliometrics: citation analysis Impact factor: Developed in 1972 to measure the quality and influence of scientific journals. Measures how often articles are cited. Bibliographic coupling: Measure of similarity between documents according to the intersection of their citations (Kessler, 1963). A B CSC401/2511 Spring
40 Bibliometrics: citation analysis Co-citation: Measure of similarity between documents according to the intersection of the documents that cite them (Small, 1973). A B CSC401/2511 Spring
41 Links are not citations Many links are navigational within a website. Many pages with high in-degree are portals without much content. Some links are not necessarily endorsements. Relevance of citations in scientific settings is (theoretically) enforced by peer review. Can we mimic the enforcement of relevance usually done by human experts in scientific articles? CSC401/2511 Spring
42 Authorities and hubs Authorities are pages recognized as significant, trustworthy, and useful for a topic. In-degree (number of incoming links) is an estimate of authority. Should incoming links from authoritative pages count more than others? Hubs are index pages that provide lots of links to relevant content pages. e.g., reddit.com is a hub page for recycled memes. CSC401/2511 Spring
43 HITS The HITS algorithm (Kleinberg, 1998) attempts to learn hubs and authorities on a given topic given relevant web subgraphs. Hubs and authorities tend to form bipartite graphs. Hubs Authorities CSC401/2511 Spring
44 HITS First, find (top N) most relevant pages for a query this is the root set, R. (we ll see how to do this next lecture) Next, look at the link structure relative to R. The base set, S is R and all pages that link to and are linked from pages in R S R CSC401/2511 Spring
45 HITS: Authorities and In-degree Even for S, nodes with high in-degree may not be authorities they may just be generically popular pages. Authority should be determined by strong hubs. Iteratively (slowly) converge on a mutually reinforcing set of hubs and authorities. For every page p S, maintain Authority score: a p (initialized to 1/ S ) Hub score: h p (initialized to 1/ S ) subject to p S a 2 p = 1 = 2 p S h p CSC401/2511 Spring
46 HITS update rules Authorities p are pointed to ( ) by lots of good hubs q: a p = q:q p h q a 4 = h 1 + h 2 + h 3 Hubs point to lots of good authorities: h q = a p p:q p h 4 = a 1 + a 2 + a 3 CSC401/2511 Spring
47 Page similarity using HITS Given honda.com, we also get: toyota.com ford.com bmwusa.com saturn.com nissanmotors.com This method can have trouble with ambiguous queries, however CSC401/2511 Spring
48 PageRank PageRank (Brin & Page, 1998) is an alternative to HITS that does not distinguish between hub and authority. CSC401/2511 Spring
49 PageRank initial idea Assume that in-degree does not account for the authority of the source of a link. For page p, the page rank is: where R p = c CSC401/2511 Spring q:q p R(q) N q N q is the total number of out-links over all q. c is a normalizing constant. A page s rank flows out equally among outgoing links.
50 PageRank flow of authority PageRank would iteratively adjust all R p until overall page ranking converged Steady state CSC401/2511 Spring
51 PageRank problem Groups of purely self-referential pages (linked from the outside) are sinks that absorb all the rank in the system during the iterative rank assignment process. CSC401/2511 Spring
52 PageRank rank source An ethereal rank source E continually replenishes the rank of each page p by a fixed amount E p R p = c q:q p R(q) N q + E(p) CSC401/2511 Spring
53 Complete ranking A complete ranking involves combining: PageRank. Preferences using HTML tags (e.g., title or abstract are often highly informative). Similarity of query words and documents. How do we relate query words and documents in the first place? CSC401/2511 Spring
54 Next lecture How to relate query terms and documents. Vector space model. How to generalize query terms. Latent semantic indexing. How to rank documents. Singular value decomposition. How to evaluate different search engines. CSC401/2511 Spring
55 Misc Some slide and material based on those of Ray J. Mooney (UTexas, CS371R), Hinrich Schütze, Christina Lioma, and Chris Manning (Stanford, CS276). Dan Jurafsky (Stanford, CS124) CSC401/2511 Spring
56 Aside PageRank algorithm Given the total set of pages S, Let p S: E p = α for some 0 α 1 S Initialize p S: R p = 1/ S Until convergence: For each p S: R R q p 1 α + E(p) q:q p N q 1 c p S R p For each p S: R p cr (p) //normalize CSC401/2511 Spring
Lecture 1: Introduction and the Boolean Model
