Annex: Concept Note. Big Data for Policy, Development and Official Statistics New York, 22 February 2013
|
|
|
- Margery O’Brien’
- 10 years ago
- Views:
Transcription
1 Annex: Concept Note Friday Seminar on Emerging Issues Big Data for Policy, Development and Official Statistics New York, 22 February 2013 How is Big Data different from just very large databases? 1 Traditionally, data processing for analytic purposes followed a fairly static blueprint. Namely, create modest amounts of structured data with stable data models. Data processing analysis and integration tools are used to extract, transform and load the data from enterprises applications and administrative databases to a staging area where data quality and data normalization (hopefully) occur and the data is modeled into neat rows and tables. The modeled, cleansed data is then loaded into an enterprise data warehouse. This routine usually occurs on a scheduled basis usually daily or weekly, monthly or annually, sometimes more frequently. From there, data warehouse administrators create and schedule regular reports to run against normalized data stored in the warehouse or some other dissemination facility, which are distributed to a wide range of users in government, business, the media and the community at large.. They also create dashboards and other limited visualization tools for executives and management. Analysts, meanwhile, use data analytics tools/engines to run more advanced analytics against the warehouse or other dissemination facility, or more often against sample data migrated to a local data mart due to size limitations. Nonexpert users perform basic data visualization and limited analytics against the data warehouse via front-end business intelligence tools. Data volumes in traditional data warehouses rarely exceeded multiple terabytes (and even that much is rare) as large volumes of data strain warehouse resources and degrade performance. The changing nature of Big Data The advent of the Web, mobile devices and other technologies such as sensor networks has caused a fundamental change to the nature of data. Big Data has important, distinct qualities that differentiate it from traditional institutional data. 1 Most of the shown text comes from a Big Data Manifesto from the Wikibon Community by Jeff Kelly, see 1
2 Data are no longer centralized, highly structured and easily manageable, but are highly distributed, loosely structured (if structured at all), and increasingly large in volume. Source: Microsoft Specifically: Volume The amount of data created both inside corporations and outside the firewall via the web, mobile devices, IT infrastructure, and other sources is increasing exponentially each year. Type The variety of data types is increasing, namely unstructured text-based data and semi-structured data like social media data, location-based data, and log-file data. Speed The speed at which new data is being created and the need for real-time analytics to derive business value from it -- is increasing thanks to digitization of transactions, the emergence of sensor networks, mobile computing and the sheer number of internet and mobile device users. Broadly speaking, Big Data is generated by a range of sources, including: Mobile Devices: There are over 5 billion mobile phones in use worldwide. Each call, text and instant message is logged as data. Mobile devices, particularly smart phones 2
3 and tablets, also make it easier to use social media and use other data-generating applications. Mobile devices also collect and transmit location data. Internet Transactions: Billions of online purchases, funds transfers, stock trades and other transactions happen every day, including countless automated transactions. Each creates a number of data points collected by retailers, banks, credit card issuers, credit agencies and others. Networked Devices and Sensors: Electronic devices of all sorts including servers and other IT hardware, smart energy meters and temperature and other sensors -- all create semi-structured log data that record every action. Social Networking and Media: There are currently over 700 million Facebook users, 250 million Twitter users and 156 million public blogs. Each Facebook update, Tweet, blog post and comment creates multiple new data points, both structured, semistructured and unstructured, sometimes called Data Exhaust. Source: The Informatica Blog New approaches to Big Data processing and analytics Traditional data warehouses and other data management tools are not designed for processing and analyzing Big Data in a time- or cost-efficient manner. Namely, data 3
4 must be organized into relational tables -- neat rows and columns -- before a traditional enterprise data warehouse can ingest it. Due to the time and man-power needed, applying such structure to vast amounts of unstructured data is impractical. Further, in order to scale-up a traditional enterprise data warehouse to accommodate potentially petabytes of data would require unrealistic financial investments in new, often (depending on the vendor) proprietary hardware. Data warehouse performance would also suffer due to a single choke point for loading data. Therefore new ways of processing and analyzing Big Data are required. There are number of approaches to processing and analyzing Big Data, but most have some common characteristics. Namely, they take advantage of commodity hardware to enable scale-out, parallel processing techniques; employ non-relational data storage capabilities in order to process unstructured and semi-structured data; and apply advanced analytics and data visualization technology to Big Data to convey insights to end-users. Source: Wikibon 2012 In order to fully take advantage of Big Data, however, enterprises must take further steps. Namely, they must employ staff with the knowledge and skills to deploy advanced analytics techniques on the processed data to reveal meaningful insights. People with the knowledge and skills are often now described as Data Scientists 4
