BigDataBench. Khushbu Agarwal
|
|
|
- Frederica Mathews
- 10 years ago
- Views:
Transcription
1 BigDataBench Khushbu Agarwal Last Updated: May 23, 2014
2 CONTENTS Contents 1 What is BigDataBench? [1] SUMMARY METHODOLOGY BigDataBench: a Big Data Benchmark Suite from Internet Services [2] SUMMARY OBSERVATION PROBLEMS IDENTIFIED BigDataBench: a Big Data Benchmark Suite from Web Search Engines [3] SUMMARY OBSERVATION POSITIVE POINT S PROBLEMS IDENTIFIED Khushbu Agarwal May 23, 2014 i
3 1 WHAT IS BIGDATABENCH? [?] 1 What is BigDataBench? [1] 1.1 SUMMARY BigDataBench is a big data benchmark suite with current version of BigDataBench 3.0. It consists of 6 real-world and 2 synthetic data sets, and 32 big data workloads. It covers micro and application benchmarks from areas of search engine,social networks,e-commerce. To create variety of workloads,bigdatabench focuses on units of computation frequently occuring in OLTP and OLAP,interactive and offline analytics. It provides several BDGS(big data generation tools) to generate scalable big data. It is open source under Apache License Version METHODOLOGY It consists of six steps overall: 1. Investigating typical application domains. 2. Understanding and chossing workloads and data sets. 3. Generating scalable data sets and workloads. 4. Provide different implementations. 5. Provide system characterization. 6. Lastly,finalizing benchmarks. Khushbu Agarwal May 23,
4 2 BIGDATABENCH: A BIG DATA BENCHMARK SUITE FROM INTERNET SERVICES [?] 2 BigDataBench: a Big Data Benchmark Suite from Internet Services [2] 2.1 SUMMARY Data are generated faster than ever, the speed of data generation will continue in the coming years and is expected to increase at an exponential level.these facts evolves the concept of BigData.The diversity of data and workloads needs comprehensive and continuous efforts on big data benchmarking.considering the broad use of big data systems,for the sake of fairness, big data benchmarks must include diversity of workloads and data sets, which is the prerequisite for evaluating big data systems and architecture.bigdatabench not only covers broad application scenarios, but also includes diverse and representative data sets OBSERVATION In the methodology of BigDataBench, after investing the application domains of internet services,workloads on search engines,e-commerce,and social networks is focused.in addition to it we have micro benchmarks for different data sources,oltp workloads and relational queries workloads,since they are fundamental and widely used. For these three application domains,six representative real-world data sets are collected,whose variety is reflected in two dimensions of data types and data sources with the whole spectrum of data types including structured,semi-structured and unstructured data. To date,nineteen big data benchmarks from dimensions of application scenarios, operations/ algorithms, data types, data sources, software stacks, and application types have been developed. In comparision to tradional benchmarks,including HPCC,PARSEC,and SPEC- CPU, the floating point operation intensity of BigDataBench is two orders of magnitude lower than in traditional benchmarks. The volume of data input has non-negligible impact on micro-architecture events. Big Data Benchmarking Requirements: A big data benchmark suite candidate must cover not only broad application scenarios, but also diverse and representative real world data sets. Big data systems must be handle the four dimensions called 4V of big data. Diverse and representative workloads. Covering representative software stacks. A big data benchmark suite should keep in pace with the improvements of the underlying systems. The benchmarks should be easy to deploy,configure, and run, and the performance data should be easy to obtain. Khushbu Agarwal May 23,
