BigDataBench. Khushbu Agarwal

Size: px
Start display at page:

Download "BigDataBench. Khushbu Agarwal"

Transcription

1 BigDataBench Khushbu Agarwal Last Updated: May 23, 2014

2 CONTENTS Contents 1 What is BigDataBench? [1] SUMMARY METHODOLOGY BigDataBench: a Big Data Benchmark Suite from Internet Services [2] SUMMARY OBSERVATION PROBLEMS IDENTIFIED BigDataBench: a Big Data Benchmark Suite from Web Search Engines [3] SUMMARY OBSERVATION POSITIVE POINT S PROBLEMS IDENTIFIED Khushbu Agarwal May 23, 2014 i

3 1 WHAT IS BIGDATABENCH? [?] 1 What is BigDataBench? [1] 1.1 SUMMARY BigDataBench is a big data benchmark suite with current version of BigDataBench 3.0. It consists of 6 real-world and 2 synthetic data sets, and 32 big data workloads. It covers micro and application benchmarks from areas of search engine,social networks,e-commerce. To create variety of workloads,bigdatabench focuses on units of computation frequently occuring in OLTP and OLAP,interactive and offline analytics. It provides several BDGS(big data generation tools) to generate scalable big data. It is open source under Apache License Version METHODOLOGY It consists of six steps overall: 1. Investigating typical application domains. 2. Understanding and chossing workloads and data sets. 3. Generating scalable data sets and workloads. 4. Provide different implementations. 5. Provide system characterization. 6. Lastly,finalizing benchmarks. Khushbu Agarwal May 23,

4 2 BIGDATABENCH: A BIG DATA BENCHMARK SUITE FROM INTERNET SERVICES [?] 2 BigDataBench: a Big Data Benchmark Suite from Internet Services [2] 2.1 SUMMARY Data are generated faster than ever, the speed of data generation will continue in the coming years and is expected to increase at an exponential level.these facts evolves the concept of BigData.The diversity of data and workloads needs comprehensive and continuous efforts on big data benchmarking.considering the broad use of big data systems,for the sake of fairness, big data benchmarks must include diversity of workloads and data sets, which is the prerequisite for evaluating big data systems and architecture.bigdatabench not only covers broad application scenarios, but also includes diverse and representative data sets OBSERVATION In the methodology of BigDataBench, after investing the application domains of internet services,workloads on search engines,e-commerce,and social networks is focused.in addition to it we have micro benchmarks for different data sources,oltp workloads and relational queries workloads,since they are fundamental and widely used. For these three application domains,six representative real-world data sets are collected,whose variety is reflected in two dimensions of data types and data sources with the whole spectrum of data types including structured,semi-structured and unstructured data. To date,nineteen big data benchmarks from dimensions of application scenarios, operations/ algorithms, data types, data sources, software stacks, and application types have been developed. In comparision to tradional benchmarks,including HPCC,PARSEC,and SPEC- CPU, the floating point operation intensity of BigDataBench is two orders of magnitude lower than in traditional benchmarks. The volume of data input has non-negligible impact on micro-architecture events. Big Data Benchmarking Requirements: A big data benchmark suite candidate must cover not only broad application scenarios, but also diverse and representative real world data sets. Big data systems must be handle the four dimensions called 4V of big data. Diverse and representative workloads. Covering representative software stacks. A big data benchmark suite should keep in pace with the improvements of the underlying systems. The benchmarks should be easy to deploy,configure, and run, and the performance data should be easy to obtain. Khushbu Agarwal May 23,

5 2 BIGDATABENCH: A BIG DATA BENCHMARK SUITE FROM INTERNET SERVICES [?] The BigDataBench workloads is chosen with the following considerations: Paying equal attention to different applications:online service,real-time analytics and offline analytics. Covering workloads in diverse and representative application scenarios. Includes differnt data sources. Covers the representative software stacks. Big Data Genarator is a comprehensive tool to generate synthetic data.the data generators are classified for a wide class of application domains. Two categories of metrices are used for evaluation: User-perceivable metrices(rps,ops,dps). Architectural metrices(mips,mpki). Different big data workloads have different performance trends as the data scale increases. Architectural metrics are closely related to input data volumes and vary for different workloads. L3 caches of the processor are efficient for the big data workloads. Khushbu Agarwal May 23,