5 performing this sophisticated work in one of a handful of languages or approaches, including HADOOP, SAS and R. The results of this analysis can then be operationalized via Big Data applications, either homegrown or off-the-shelf. Other vendors are developing business intelligence-style applications to allow non-power users to interact with Big Data directly. The context of Official Statistics National Statistical Offices have started to explore how best to harness this phenomenon of Big Data in their mission to supply quality statistics for improving economic performance, social well-being and environmental sustainability. Some of the issues 2 raised are: Should NSOs expand its business operations to take on the opportunities of using Big Data for official government purposes? Should NSOs take on a new mission as a trusted 3rd party whose role would be to certify the statistical quality of many of these newly emerging private sector sources? Should NSOs become a clearing house for statistics from non-traditional sources that meet their quality standards? Should NSOs use non-traditional sources to supplement (and perhaps replace) their official series? How might NSOs acquire people with the knowledge and skills to effectively take advantage of Big Data for official statistics purposes? For example, the billion Price Project collects price information over the internet and computes a price index to estimate inflation. The index is published daily with a three day lag as opposed to the official inflation numbers which are published monthly with a an even longer lag. A quick turn-around allows for early detection of inflation trends and may allow policy makers to tailor policies in a much more timely manner. If governments wanted to, they could already let Big Data play a role in providing some information on areas that are currently under the responsibility of national statistical offices (NSOs). 2 These issues are being considered by the High-Level Group for Strategic Developments in Business Architecture in Statistics which reports to the Conference of European Statisticians. 5
6 The attraction of Big Data lies in the sheer amount of data which could be available in, or near, real time. Potentially, Big Data could be used as intelligence to better solve emergency situations. Satellite imaging or information gathered from mobile devices can be used both in developed and developing countries. Big Data presents an opportunity for the official statistical community to better meet its mission of disseminating timely and quality statistics. Building on the experiences of the private and public sector, NSOs and national statistical and international statistical systems more generally have an opportunity to expand into an area that could provide a new range of relevant information in a timely manner. The use of Big Data has a number of upsides but also many challenges related to security, privacy, analysis and interpretation. Analyses and results emerging from the use of Big Data should be properly checked and documented for their quality, validity and limitations. Practical challenges with Big Data are using commercial infrastructure (capacity and computational power) to store, mine and analyse Big Data and developing the appropriate enterprise architectures within statistical organizations. Moving from traditional data collection to procurement and use of Big Data, the statistical community will also require need to address the skill gap around Big Data administration and Big Data Analytics, or Data Science. In order for Big Data to truly gain mainstream adoption and achieve its full potential for official statistical purposes, it is critical that the statistical community does not ignore Big Data, but recognizes the use Big Data as part of their information management model, prepares an inventory of the state of play and formulates the implications for official statistics. 6
www.pwc.com/oracle Next presentation starting soon Business Analytics using Big Data to gain competitive advantage
www.pwc.com/oracle Next presentation starting soon Business Analytics using Big Data to gain competitive advantage If every image made and every word written from the earliest stirring of civilization
5 Keys to Unlocking the Big Data Analytics Puzzle. Anurag Tandon Director, Product Marketing March 26, 2014
5 Keys to Unlocking the Big Data Analytics Puzzle Anurag Tandon Director, Product Marketing March 26, 2014 1 A Little About Us A global footprint. A proven innovator. A leader in enterprise analytics for
Big Data. Fast Forward. Putting data to productive use
Big Data Putting data to productive use Fast Forward What is big data, and why should you care? Get familiar with big data terminology, technologies, and techniques. Getting started with big data to realize
Using Tableau Software with Hortonworks Data Platform
Using Tableau Software with Hortonworks Data Platform September 2013 2013 Hortonworks Inc. http:// Modern businesses need to manage vast amounts of data, and in many cases they have accumulated this data
INTELLIGENT BUSINESS STRATEGIES WHITE PAPER
INTELLIGENT BUSINESS STRATEGIES WHITE PAPER Improving Access to Data for Successful Business Intelligence Part 2: Supporting Multiple Analytical Workloads in a Changing Analytical Landscape By Mike Ferguson
Beyond Web Application Log Analysis using Apache TM Hadoop. A Whitepaper by Orzota, Inc.