5 2 BIGDATABENCH: A BIG DATA BENCHMARK SUITE FROM INTERNET SERVICES [?] The BigDataBench workloads is chosen with the following considerations: Paying equal attention to different applications:online service,real-time analytics and offline analytics. Covering workloads in diverse and representative application scenarios. Includes differnt data sources. Covers the representative software stacks. Big Data Genarator is a comprehensive tool to generate synthetic data.the data generators are classified for a wide class of application domains. Two categories of metrices are used for evaluation: User-perceivable metrices(rps,ops,dps). Architectural metrices(mips,mpki). Different big data workloads have different performance trends as the data scale increases. Architectural metrics are closely related to input data volumes and vary for different workloads. L3 caches of the processor are efficient for the big data workloads. Khushbu Agarwal May 23,
6 2 BIGDATABENCH: A BIG DATA BENCHMARK SUITE FROM INTERNET SERVICES [?] 2.2 PROBLEMS IDENTIFIED The complexity,diversity,frequently changed workloads and the rapid evolution of big data systems impose great challenges to big data benchmarking. Most of the big data benchmark efforts target evaluating specific types of applications or system software stacks, and hence fail to cover diversity of workloads and real-world data sets. Although BigBench has variety of data types, its object under test is DBMS and MapReduce systems that claim to provide big data solutions, leading to partial coverage of software stacks. Furthermore, currently, it is not open-source for easy usage and adoption. The operation intensity of the big data workloads is low. Khushbu Agarwal May 23,
7 3 BIGDATABENCH: A BIG DATA BENCHMARK SUITE FROM WEB SEARCH ENGINES [?] 3 BigDataBench: a Big Data Benchmark Suite from Web Search Engines [3] 3.1 SUMMARY Big Data are considered as the asset of companies,organizations and even countries. Extracting the big value from Big Data requires enabling big data systems.after investigating different application domains of Internet services,an important class of big data applications,we pay attention to search engines, which are the most important domain in Internet services in terms of the number of page views and daily visitors.a detailed analysis of search engines workloads and benchmarking methodology has been presented in the paper.an innovative data generation methodology and tool are proposed to generate scalable volumes of big data from a small seed of real data. Khushbu Agarwal May 23,
8 3 BIGDATABENCH: A BIG DATA BENCHMARK SUITE FROM WEB SEARCH ENGINES [?] 3.2 OBSERVATION The peak data processing rates of big data systems are both applications and data volumes dependent. The developement of a semantic search engine ProfSearch,which paves the path for big data benchmark suite from search engines-bigdatabench. Synthetic data is generated for benchmarking which preserves the semantic and locality characteristics of real data. The following workloads are chosen for BigDataBench: Sort,Grep,WordCount,Naive Bayes and SVM. The key characteristics of search workload trace are query sequence and timing sequencs. Some architectural events like cache and TLB behaviours are trending towards stability only on condition that data volume increases to a certain extent. Khushbu Agarwal May 23,
9 3 BIGDATABENCH: A BIG DATA BENCHMARK SUITE FROM WEB SEARCH ENGINES [?] 3.3 POSITIVE POINT S For the synthetic data and real data,the data processing rates of the workloads are close and the deviation of two data sets with the same workload is less than 12.9%. The cache and TLB behaviours for real and synthetic are close and the deviation of two data sets with the same workload is very less. Khushbu Agarwal May 23,
10 3 BIGDATABENCH: A BIG DATA BENCHMARK SUITE FROM WEB SEARCH ENGINES [?] 3.4 PROBLEMS IDENTIFIED Search engine service providers treat data, applications,and web access logs as business confidentiality, which prevents us from building benchmarks. Khushbu Agarwal May 23,