Lecture 1: Introduction and the Boolean Model Information Retrieval Computer Science Tripos Part II Simone Teufel Natural Language and Information Processing (NLIP) Group [email protected] 1 Overview
Practical Graph Mining with R. 5. Link Analysis
Practical Graph Mining with R 5. Link Analysis Outline Link Analysis Concepts Metrics for Analyzing Networks PageRank HITS Link Prediction 2 Link Analysis Concepts Link A relationship between two entities
So today we shall continue our discussion on the search engines and web crawlers. (Refer Slide Time: 01:02)
Internet Technology Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No #39 Search Engines and Web Crawler :: Part 2 So today we
Introduction to Information Retrieval http://informationretrieval.org
Introduction to Information Retrieval http://informationretrieval.org IIR 6&7: Vector Space Model Hinrich Schütze Institute for Natural Language Processing, University of Stuttgart 2011-08-29 Schütze:
Search and Information Retrieval
Search and Information Retrieval Search on the Web 1 is a daily activity for many people throughout the world Search and communication are most popular uses of the computer Applications involving search
Computational Advertising Andrei Broder Yahoo! Research. SCECR, May 30, 2009
Computational Advertising Andrei Broder Yahoo! Research SCECR, May 30, 2009 Disclaimers This talk presents the opinions of the author. It does not necessarily reflect the views of Yahoo! Inc or any other
Web Advertising 1 2/26/2013 CS190: Web Science and Technology, 2010
Web Advertising 12/26/2013 CS190: Web Science and Technology, 2010 Today's Plan Logistics Understanding searchers (Commercial Perspective) Search Advertising Next project: Google advertising challenge
Web Mining. Margherita Berardi LACAM. Dipartimento di Informatica Università degli Studi di Bari [email protected]
Web Mining Margherita Berardi LACAM Dipartimento di Informatica Università degli Studi di Bari [email protected] Bari, 24 Aprile 2003 Overview Introduction Knowledge discovery from text (Web Content
DIGITAL MARKETING BASICS: SEO
DIGITAL MARKETING BASICS: SEO Search engine optimization (SEO) refers to the process of increasing website visibility or ranking visibility in a search engine's "organic" or unpaid search results. As an
How to Use Google AdWords
Web News Apps Videos Images More Search Tools How to Use Google AdWords A Beginner s Guide to PPC Advertising How to Use Google AdWords offers.hubspot.com/google-adwords-ppc Learn how to use Google AdWords
Legal Informatics Final Paper Submission Creating a Legal-Focused Search Engine I. BACKGROUND II. PROBLEM AND SOLUTION
Brian Lao - bjlao Karthik Jagadeesh - kjag Legal Informatics Final Paper Submission Creating a Legal-Focused Search Engine I. BACKGROUND There is a large need for improved access to legal help. For example,
Corso di Biblioteche Digitali
Corso di Biblioteche Digitali Vittore Casarosa [email protected] tel. 050-315 3115 cell. 348-397 2168 Ricevimento dopo la lezione o per appuntamento Valutazione finale 70-75% esame orale 25-30% progetto
1 o Semestre 2007/2008
Departamento de Engenharia Informática Instituto Superior Técnico 1 o Semestre 2007/2008 Outline 1 2 3 4 5 Outline 1 2 3 4 5 Exploiting Text How is text exploited? Two main directions Extraction Extraction
Semantic Search in Portals using Ontologies
Semantic Search in Portals using Ontologies Wallace Anacleto Pinheiro Ana Maria de C. Moura Military Institute of Engineering - IME/RJ Department of Computer Engineering - Rio de Janeiro - Brazil [awallace,anamoura]@de9.ime.eb.br
Chapter 6. Attracting Buyers with Search, Semantic, and Recommendation Technology
Attracting Buyers with Search, Semantic, and Recommendation Technology Learning Objectives Using Search Technology for Business Success Organic Search and Search Engine Optimization Recommendation Engines
Chapter-1 : Introduction 1 CHAPTER - 1. Introduction
Chapter-1 : Introduction 1 CHAPTER - 1 Introduction This thesis presents design of a new Model of the Meta-Search Engine for getting optimized search results. The focus is on new dimension of internet
Technical challenges in web advertising
Technical challenges in web advertising Andrei Broder Yahoo! Research 1 Disclaimer This talk presents the opinions of the author. It does not necessarily reflect the views of Yahoo! Inc. 2 Advertising
Asking Hard Graph Questions. Paul Burkhardt. February 3, 2014
Beyond Watson: Predictive Analytics and Big Data U.S. National Security Agency Research Directorate - R6 Technical Report February 3, 2014 300 years before Watson there was Euler! The first (Jeopardy!)