Beyond Web Application Log Analysis using Apache TM Hadoop A Whitepaper by Orzota, Inc. 1 Web Applications As more and more software moves to a Software as a Service (SaaS) model, the web application has
How To Handle Big Data With A Data Scientist
III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution
Big Data Market Size and Vendor Revenues
Analysis from The Wikibon Project February 2012 Big Data Market Size and Vendor Revenues Jeff Kelly, David Vellante, David Floyer A Wikibon Reprint The Big Data market is on the verge of a rapid growth
BIG DATA-AS-A-SERVICE
White Paper BIG DATA-AS-A-SERVICE What Big Data is about What service providers can do with Big Data What EMC can do to help EMC Solutions Group Abstract This white paper looks at what service providers
Wikibon Big Data Analytics Adoption Survey, 2014-2015 Frequency Analysis
Wikibon.com - http://wikibon.com Wikibon Big Data Analytics Adoption Survey, 2014-2015 Frequency Analysis by Jeff Kelly - 1 July 2014 http://wikibon.com/wikibon-big-data-analytics-adoption-survey-2014-2015-frequency-analysis/
Testing Big data is one of the biggest
Infosys Labs Briefings VOL 11 NO 1 2013 Big Data: Testing Approach to Overcome Quality Challenges By Mahesh Gudipati, Shanthi Rao, Naju D. Mohan and Naveen Kumar Gajja Validate data quality by employing
Accelerate BI Initiatives With Self-Service Data Discovery And Integration
A Custom Technology Adoption Profile Commissioned By Attivio June 2015 Accelerate BI Initiatives With Self-Service Data Discovery And Integration Introduction The rapid advancement of technology has ushered
There s no way around it: learning about Big Data means
In This Chapter Chapter 1 Introducing Big Data Beginning with Big Data Meeting MapReduce Saying hello to Hadoop Making connections between Big Data, MapReduce, and Hadoop There s no way around it: learning
Microsoft Big Data. Solution Brief
Microsoft Big Data Solution Brief Contents Introduction... 2 The Microsoft Big Data Solution... 3 Key Benefits... 3 Immersive Insight, Wherever You Are... 3 Connecting with the World s Data... 3 Any Data,
Apache Hadoop: The Big Data Refinery
Architecting the Future of Big Data Whitepaper Apache Hadoop: The Big Data Refinery Introduction Big data has become an extremely popular term, due to the well-documented explosion in the amount of data
Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database
Managing Big Data with Hadoop & Vertica A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Copyright Vertica Systems, Inc. October 2009 Cloudera and Vertica
BIG DATA: FIVE TACTICS TO MODERNIZE YOUR DATA WAREHOUSE
BIG DATA: FIVE TACTICS TO MODERNIZE YOUR DATA WAREHOUSE Current technology for Big Data allows organizations to dramatically improve return on investment (ROI) from their existing data warehouse environment.