11 REFERENCES References [1] BigDataBench. Available at Downloaded in May [2] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, S. Zhang, et al., Bigdatabench: A big data benchmark suite from internet services, arxiv preprint arxiv: , [3] W. Gao, Y. Zhu, Z. Jia, C. Luo, L. Wang, Z. Li, J. Zhan, Y. Qi, Y. He, S. Gong, et al., Bigdatabench: a big data benchmark suite from web search engines, arxiv preprint arxiv: , Khushbu Agarwal May 23,
On Big Data Benchmarking
On Big Data Benchmarking 1 Rui Han and 2 Xiaoyi Lu 1 Department of Computing, Imperial College London 2 Ohio State University [email protected], [email protected] Abstract Big data systems address
BigOP:Generating Comprehensive Big Data Workloads as a Benchmarking May 17, 2014 Framework[1] 1 / 10
BigOP:Generating Comprehensive Big Data Workloads as a Benchmarking Framework[1] May 17, 2014 BigOP:Generating Comprehensive Big Data Workloads as a Benchmarking May 17, 2014 Framework[1] 1 / 10 Outline
On Big Data Benchmarking
On Big Data Benchmarking 1 Rui Han and 2 Xiaoyi Lu 1 Department of Computing, Imperial College London 2 Ohio State University [email protected], [email protected] Abstract Big data systems address
BPOE Research Highlights
BPOE Research Highlights Jianfeng Zhan ICT, Chinese Academy of Sciences 2013-10- 9 http://prof.ict.ac.cn/jfzhan INSTITUTE OF COMPUTING TECHNOLOGY What is BPOE workshop? B: Big Data Benchmarks PO: Performance
BigDataBench: a Big Data Benchmark Suite from Internet Services
BigDataBench: a Big Data Benchmark Suite from Internet Services Lei Wang 1,7, Jianfeng Zhan 1, Chunjie Luo 1, Yuqing Zhu 1, Qiang Yang 1, Yongqiang He 2, Wanling Gao 1, Zhen Jia 1, Yingjie Shi 1, Shujie
Evaluating Task Scheduling in Hadoop-based Cloud Systems
2013 IEEE International Conference on Big Data Evaluating Task Scheduling in Hadoop-based Cloud Systems Shengyuan Liu, Jungang Xu College of Computer and Control Engineering University of Chinese Academy
Characterizing Task Usage Shapes in Google s Compute Clusters
Characterizing Task Usage Shapes in Google s Compute Clusters Qi Zhang 1, Joseph L. Hellerstein 2, Raouf Boutaba 1 1 University of Waterloo, 2 Google Inc. Introduction Cloud computing is becoming a key
CloudRank-D:A Benchmark Suite for Private Cloud Systems
CloudRank-D:A Benchmark Suite for Private Cloud Systems Jing Quan Institute of Computing Technology, Chinese Academy of Sciences and University of Science and Technology of China HVC tutorial in conjunction
Performance Tuning and Optimizing SQL Databases 2016
Performance Tuning and Optimizing SQL Databases 2016 http://www.homnick.com [email protected] +1.561.988.0567 Boca Raton, Fl USA About this course This four-day instructor-led course provides students
Big Data Simulator version
Big Data Simulator version User Manual Website: http://prof.ict.ac.cn/bigdatabench/simulatorversion/ Content 1 Motivation... 3 2 Methodology... 3 3 Architecture subset... 3 3.1 Microarchitectural Metric
A Novel Cloud Based Elastic Framework for Big Data Preprocessing
School of Systems Engineering A Novel Cloud Based Elastic Framework for Big Data Preprocessing Omer Dawelbeit and Rachel McCrindle October 21, 2014 University of Reading 2008 www.reading.ac.uk Overview
Performance Workload Design
Performance Workload Design The goal of this paper is to show the basic principles involved in designing a workload for performance and scalability testing. We will understand how to achieve these principles
PART IV Performance oriented design, Performance testing, Performance tuning & Performance solutions. Outline. Performance oriented design
PART IV Performance oriented design, Performance testing, Performance tuning & Performance solutions Slide 1 Outline Principles for performance oriented design Performance testing Performance tuning General
Report on the Dagstuhl Seminar Data Quality on the Web
Report on the Dagstuhl Seminar Data Quality on the Web Michael Gertz M. Tamer Özsu Gunter Saake Kai-Uwe Sattler U of California at Davis, U.S.A. U of Waterloo, Canada U of Magdeburg, Germany TU Ilmenau,