The ABCs of AdWords. The 49 PPC Terms You Need to Know to Be Successful. A publication of WordStream & Hanapin Marketing
The ABCs of AdWords The 49 PPC Terms You Need to Know to Be Successful A publication of WordStream & Hanapin Marketing The ABCs of AdWords The 49 PPC Terms You Need to Know to Be Successful Many individuals
International Journal of Engineering Research-Online A Peer Reviewed International Journal Articles are freely available online:http://www.ijoer.
RESEARCH ARTICLE SURVEY ON PAGERANK ALGORITHMS USING WEB-LINK STRUCTURE SOWMYA.M 1, V.S.SREELAXMI 2, MUNESHWARA M.S 3, ANIL G.N 4 Department of CSE, BMS Institute of Technology, Avalahalli, Yelahanka,
So what is this session all about?
1 So what is this session all about? In this session we will be looking to understand the key aspects of the digital marketing mix with specific emphasis on digital communications techniques. This session
GOOGLE ANALYTICS TERMS
GOOGLE ANALYTICS TERMS BOUNCE RATE The average percentage of people who visited your website and only viewed one page. In Google Analytics, you are able to see a site-wide bounce rate and bounce rates
Search Engine Optimisation (SEO) Factsheet
Search Engine Optimisation (SEO) Factsheet SEO is a complex element of our industry and many clients do not fully understand what is involved in getting their site ranked on common search engines such
2015 SEO AND Beyond. Enter the Search Engines for Business. www.thinkbigengine.com
2015 SEO AND Beyond Enter the Search Engines for Business www.thinkbigengine.com Including SEO Into Your 2015 Marketing Campaign SEO in 2015 is tremendously different than it was just a few years ago.
Online Marketing Optimization Essentials
Online Marketing Optimization Essentials Bilal Saleh Principal Partner E-Nor Inc. May 20, 2014 Agenda 2 E-Nor Overview Search Engine Optimization (SEO) Paid search Web Analytics Q&A Graphics by: http://www.iconarchive.com/show/seo-icons-by-designbolts.html
Optimization of Search Results with Duplicate Page Elimination using Usage Data A. K. Sharma 1, Neelam Duhan 2 1, 2
Optimization of Search Results with Duplicate Page Elimination using Usage Data A. K. Sharma 1, Neelam Duhan 2 1, 2 Department of Computer Engineering, YMCA University of Science & Technology, Faridabad,
Subordinating to the Majority: Factoid Question Answering over CQA Sites
Journal of Computational Information Systems 9: 16 (2013) 6409 6416 Available at http://www.jofcis.com Subordinating to the Majority: Factoid Question Answering over CQA Sites Xin LIAN, Xiaojie YUAN, Haiwei
The PageRank Citation Ranking: Bring Order to the Web
The PageRank Citation Ranking: Bring Order to the Web presented by: Xiaoxi Pang 25.Nov 2010 1 / 20 Outline Introduction A ranking for every page on the Web Implementation Convergence Properties Personalized
Introduction to Information Retrieval http://informationretrieval.org
Introduction to Information Retrieval http://informationretrieval.org IIR 7: Scores in a Complete Search System Hinrich Schütze Center for Information and Language Processing, University of Munich 2014-05-07
DIGITAL MARKETING BASICS: PPC
DIGITAL MARKETING BASICS: PPC Search Engine Marketing (SEM) is an umbrella term referring to all activities that generate visibility in search engine result pages (SERPs) through the use of paid placement,
SEO 360: The Essentials of Search Engine Optimization INTRODUCTION CONTENTS. By Chris Adams, Director of Online Marketing & Research
SEO 360: The Essentials of Search Engine Optimization By Chris Adams, Director of Online Marketing & Research INTRODUCTION Effective Search Engine Optimization is not a highly technical or complex task,
Part 1: Link Analysis & Page Rank