International Journal of Advancements in Research & Technology, Volume 3, Issue 5, May-2014 18 ISSN 2278-7763. BIG DATA: A New Technology
International Journal of Advancements in Research & Technology, Volume 3, Issue 5, May-2014 18 BIG DATA: A New Technology Farah DeebaHasan Student, M.Tech.(IT) Anshul Kumar Sharma Student, M.Tech.(IT)
ANALYTICS BUILT FOR INTERNET OF THINGS
ANALYTICS BUILT FOR INTERNET OF THINGS Big Data Reporting is Out, Actionable Insights are In In recent years, it has become clear that data in itself has little relevance, it is the analysis of it that
SELLING PROJECTS ON THE MICROSOFT BUSINESS ANALYTICS PLATFORM
David Chappell SELLING PROJECTS ON THE MICROSOFT BUSINESS ANALYTICS PLATFORM A PERSPECTIVE FOR SYSTEMS INTEGRATORS Sponsored by Microsoft Corporation Copyright 2014 Chappell & Associates Contents Business
Agile Business Intelligence Data Lake Architecture
Agile Business Intelligence Data Lake Architecture TABLE OF CONTENTS Introduction... 2 Data Lake Architecture... 2 Step 1 Extract From Source Data... 5 Step 2 Register And Catalogue Data Sets... 5 Step
Mike Maxey. Senior Director Product Marketing Greenplum A Division of EMC. Copyright 2011 EMC Corporation. All rights reserved.
Mike Maxey Senior Director Product Marketing Greenplum A Division of EMC 1 Greenplum Becomes the Foundation of EMC s Big Data Analytics (July 2010) E M C A C Q U I R E S G R E E N P L U M For three years,
The Definitive Guide to Data Blending. White Paper
The Definitive Guide to Data Blending White Paper Leveraging Alteryx Analytics for data blending you can: Gather and blend data from virtually any data source including local, third-party, and cloud/ social
INTRODUCTION TO CASSANDRA
INTRODUCTION TO CASSANDRA This ebook provides a high level overview of Cassandra and describes some of its key strengths and applications. WHAT IS CASSANDRA? Apache Cassandra is a high performance, open
The 3 questions to ask yourself about BIG DATA
The 3 questions to ask yourself about BIG DATA Do you have a big data problem? Companies looking to tackle big data problems are embarking on a journey that is full of hype, buzz, confusion, and misinformation.
Information Architecture
The Bloor Group Actian and The Big Data Information Architecture WHITE PAPER The Actian Big Data Information Architecture Actian and The Big Data Information Architecture Originally founded in 2005 to
Getting Started Practical Input For Your Roadmap
Getting Started Practical Input For Your Roadmap Mike Ferguson Managing Director, Intelligent Business Strategies BA4ALL Big Data & Analytics Insight Conference Stockholm, May 2015 About Mike Ferguson
What s Trending in Analytics for the Consumer Packaged Goods Industry?
What s Trending in Analytics for the Consumer Packaged Goods Industry? The 2014 Accenture CPG Analytics European Survey Shows How Executives Are Using Analytics, and Where They Expect to Get the Most Value
What happens when Big Data and Master Data come together?