ISSN: 2320-1363 CONTEXTUAL ADVERTISEMENT MINING BASED ON BIG DATA ANALYTICS
CONTEXTUAL ADVERTISEMENT MINING BASED ON BIG DATA ANALYTICS A.Divya *1, A.M.Saravanan *2, I. Anette Regina *3 MPhil, Research Scholar, Muthurangam Govt. Arts College, Vellore, Tamilnadu, India Assistant
SQL Server Performance Tuning and Optimization
3 Riverchase Office Plaza Hoover, Alabama 35244 Phone: 205.989.4944 Fax: 855.317.2187 E-Mail: [email protected] Web: www.discoveritt.com SQL Server Performance Tuning and Optimization Course: MS10980A
BDGS: A Scalable Big Data Generator Suite in Big Data Benchmarking. Aayush Agrawal
BDGS: A Scalable Big Data Generator Suite in Big Data Benchmarking Aayush Agrawal Last Updated: May 21, 2014 text CONTENTS Contents 1 Philosophy : 1 2 Requirements : 1 3 Observations : 2 3.1 Text Generator
New Dimensions in Configurable Computing at runtime simultaneously allows Big Data and fine Grain HPC
New Dimensions in Configurable Computing at runtime simultaneously allows Big Data and fine Grain HPC Alan Gara Intel Fellow Exascale Chief Architect Legal Disclaimer Today s presentations contain forward-looking
Data Warehouse: Introduction
Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of base and data mining group,
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON Overview * Introduction * Multiple faces of Big Data * Challenges of Big Data * Cloud Computing
A Study on Workload Imbalance Issues in Data Intensive Distributed Computing
A Study on Workload Imbalance Issues in Data Intensive Distributed Computing Sven Groot 1, Kazuo Goda 1, and Masaru Kitsuregawa 1 University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan Abstract.
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next
Performance Comparison of Fujitsu PRIMERGY and PRIMEPOWER Servers
WHITE PAPER FUJITSU PRIMERGY AND PRIMEPOWER SERVERS Performance Comparison of Fujitsu PRIMERGY and PRIMEPOWER Servers CHALLENGE Replace a Fujitsu PRIMEPOWER 2500 partition with a lower cost solution that
Tableau Server 7.0 scalability
Tableau Server 7.0 scalability February 2012 p2 Executive summary In January 2012, we performed scalability tests on Tableau Server to help our customers plan for large deployments. We tested three different
Embedded inside the database. No need for Hadoop or customcode. True real-time analytics done per transaction and in aggregate. On-the-fly linking IP
Operates more like a search engine than a database Scoring and ranking IP allows for fuzzy searching Best-result candidate sets returned Contextual analytics to correctly disambiguate entities Embedded
Augmented Search for Web Applications. New frontier in big log data analysis and application intelligence
Augmented Search for Web Applications New frontier in big log data analysis and application intelligence Business white paper May 2015 Web applications are the most common business applications today.
Microsoft SQL Server: MS-10980 Performance Tuning and Optimization Digital
coursemonster.com/us Microsoft SQL Server: MS-10980 Performance Tuning and Optimization Digital View training dates» Overview This course is designed to give the right amount of Internals knowledge and
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM Sneha D.Borkar 1, Prof.Chaitali S.Surtakar 2 Student of B.E., Information Technology, J.D.I.E.T, [email protected] Assistant Professor, Information
Enhancing Dataset Processing in Hadoop YARN Performance for Big Data Applications
Enhancing Dataset Processing in Hadoop YARN Performance for Big Data Applications Ahmed Abdulhakim Al-Absi, Dae-Ki Kang and Myong-Jong Kim Abstract In Hadoop MapReduce distributed file system, as the input
Big Data. Value, use cases and architectures. Petar Torre Lead Architect Service Provider Group. Dubrovnik, Croatia, South East Europe 20-22 May, 2013
Dubrovnik, Croatia, South East Europe 20-22 May, 2013 Big Data Value, use cases and architectures Petar Torre Lead Architect Service Provider Group 2011 2013 Cisco and/or its affiliates. All rights reserved.