Chapter 8: Graph Data Part 1: Link Analysis & Page Rank Based on Leskovec, Rajaraman, Ullman 214: Mining of Massive Datasets 1 Exam on the 5th of February, 216, 14. to 16. If you wish to attend, please
Search Engines. Stephen Shaw <[email protected]> 18th of February, 2014. Netsoc
Search Engines Stephen Shaw Netsoc 18th of February, 2014 Me M.Sc. Artificial Intelligence, University of Edinburgh Would recommend B.A. (Mod.) Computer Science, Linguistics, French,
Search Engine Optimization - From Automatic Repetitive Steps To Subtle Site Development
Narkevičius. Search engine optimization. 3 Search Engine Optimization - From Automatic Repetitive Steps To Subtle Site Development Robertas Narkevičius a Vilnius Business College, Kalvariju street 125,
TF-IDF. David Kauchak cs160 Fall 2009 adapted from: http://www.stanford.edu/class/cs276/handouts/lecture6-tfidf.ppt
TF-IDF David Kauchak cs160 Fall 2009 adapted from: http://www.stanford.edu/class/cs276/handouts/lecture6-tfidf.ppt Administrative Homework 3 available soon Assignment 2 available soon Popular media article
A SIMPLE GUIDE TO PAID SEARCH (PPC)
A SIMPLE GUIDE TO PAID SEARCH (PPC) A jargon-busting introduction to how paid search can help you to achieve your business goals ebook 1 Contents 1 // What is paid search? 03 2 // Business goals 05 3 //
The 8 Key Metrics That Define Your AdWords Performance. A WordStream Guide
The 8 Key Metrics That Define Your AdWords Performance A WordStream Guide The 8 Key Metrics That Define Your Adwords Performance WordStream Customer Success As anyone who has ever managed a Google AdWords
Bing Liu. Web Data Mining. Exploring Hyperlinks, Contents, and Usage Data. With 177 Figures. ~ Spring~r
Bing Liu Web Data Mining Exploring Hyperlinks, Contents, and Usage Data With 177 Figures ~ Spring~r Table of Contents 1. Introduction.. 1 1.1. What is the World Wide Web? 1 1.2. ABrief History of the Web
Small Business SEO Marketing an introduction
Small Business SEO Marketing an introduction Optimax May 2012 www.optimaxads.com 1 CONTENTS Introduction 3 On Page Optimisation 3 How Google views your Web Site 5 How to check your web page code for SEO
Proposal for Search Engine Optimization. Ref: Pro-SEO-0049/2009
Proposal for Search Engine Optimization Ref: Pro-SEO-0049/2009 CONTENTS Contents... 2 Executive Summary... 3 Overview... 4 1.1 How Search Engines WORK?... 4 1.2 About us... 6 Methodology... 7 1.2.1 Phase
CSCI 5417 Information Retrieval Systems Jim Martin!
CSCI 5417 Information Retrieval Systems Jim Martin! Lecture 9 9/20/2011 Today 9/20 Where we are MapReduce/Hadoop Probabilistic IR Language models LM for ad hoc retrieval 1 Where we are... Basics of ad
A COMPREHENSIVE REVIEW ON SEARCH ENGINE OPTIMIZATION
Volume 4, No. 1, January 2013 Journal of Global Research in Computer Science REVIEW ARTICLE Available Online at www.jgrcs.info A COMPREHENSIVE REVIEW ON SEARCH ENGINE OPTIMIZATION 1 Er.Tanveer Singh, 2
Search Engine Optimization (SEO): Improving Website Ranking
Search Engine Optimization (SEO): Improving Website Ranking Chandrani Nath #1, Dr. Laxmi Ahuja *2 # 1 *2 Amity University, Noida Abstract: - As web popularity increases day by day, millions of people use
Watson. An analytical computing system that specializes in natural human language and provides specific answers to complex questions at rapid speeds
Watson An analytical computing system that specializes in natural human language and provides specific answers to complex questions at rapid speeds I.B.M. OHJ-2556 Artificial Intelligence Guest lecturing
PSG College of Technology, Coimbatore-641 004 Department of Computer & Information Sciences BSc (CT) G1 & G2 Sixth Semester PROJECT DETAILS.