What happens when Big Data and Master Data come together? Jeremy Pritchard Master Data Management fgdd 1 What is Master Data? Master data is data that is shared by multiple computer systems. The Information
Keywords Big Data, NoSQL, Relational Databases, Decision Making using Big Data, Hadoop
Volume 4, Issue 1, January 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Transitioning
BIRT in the World of Big Data
BIRT in the World of Big Data David Rosenbacher VP Sales Engineering Actuate Corporation 2013 Actuate Customer Days Today s Agenda and Goals Introduction to Big Data Compare with Regular Data Common Approaches
Microsoft Analytics Platform System. Solution Brief
Microsoft Analytics Platform System Solution Brief Contents 4 Introduction 4 Microsoft Analytics Platform System 5 Enterprise-ready Big Data 7 Next-generation performance at scale 10 Engineered for optimal
Architecting for the Internet of Things & Big Data
Architecting for the Internet of Things & Big Data Robert Stackowiak, Oracle North America, VP Information Architecture & Big Data September 29, 2014 Safe Harbor Statement The following is intended to
Self-Service Big Data Analytics for Line of Business
I D C A N A L Y S T C O N N E C T I O N Dan Vesset Program Vice President, Business Analytics and Big Data Self-Service Big Data Analytics for Line of Business March 2015 Big data, in all its forms, is
Business Analytics In a Big Data World Ted Malone Solutions Architect Data Platform and Cloud Microsoft Federal
Business Analytics In a Big Data World Ted Malone Solutions Architect Data Platform and Cloud Microsoft Federal Information has gone from scarce to super-abundant. That brings huge new benefits. The Economist
TAMING THE BIG CHALLENGE OF BIG DATA MICROSOFT HADOOP
Pythian White Paper TAMING THE BIG CHALLENGE OF BIG DATA MICROSOFT HADOOP ABSTRACT As companies increasingly rely on big data to steer decisions, they also find themselves looking for ways to simplify
DATA MANAGEMENT FOR THE INTERNET OF THINGS
DATA MANAGEMENT FOR THE INTERNET OF THINGS February, 2015 Peter Krensky, Research Analyst, Analytics & Business Intelligence Report Highlights p2 p4 p6 p7 Data challenges Managing data at the edge Time
Big Data at Cloud Scale
Big Data at Cloud Scale Pushing the limits of flexible & powerful analytics Copyright 2015 Pentaho Corporation. Redistribution permitted. All trademarks are the property of their respective owners. For
IBM Big Data in Government
IBM Big in Government Turning big data into smarter decisions Deepak Mohapatra Sr. Consultant Government IBM Software Group [email protected] The Big Paradigm Shift 2 Big Creates A Challenge And an
Taming Big Data. 1010data ACCELERATES INSIGHT
Taming Big Data 1010data ACCELERATES INSIGHT Lightning-fast and transparent, 1010data analytics gives you instant access to all your data, without technical expertise or expensive infrastructure. TAMING
How To Understand The Benefits Of Big Data
Findings from the research collaboration of IBM Institute for Business Value and Saïd Business School, University of Oxford Analytics: The real-world use of big data How innovative enterprises extract
Big Data, Why All the Buzz? (Abridged) Anita Luthra, February 20, 2014
Big Data, Why All the Buzz? (Abridged) Anita Luthra, February 20, 2014 Defining Big Not Just Massive Data Big data refers to data sets whose size is beyond the ability of typical database software tools
Real-Time Big Data Analytics + Internet of Things (IoT) = Value Creation
Real-Time Big Data Analytics + Internet of Things (IoT) = Value Creation January 2015 Market Insights Report Executive Summary According to a recent customer survey by Vitria, executives across the consumer,
The Future of Data Management
The Future of Data Management with Hadoop and the Enterprise Data Hub Amr Awadallah (@awadallah) Cofounder and CTO Cloudera Snapshot Founded 2008, by former employees of Employees Today ~ 800 World Class
Management Accountants and IT Professionals providing Better Information = BI = Business Intelligence. Peter Simons peter.simons@cimaglobal.