Business Usage Monitoring for Teradata
Managing Big Analytic Data Business Usage Monitoring for Teradata Increasing Operational Efficiency and Reducing Data Management Costs How to Increase Operational Efficiency and Reduce Data Management
Fast, Low-Overhead Encryption for Apache Hadoop*
Fast, Low-Overhead Encryption for Apache Hadoop* Solution Brief Intel Xeon Processors Intel Advanced Encryption Standard New Instructions (Intel AES-NI) The Intel Distribution for Apache Hadoop* software
I/O Characterization of Big Data Workloads in Data Centers
I/O Characterization of Big Data Workloads in Data Centers Fengfeng Pan 1 2 Yinliang Yue 1 Jin Xiong 1 Daxiang Hao 1 1 Research Center of Advanced Computer Syste, Institute of Computing Technology, Chinese
Prerequisites. Course Outline
MS-55040: Data Mining, Predictive Analytics with Microsoft Analysis Services and Excel PowerPivot Description This three-day instructor-led course will introduce the students to the concepts of data mining,
Memory System Characterization of Big Data Workloads
2013 IEEE International Conference on Big Data Memory System Characterization of Big Data Workloads Martin Dimitrov*, Karthik Kumar*, Patrick Lu**, Vish Viswanathan*, Thomas Willhalm* *Software and Services
Types of Workloads. Raj Jain. Washington University in St. Louis
Types of Workloads Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 [email protected] These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse567-08/ 4-1 Overview!
Performance Analysis of Web based Applications on Single and Multi Core Servers
Performance Analysis of Web based Applications on Single and Multi Core Servers Gitika Khare, Diptikant Pathy, Alpana Rajan, Alok Jain, Anil Rawat Raja Ramanna Centre for Advanced Technology Department
Cloud Management: Knowing is Half The Battle
Cloud Management: Knowing is Half The Battle Raouf BOUTABA David R. Cheriton School of Computer Science University of Waterloo Joint work with Qi Zhang, Faten Zhani (University of Waterloo) and Joseph
Application Performance Testing Basics
Application Performance Testing Basics ABSTRACT Todays the web is playing a critical role in all the business domains such as entertainment, finance, healthcare etc. It is much important to ensure hassle-free
Concept and Project Objectives
3.1 Publishable summary Concept and Project Objectives Proactive and dynamic QoS management, network intrusion detection and early detection of network congestion problems among other applications in the
Big Data: Study in Structured and Unstructured Data
Big Data: Study in Structured and Unstructured Data Motashim Rasool 1, Wasim Khan 2 [email protected], [email protected] Abstract With the overlay of digital world, Information is available
BIG DATA IN BUSINESS ENVIRONMENT
Scientific Bulletin Economic Sciences, Volume 14/ Issue 1 BIG DATA IN BUSINESS ENVIRONMENT Logica BANICA 1, Alina HAGIU 2 1 Faculty of Economics, University of Pitesti, Romania [email protected] 2 Faculty
Key Issues for Data Management and Integration, 2006
Research Publication Date: 30 March 2006 ID Number: G00138812 Key Issues for Data Management and Integration, 2006 Ted Friedman The effective management and leverage of data represent the greatest opportunity
Selecting the Right Service Virtualization Tool. www.grid-tools.com E: [email protected] UK: +44 01865 884 600 US: +1 866 519 3751
Selecting the Right Service Virtualization Tool Selecting Your Service Virtualization Tool In recent years, the adoption of SOA (Service-Oriented Architectures) has become the solution of choice amongst
Recommendations for Performance Benchmarking
Recommendations for Performance Benchmarking Shikhar Puri Abstract Performance benchmarking of applications is increasingly becoming essential before deployment. This paper covers recommendations and best
UPS battery remote monitoring system in cloud computing
, pp.11-15 http://dx.doi.org/10.14257/astl.2014.53.03 UPS battery remote monitoring system in cloud computing Shiwei Li, Haiying Wang, Qi Fan School of Automation, Harbin University of Science and Technology
Executive Summary... 2 Introduction... 3. Defining Big Data... 3. The Importance of Big Data... 4 Building a Big Data Platform...