PSG College of Technology, Coimbatore-641 004 Department of Computer & Information Sciences BSc (CT) G1 & G2 Sixth Semester PROJECT DETAILS Project Project Title Area of Abstract No Specialization 1. Software
Graph Mining and Social Network Analysis
Graph Mining and Social Network Analysis Data Mining and Text Mining (UIC 583 @ Politecnico di Milano) References Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", The Morgan Kaufmann
Search engine ranking
Proceedings of the 7 th International Conference on Applied Informatics Eger, Hungary, January 28 31, 2007. Vol. 2. pp. 417 422. Search engine ranking Mária Princz Faculty of Technical Engineering, University
Dynamical Clustering of Personalized Web Search Results
Dynamical Clustering of Personalized Web Search Results Xuehua Shen CS Dept, UIUC [email protected] Hong Cheng CS Dept, UIUC [email protected] Abstract Most current search engines present the user a ranked
Building a Question Classifier for a TREC-Style Question Answering System
Building a Question Classifier for a TREC-Style Question Answering System Richard May & Ari Steinberg Topic: Question Classification We define Question Classification (QC) here to be the task that, given
Index Terms Domain name, Firewall, Packet, Phishing, URL.
BDD for Implementation of Packet Filter Firewall and Detecting Phishing Websites Naresh Shende Vidyalankar Institute of Technology Prof. S. K. Shinde Lokmanya Tilak College of Engineering Abstract Packet
Search Engine Marketing (SEM) with Google Adwords
Search Engine Marketing (SEM) with Google Adwords Account Setup A thorough account setup will ensure that your search engine marketing efforts are on a solid framework. This ensures the campaigns, ad groups
Using LSI for Implementing Document Management Systems Turning unstructured data from a liability to an asset.
White Paper Using LSI for Implementing Document Management Systems Turning unstructured data from a liability to an asset. Using LSI for Implementing Document Management Systems By Mike Harrison, Director,
SEO AND CONTENT MANAGEMENT SYSTEM
International Journal of Electronics and Computer Science Engineering 953 Available Online at www.ijecse.org ISSN- 2277-1956 SEO AND CONTENT MANAGEMENT SYSTEM Savan K. Patel 1, Jigna B.Prajapati 2, Ravi.S.Patel
Search Engine Optimization and Pay Per Click Building Your Online Success
Search Engine Optimization and Pay Per Click Building Your Online Success Jennifer Shaheen The Technology & emarketing Therapist www.technologytherapy.com You Will Learn How consumers currently search
An Approach to Give First Rank for Website and Webpage Through SEO
International Journal of Computer Sciences and Engineering Open Access Research Paper Volume-2 Issue-6 E-ISSN: 2347-2693 An Approach to Give First Rank for Website and Webpage Through SEO Rajneesh Shrivastva
W. Heath Rushing Adsurgo LLC. Harness the Power of Text Analytics: Unstructured Data Analysis for Healthcare. Session H-1 JTCC: October 23, 2015
W. Heath Rushing Adsurgo LLC Harness the Power of Text Analytics: Unstructured Data Analysis for Healthcare Session H-1 JTCC: October 23, 2015 Outline Demonstration: Recent article on cnn.com Introduction
Analysis of Web Archives. Vinay Goel Senior Data Engineer
Analysis of Web Archives Vinay Goel Senior Data Engineer Internet Archive Established in 1996 501(c)(3) non profit organization 20+ PB (compressed) of publicly accessible archival material Technology partner
Considerations of Modeling in Keyword Bidding (Google:AdWords) Xiaoming Huo Georgia Institute of Technology August 8, 2012
Considerations of Modeling in Keyword Bidding (Google:AdWords) Xiaoming Huo Georgia Institute of Technology August 8, 2012 8/8/2012 1 Outline I. Problem Description II. Game theoretical aspect of the bidding
Search Engine Optimisation workbook
Search Engine Optimisation workbook Sub-title here Search Engine Optimisation workbook SEO: Getting Started When referring to SEO the focus is on organic search results not paid for traffic from Google
Social Media Mining. Data Mining Essentials
Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers
» A Hardware & Software Overview. Eli M. Dow <[email protected]:>
» A Hardware & Software Overview Eli M. Dow Overview:» Hardware» Software» Questions 2011 IBM Corporation Early implementations of Watson ran on a single processor where it took 2 hours
How to Drive More Traffic to Your Event Website
Event Director s Best Practices Webinar Series Presents How to Drive More Traffic to Your Event Website Matt Clymer Online Marketing Specialist December 16 th 2010 Today s Speakers Moderator Guest Speaker