Management Accountants and IT Professionals providing Better Information = BI = Business Intelligence Peter Simons [email protected] Agenda Management Accountants? The need for Better Information
Vehicle Manufacturer Propels Customer Engagement with Digital Marketing Solutions Insights
Customer Solution Case Study Vehicle Manufacturer Propels Customer Engagement with Digital Marketing Solutions Insights Overview Country or Region: United States Industry: Manufacturing Farm and recreational
Reaping the Rewards of Big Data
Reaping the Rewards of Big Data TABLE OF CONTENTS INTRODUCTION: 2 TABLE OF CONTENTS FINDING #1: BIG DATA PLATFORMS ARE ESSENTIAL FOR A MAJORITY OF ORGANIZATIONS TO MANAGE FUTURE BIG DATA CHALLENGES. 4
Tap into Big Data at the Speed of Business
SAP Brief SAP Technology SAP Sybase IQ Objectives Tap into Big Data at the Speed of Business A simpler, more affordable approach to Big Data analytics A simpler, more affordable approach to Big Data analytics
IBM AND NEXT GENERATION ARCHITECTURE FOR BIG DATA & ANALYTICS!
The Bloor Group IBM AND NEXT GENERATION ARCHITECTURE FOR BIG DATA & ANALYTICS VENDOR PROFILE The IBM Big Data Landscape IBM can legitimately claim to have been involved in Big Data and to have a much broader
Apache Hadoop Patterns of Use
Community Driven Apache Hadoop Apache Hadoop Patterns of Use April 2013 2013 Hortonworks Inc. http://www.hortonworks.com Big Data: Apache Hadoop Use Distilled There certainly is no shortage of hype when
A New Era Of Analytic
Penang egovernment Seminar 2014 A New Era Of Analytic Megat Anuar Idris Head, Project Delivery, Business Analytics & Big Data Agenda Overview of Big Data Case Studies on Big Data Big Data Technology Readiness
Cisco Data Preparation
Data Sheet Cisco Data Preparation Unleash your business analysts to develop the insights that drive better business outcomes, sooner, from all your data. As self-service business intelligence (BI) and
Three Open Blueprints For Big Data Success
White Paper: Three Open Blueprints For Big Data Success Featuring Pentaho s Open Data Integration Platform Inside: Leverage open framework and open source Kickstart your efforts with repeatable blueprints
We are Big Data A Sonian Whitepaper
EXECUTIVE SUMMARY Big Data is not an uncommon term in the technology industry anymore. It s of big interest to many leading IT providers and archiving companies. But what is Big Data? While many have formed
Data Refinery with Big Data Aspects
International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 7 (2013), pp. 655-662 International Research Publications House http://www. irphouse.com /ijict.htm Data
End to End Solution to Accelerate Data Warehouse Optimization. Franco Flore Alliance Sales Director - APJ
End to End Solution to Accelerate Data Warehouse Optimization Franco Flore Alliance Sales Director - APJ Big Data Is Driving Key Business Initiatives Increase profitability, innovation, customer satisfaction,
www.pwc.com Game On: How Information is Changing the Rules of Insurance
www.pwc.com Game On: How Information is Changing the Rules of Insurance Game On: How Information is Changing the Rules of Insurance The ability to extract meaningful insights from information assets is
Big Data Buzzwords From A to Z. By Rick Whiting, CRN 4:00 PM ET Wed. Nov. 28, 2012
Big Data Buzzwords From A to Z By Rick Whiting, CRN 4:00 PM ET Wed. Nov. 28, 2012 Big Data Buzzwords Big data is one of the, well, biggest trends in IT today, and it has spawned a whole new generation
IBM Data Warehousing and Analytics Portfolio Summary
IBM Information Management IBM Data Warehousing and Analytics Portfolio Summary Information Management Mike McCarthy IBM Corporation [email protected] IBM Information Management Portfolio Current Data
Whitepaper: Solution Overview - Breakthrough Insight. Published: March 7, 2012. Applies to: Microsoft SQL Server 2012. Summary:
Whitepaper: Solution Overview - Breakthrough Insight Published: March 7, 2012 Applies to: Microsoft SQL Server 2012 Summary: Today s Business Intelligence (BI) platform must adapt to a whole new scope,
Chapter 1. Contrasting traditional and visual analytics approaches
Chapter 1 Understanding Big Data Analytics In This Chapter Defining Big Data Understanding Big Data Analytics Contrasting traditional and visual analytics approaches The era of Big Data is upon us. The
Extend your analytic capabilities with SAP Predictive Analysis
September 9 11, 2013 Anaheim, California Extend your analytic capabilities with SAP Predictive Analysis Charles Gadalla Learning Points Advanced analytics strategy at SAP Simplifying predictive analytics
From Spark to Ignition:
From Spark to Ignition: Fueling Your Business on Real-Time Analytics Eric Frenkiel, MemSQL CEO June 29, 2015 San Francisco, CA What s in Store For This Presentation? 1. MemSQL: A real-time database for
SQL Server 2012 Parallel Data Warehouse. Solution Brief
SQL Server 2012 Parallel Data Warehouse Solution Brief Published February 22, 2013 Contents Introduction... 1 Microsoft Platform: Windows Server and SQL Server... 2 SQL Server 2012 Parallel Data Warehouse...