Executive Summary... 2 Introduction... 3 Defining Big Data... 3 The Importance of Big Data... 4 Building a Big Data Platform... 5 Infrastructure Requirements... 5 Solution Spectrum... 6 Oracle s Big Data
Petabyte Scale Data at Facebook. Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013
Petabyte Scale Data at Facebook Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013 Agenda 1 Types of Data 2 Data Model and API for Facebook Graph Data 3 SLTP (Semi-OLTP) and Analytics
Benchmarking and Ranking Big Data Systems
Benchmarking and Ranking Big Data Systems Xinhui Tian ICT, Chinese Academy of Sciences and University of Chinese Academy of Sciences INSTITUTE OF COMPUTING TECHNOLOGY Outline n BigDataBench n BigDataBench
locuz.com Big Data Services
locuz.com Big Data Services Big Data At Locuz, we help the enterprise move from being a data-limited to a data-driven one, thereby enabling smarter, faster decisions that result in better business outcome.
Black-box Performance Models for Virtualized Web. Danilo Ardagna, Mara Tanelli, Marco Lovera, Li Zhang [email protected]
Black-box Performance Models for Virtualized Web Service Applications Danilo Ardagna, Mara Tanelli, Marco Lovera, Li Zhang [email protected] Reference scenario 2 Virtualization, proposed in early
Well packaged sets of preinstalled, integrated, and optimized software on select hardware in the form of engineered systems and appliances
INSIGHT Oracle's All- Out Assault on the Big Data Market: Offering Hadoop, R, Cubes, and Scalable IMDB in Familiar Packages Carl W. Olofson IDC OPINION Global Headquarters: 5 Speen Street Framingham, MA
Scalability and Performance Report - Analyzer 2007
- Analyzer 2007 Executive Summary Strategy Companion s Analyzer 2007 is enterprise Business Intelligence (BI) software that is designed and engineered to scale to the requirements of large global deployments.
Energy Efficient MapReduce
Energy Efficient MapReduce Motivation: Energy consumption is an important aspect of datacenters efficiency, the total power consumption in the united states has doubled from 2000 to 2005, representing
Characterizing Workload of Web Applications on Virtualized Servers
Characterizing Workload of Web Applications on Virtualized Servers Xiajun Wang 1,2, Song Huang 2, Song Fu 2 and Krishna Kavi 2 1 Department of Information Engineering Changzhou Institute of Light Industry
SQL Server Instance-Level Benchmarks with DVDStore
SQL Server Instance-Level Benchmarks with DVDStore Dell developed a synthetic benchmark tool back that can run benchmark tests against SQL Server, Oracle, MySQL, and PostgreSQL installations. It is open-sourced
Advanced Analytics. The Way Forward for Businesses. Dr. Sujatha R Upadhyaya
Advanced Analytics The Way Forward for Businesses Dr. Sujatha R Upadhyaya Nov 2009 Advanced Analytics Adding Value to Every Business In this tough and competitive market, businesses are fighting to gain
Software Performance and Scalability
Software Performance and Scalability A Quantitative Approach Henry H. Liu ^ IEEE )computer society WILEY A JOHN WILEY & SONS, INC., PUBLICATION Contents PREFACE ACKNOWLEDGMENTS xv xxi Introduction 1 Performance
Performance Testing. Why is important? An introduction. Why is important? Delivering Excellence in Software Engineering
Delivering Excellence in Software Engineering Performance Testing An introduction. Why is important? Why is important? 2 1 https://www.youtube.com/watch?v=8y8vqjqbqdc 3 4 2 Introduction Why is important?