Distributed Computing and Big Data: Hadoop and MapReduce
Distributed Computing and Big Data: Hadoop and MapReduce Bill Keenan, Director Terry Heinze, Architect Thomson Reuters Research & Development Agenda R&D Overview Hadoop and MapReduce Overview Use Case:
11/23/2011. PPC Search Advertising. There are Two Key Parts to any Search Engine Marketing Strategy. 1. Search Engine Optimisation (SEO)
PPC Search Advertising Adrian Feane Effective PPC Campaigns and 5 Case Study & Summary Slide There are Two Key Parts to any Search Engine Marketing Strategy. Search Engine Optimisation (SEO). Pay Per Click
SEARCH ENGINE OPTIMISATION
S E A R C H E N G I N E O P T I M I S AT I O N - PA G E 2 SEARCH ENGINE OPTIMISATION Search Engine Optimisation (SEO) is absolutely essential for small to medium sized business owners who are serious about
The 20-Minute PPC Work Week. Making the Most of Your PPC Account in Minimal Time. A WordStream Guide
The 20-Minute PPC Work Week Making the Most of Your PPC Account in Minimal Time A WordStream Guide The 20-Minute PPC Work Week WordStream Customer Success Making the Most of Your PPC Account in Minimal
Context Aware Predictive Analytics: Motivation, Potential, Challenges
Context Aware Predictive Analytics: Motivation, Potential, Challenges Mykola Pechenizkiy Seminar 31 October 2011 University of Bournemouth, England http://www.win.tue.nl/~mpechen/projects/capa Outline
SEO Definition. SEM Definition
SEO Definition Search engine optimization (SEO) is the process of improving the volume and quality of traffic to a web site from search engines via "natural" ("organic" or "algorithmic") search results.
Enhancing the Ranking of a Web Page in the Ocean of Data
Database Systems Journal vol. IV, no. 3/2013 3 Enhancing the Ranking of a Web Page in the Ocean of Data Hitesh KUMAR SHARMA University of Petroleum and Energy Studies, India [email protected] In today
Large-Scale Test Mining
Large-Scale Test Mining SIAM Conference on Data Mining Text Mining 2010 Alan Ratner Northrop Grumman Information Systems NORTHROP GRUMMAN PRIVATE / PROPRIETARY LEVEL I Aim Identify topic and language/script/coding
Digital Training Search Engine Optimization. Presented by: Aris Tianto Head of Search at InboundID [email protected] @atianto
Digital Training Search Engine Optimization Presented by: Aris Tianto Head of Search at InboundID [email protected] @atianto Why Is Search Important Why search is important? Total Internet users in Indonesia
Parallelism and Cloud Computing
Parallelism and Cloud Computing Kai Shen Parallel Computing Parallel computing: Process sub tasks simultaneously so that work can be completed faster. For instances: divide the work of matrix multiplication
Search Engine Optimisation Guide May 2009
Search Engine Optimisation Guide May 2009-1 - The Basics SEO is the active practice of optimising a web site by improving internal and external aspects in order to increase the traffic the site receives
8 Simple Things You Might Be Overlooking In Your AdWords Account. A WordStream Guide
8 Simple Things You Might Be Overlooking In Your AdWords Account A WordStream Guide 8 Simple Things You Might Be Overlooking In Your AdWords Account AdWords makes it incredibly easy to set up and run a
Removing Web Spam Links from Search Engine Results
Removing Web Spam Links from Search Engine Results Manuel EGELE [email protected], 1 Overview Search Engine Optimization and definition of web spam Motivation Approach Inferring importance of features
Search Taxonomy. Web Search. Search Engine Optimization. Information Retrieval
Information Retrieval INFO 4300 / CS 4300! Retrieval models Older models» Boolean retrieval» Vector Space model Probabilistic Models» BM25» Language models Web search» Learning to Rank Search Taxonomy!
Website Report for http://www.cresconnect.co.uk by Cresconnect UK, London
Website Report for http://www.cresconnect.co.uk by Cresconnect UK, London Table of contents Table of contents 2 Chapter 1 - Introduction 3 About us.................................... 3 Our services..................................
Google AdWords Audit. Prepared for: [Client Name] By Jordan Consulting Group Ltd. www.jordanconsultinggroup.com
Audit Prepared for: [Client Name] By Jordan Consulting Group Ltd www.jordanconsultinggroup.com Table Of Contents AdWords ROI Statistics for 2013 3 AdWords ROI Statistics for 2013 (Continued) 4 Audit Findings
EVILSEED: A Guided Approach to Finding Malicious Web Pages
+ EVILSEED: A Guided Approach to Finding Malicious Web Pages Presented by: Alaa Hassan Supervised by: Dr. Tom Chothia + Outline Introduction Introducing EVILSEED. EVILSEED Architecture. Effectiveness of