Alexander Nikov. 5. Database Systems and Managing Data Resources. Learning Objectives. RR Donnelley Tries to Master Its Data
INFO 1500 Introduction to IT Fundamentals 5. Database Systems and Managing Data Resources Learning Objectives 1. Describe how the problems of managing data resources in a traditional file environment are
BIG DATA ANALYTICS REFERENCE ARCHITECTURES AND CASE STUDIES
BIG DATA ANALYTICS REFERENCE ARCHITECTURES AND CASE STUDIES Relational vs. Non-Relational Architecture Relational Non-Relational Rational Predictable Traditional Agile Flexible Modern 2 Agenda Big Data
Big Analytics: A Next Generation Roadmap
Big Analytics: A Next Generation Roadmap Cloud Developers Summit & Expo: October 1, 2014 Neil Fox, CTO: SoftServe, Inc. 2014 SoftServe, Inc. Remember Life Before The Web? 1994 Even Revolutions Take Time
Big Data Use Cases. To Start Today. Paul Scholey Sales Director, EMEA. 2013, Pentaho. All Rights Reserved. pentaho.com. Worldwide +1 (866) 660-7555
Big Use Cases To Start Today Paul Scholey Sales Director, EMEA 1 Exabytes of We all know the amount of data in the world is growing exponentially 40000 30000 YOU ARE HERE 20000 FROM 2010 TO 2015 77% of
Winning with an Intuitive Business Intelligence Solution for Midsize Companies
SAP Product Brief SAP s for Small Businesses and Midsize Companies SAP BusinessObjects Business Intelligence, Edge Edition Objectives Winning with an Intuitive Business Intelligence for Midsize Companies
UNIFY YOUR (BIG) DATA
UNIFY YOUR (BIG) DATA ANALYTIC STRATEGY GIVE ANY USER ANY ANALYTIC ON ANY DATA Scott Gnau President, Teradata Labs [email protected] t Unify Your (Big) Data Analytic Strategy Technology excitement:
BEYOND BI: Big Data Analytic Use Cases
BEYOND BI: Big Data Analytic Use Cases Big Data Analytics Use Cases This white paper discusses the types and characteristics of big data analytics use cases, how they differ from traditional business intelligence
Analyzing Big Data: The Path to Competitive Advantage
White Paper Analyzing Big Data: The Path to Competitive Advantage by Marcia Kaplan Contents Introduction....2 How Big is Big Data?................................................................................
W H I T E P A P E R. Deriving Intelligence from Large Data Using Hadoop and Applying Analytics. Abstract
W H I T E P A P E R Deriving Intelligence from Large Data Using Hadoop and Applying Analytics Abstract This white paper is focused on discussing the challenges facing large scale data processing and the
Big Data Are You Ready? Thomas Kyte http://asktom.oracle.com
Big Data Are You Ready? Thomas Kyte http://asktom.oracle.com The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated
The Big Picture on Big Data. Princeton Section 307 Dinner Meeting December 11, 2013 Richard Herczeg
The Big Picture on Big Data Princeton Section 307 Dinner Meeting December 11, 2013 Richard Herczeg Objective of Talk 1. Deliver a Primer on Big Data. 2. How does this emerging topic apply to Quality? 3.