Architecture Support for Big Data Analytics
Architecture Support for Big Data Analytics Ahsan Javed Awan EMJD-DC (KTH-UPC) (http://uk.linkedin.com/in/ahsanjavedawan/) Supervisors: Mats Brorsson(KTH), Eduard Ayguade(UPC), Vladimir Vlassov(KTH) 1
Oracle s Big Data solutions. Roger Wullschleger. <Insert Picture Here>
s Big Data solutions Roger Wullschleger DBTA Workshop on Big Data, Cloud Data Management and NoSQL 10. October 2012, Stade de Suisse, Berne 1 The following is intended to outline
DELL s Oracle Database Advisor
DELL s Oracle Database Advisor Underlying Methodology A Dell Technical White Paper Database Solutions Engineering By Roger Lopez Phani MV Dell Product Group January 2010 THIS WHITE PAPER IS FOR INFORMATIONAL
CHAPTER 1 INTRODUCTION
21 CHAPTER 1 INTRODUCTION 1.1 PREAMBLE Wireless ad-hoc network is an autonomous system of wireless nodes connected by wireless links. Wireless ad-hoc network provides a communication over the shared wireless
SQL Maestro and the ELT Paradigm Shift
SQL Maestro and the ELT Paradigm Shift Abstract ELT extract, load, and transform is replacing ETL (extract, transform, load) as the usual method of populating data warehouses. Modern data warehouse appliances
Benchmarking Cassandra on Violin
Technical White Paper Report Technical Report Benchmarking Cassandra on Violin Accelerating Cassandra Performance and Reducing Read Latency With Violin Memory Flash-based Storage Arrays Version 1.0 Abstract
There are a number of factors that increase the risk of performance problems in complex computer and software systems, such as e-commerce systems.
ASSURING PERFORMANCE IN E-COMMERCE SYSTEMS Dr. John Murphy Abstract Performance Assurance is a methodology that, when applied during the design and development cycle, will greatly increase the chances
CLOUDDMSS: CLOUD-BASED DISTRIBUTED MULTIMEDIA STREAMING SERVICE SYSTEM FOR HETEROGENEOUS DEVICES
CLOUDDMSS: CLOUD-BASED DISTRIBUTED MULTIMEDIA STREAMING SERVICE SYSTEM FOR HETEROGENEOUS DEVICES 1 MYOUNGJIN KIM, 2 CUI YUN, 3 SEUNGHO HAN, 4 HANKU LEE 1,2,3,4 Department of Internet & Multimedia Engineering,
TRENDS IN THE DEVELOPMENT OF BUSINESS INTELLIGENCE SYSTEMS
9 8 TRENDS IN THE DEVELOPMENT OF BUSINESS INTELLIGENCE SYSTEMS Assist. Prof. Latinka Todoranova Econ Lit C 810 Information technology is a highly dynamic field of research. As part of it, business intelligence
LPV model identification for power management of Web service systems Mara Tanelli, Danilo Ardagna, Marco Lovera
LPV model identification for power management of Web service systems Mara Tanelli, Danilo Ardagna, Marco Lovera, Politecnico di Milano {tanelli, ardagna, lovera}@elet.polimi.it Outline 2 Reference scenario:
Improve Business Productivity and User Experience with a SanDisk Powered SQL Server 2014 In-Memory OLTP Database
WHITE PAPER Improve Business Productivity and User Experience with a SanDisk Powered SQL Server 2014 In-Memory OLTP Database 951 SanDisk Drive, Milpitas, CA 95035 www.sandisk.com Table of Contents Executive
Toad for Oracle 8.6 SQL Tuning
Quick User Guide for Toad for Oracle 8.6 SQL Tuning SQL Tuning Version 6.1.1 SQL Tuning definitively solves SQL bottlenecks through a unique methodology that scans code, without executing programs, to
INTRODUCTION TO CASSANDRA
INTRODUCTION TO CASSANDRA This ebook provides a high level overview of Cassandra and describes some of its key strengths and applications. WHAT IS CASSANDRA? Apache Cassandra is a high performance, open
How To Test For Elulla
EQUELLA Whitepaper Performance Testing Carl Hoffmann Senior Technical Consultant Contents 1 EQUELLA Performance Testing 3 1.1 Introduction 3 1.2 Overview of performance testing 3 2 Why do performance testing?
The Methodology Behind the Dell SQL Server Advisor Tool
The Methodology Behind the Dell SQL Server Advisor Tool Database Solutions Engineering By Phani MV Dell Product Group October 2009 Executive Summary The Dell SQL Server Advisor is intended to perform capacity
Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database
Managing Big Data with Hadoop & Vertica A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Copyright Vertica Systems, Inc. October 2009 Cloudera and Vertica
QoS based Cloud Service Provider Selection Framework
Abstract Research Journal of Recent Sciences ISSN 2277-2502 QoS based Cloud Service Provider Selection Framework Kumar N. and Agarwal S. Department of Computer Science, Babasaheb Bhimrao Ambedkar University,
How To Model A System
Web Applications Engineering: Performance Analysis: Operational Laws Service Oriented Computing Group, CSE, UNSW Week 11 Material in these Lecture Notes is derived from: Performance by Design: Computer
The 4 Pillars of Technosoft s Big Data Practice
beyond possible Big Use End-user applications Big Analytics Visualisation tools Big Analytical tools Big management systems The 4 Pillars of Technosoft s Big Practice Overview Businesses have long managed
OnX Big Data Reference Architecture
OnX Big Data Reference Architecture Knowledge is Power when it comes to Business Strategy The business landscape of decision-making is converging during a period in which: > Data is considered by most
TRACE PERFORMANCE TESTING APPROACH. Overview. Approach. Flow. Attributes
TRACE PERFORMANCE TESTING APPROACH Overview Approach Flow Attributes INTRODUCTION Software Testing Testing is not just finding out the defects. Testing is not just seeing the requirements are satisfied.
A Tour of the Zoo the Hadoop Ecosystem Prafulla Wani
A Tour of the Zoo the Hadoop Ecosystem Prafulla Wani Technical Architect - Big Data Syntel Agenda Welcome to the Zoo! Evolution Timeline Traditional BI/DW Architecture Where Hadoop Fits In 2 Welcome to
Tuning Tableau Server for High Performance
Tuning Tableau Server for High Performance I wanna go fast PRESENT ED BY Francois Ajenstat Alan Doerhoefer Daniel Meyer Agenda What are the things that can impact performance? Tips and tricks to improve
On a Hadoop-based Analytics Service System
Int. J. Advance Soft Compu. Appl, Vol. 7, No. 1, March 2015 ISSN 2074-8523 On a Hadoop-based Analytics Service System Mikyoung Lee, Hanmin Jung, and Minhee Cho Korea Institute of Science and Technology
Text Mining Approach for Big Data Analysis Using Clustering and Classification Methodologies
Text Mining Approach for Big Data Analysis Using Clustering and Classification Methodologies Somesh S Chavadi 1, Dr. Asha T 2 1 PG Student, 2 Professor, Department of Computer Science and Engineering,
Outline. Introduction. State-of-the-art Forensic Methods. Hardware-based Workload Forensics. Experimental Results. Summary. OS level Hypervisor level
Outline Introduction State-of-the-art Forensic Methods OS level Hypervisor level Hardware-based Workload Forensics Process Reconstruction Experimental Results Setup Result & Overhead Summary 1 Introduction
Process Mining in Big Data Scenario
Process Mining in Big Data Scenario Antonia Azzini, Ernesto Damiani SESAR Lab - Dipartimento di Informatica Università degli Studi di Milano, Italy antonia.azzini,[email protected] Abstract. In
Big Data Storage Architecture Design in Cloud Computing
Big Data Storage Architecture Design in Cloud Computing Xuebin Chen 1, Shi Wang 1( ), Yanyan Dong 1, and Xu Wang 2 1 College of Science, North China University of Science and Technology, Tangshan, Hebei,