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
Understanding traffic flow
White Paper A Real-time Data Hub For Smarter City Applications Intelligent Transportation Innovation for Real-time Traffic Flow Analytics with Dynamic Congestion Management 2 Understanding traffic flow
Exploiting Data at Rest and Data in Motion with a Big Data Platform
Exploiting Data at Rest and Data in Motion with a Big Data Platform Sarah Brader, [email protected] What is Big Data? Where does it come from? 12+ TBs of tweet data every day 30 billion RFID tags
How Big Data is Different
FALL 2012 VOL.54 NO.1 Thomas H. Davenport, Paul Barth and Randy Bean How Big Data is Different Brought to you by Please note that gray areas reflect artwork that has been intentionally removed. The substantive
COULD VS. SHOULD: BALANCING BIG DATA AND ANALYTICS TECHNOLOGY WITH PRACTICAL OUTCOMES
COULD VS. SHOULD: BALANCING BIG DATA AND ANALYTICS TECHNOLOGY The business world is abuzz with the potential of data. In fact, most businesses have so much data that it is difficult for them to process
InfraStruxure TM Management Software
InfraStruxure TM Management Software End to end data center infrastructure management software for monitoring and control of power, cooling, security and energy usage from the building through IT systems
ENTERPRISE BI AND DATA DISCOVERY, FINALLY
Enterprise-caliber Cloud BI ENTERPRISE BI AND DATA DISCOVERY, FINALLY Southard Jones, Vice President, Product Strategy 1 AGENDA Market Trends Cloud BI Market Surveys Visualization, Data Discovery, & Self-Service
North Highland Data and Analytics. Data Governance Considerations for Big Data Analytics
North Highland and Analytics Governance Considerations for Big Analytics Agenda Traditional BI/Analytics vs. Big Analytics Types of Requiring Governance Key Considerations Information Framework Organizational
TS03: Operational Excellence by Leveraging Internet of Things Technologies
TS03: Operational Excellence by Leveraging Internet of Things Technologies Virendra Chaudhari- Industry Solutions Manufacturing- Microsoft Imtiaz Javeed Product Manager -Visualization & Information Software
BENEFITS OF AUTOMATING DATA WAREHOUSING
BENEFITS OF AUTOMATING DATA WAREHOUSING Introduction...2 The Process...2 The Problem...2 The Solution...2 Benefits...2 Background...3 Automating the Data Warehouse with UC4 Workload Automation Suite...3
BIG DATA & ANALYTICS. Transforming the business and driving revenue through big data and analytics
BIG DATA & ANALYTICS Transforming the business and driving revenue through big data and analytics Collection, storage and extraction of business value from data generated from a variety of sources are
Hadoop for Enterprises:
Hadoop for Enterprises: Overcoming the Major Challenges Introduction to Big Data Big Data are information assets that are high volume, velocity, and variety. Big Data demands cost-effective, innovative
P4.1 Reference Architectures for Enterprise Big Data Use Cases Romeo Kienzler, Data Scientist, Advisory Architect, IBM Germany, Austria, Switzerland
P4.1 Reference Architectures for Enterprise Big Data Use Cases Romeo Kienzler, Data Scientist, Advisory Architect, IBM Germany, Austria, Switzerland IBM Center of Excellence for Data Science, Cognitive
How To Make Data Streaming A Real Time Intelligence
REAL-TIME OPERATIONAL INTELLIGENCE Competitive advantage from unstructured, high-velocity log and machine Big Data 2 SQLstream: Our s-streaming products unlock the value of high-velocity unstructured log