6 2 BIGDATABENCH: A BIG DATA BENCHMARK SUITE FROM INTERNET SERVICES [?] 2.2 PROBLEMS IDENTIFIED The complexity,diversity,frequently changed workloads and the rapid evolution of big data systems impose great challenges to big data benchmarking. Most of the big data benchmark efforts target evaluating specific types of applications or system software stacks, and hence fail to cover diversity of workloads and real-world data sets. Although BigBench has variety of data types, its object under test is DBMS and MapReduce systems that claim to provide big data solutions, leading to partial coverage of software stacks. Furthermore, currently, it is not open-source for easy usage and adoption. The operation intensity of the big data workloads is low. Khushbu Agarwal May 23,

7 3 BIGDATABENCH: A BIG DATA BENCHMARK SUITE FROM WEB SEARCH ENGINES [?] 3 BigDataBench: a Big Data Benchmark Suite from Web Search Engines [3] 3.1 SUMMARY Big Data are considered as the asset of companies,organizations and even countries. Extracting the big value from Big Data requires enabling big data systems.after investigating different application domains of Internet services,an important class of big data applications,we pay attention to search engines, which are the most important domain in Internet services in terms of the number of page views and daily visitors.a detailed analysis of search engines workloads and benchmarking methodology has been presented in the paper.an innovative data generation methodology and tool are proposed to generate scalable volumes of big data from a small seed of real data. Khushbu Agarwal May 23,

8 3 BIGDATABENCH: A BIG DATA BENCHMARK SUITE FROM WEB SEARCH ENGINES [?] 3.2 OBSERVATION The peak data processing rates of big data systems are both applications and data volumes dependent. The developement of a semantic search engine ProfSearch,which paves the path for big data benchmark suite from search engines-bigdatabench. Synthetic data is generated for benchmarking which preserves the semantic and locality characteristics of real data. The following workloads are chosen for BigDataBench: Sort,Grep,WordCount,Naive Bayes and SVM. The key characteristics of search workload trace are query sequence and timing sequencs. Some architectural events like cache and TLB behaviours are trending towards stability only on condition that data volume increases to a certain extent. Khushbu Agarwal May 23,

9 3 BIGDATABENCH: A BIG DATA BENCHMARK SUITE FROM WEB SEARCH ENGINES [?] 3.3 POSITIVE POINT S For the synthetic data and real data,the data processing rates of the workloads are close and the deviation of two data sets with the same workload is less than 12.9%. The cache and TLB behaviours for real and synthetic are close and the deviation of two data sets with the same workload is very less. Khushbu Agarwal May 23,

10 3 BIGDATABENCH: A BIG DATA BENCHMARK SUITE FROM WEB SEARCH ENGINES [?] 3.4 PROBLEMS IDENTIFIED Search engine service providers treat data, applications,and web access logs as business confidentiality, which prevents us from building benchmarks. Khushbu Agarwal May 23,

11 REFERENCES References [1] BigDataBench. Available at Downloaded in May [2] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, S. Zhang, et al., Bigdatabench: A big data benchmark suite from internet services, arxiv preprint arxiv: , [3] W. Gao, Y. Zhu, Z. Jia, C. Luo, L. Wang, Z. Li, J. Zhan, Y. Qi, Y. He, S. Gong, et al., Bigdatabench: a big data benchmark suite from web search engines, arxiv preprint arxiv: , Khushbu Agarwal May 23,

On Big Data Benchmarking

On Big Data Benchmarking On Big Data Benchmarking 1 Rui Han and 2 Xiaoyi Lu 1 Department of Computing, Imperial College London 2 Ohio State University [email protected], [email protected] Abstract Big data systems address

More information

BigOP:Generating Comprehensive Big Data Workloads as a Benchmarking May 17, 2014 Framework[1] 1 / 10

BigOP:Generating Comprehensive Big Data Workloads as a Benchmarking May 17, 2014 Framework[1] 1 / 10 BigOP:Generating Comprehensive Big Data Workloads as a Benchmarking Framework[1] May 17, 2014 BigOP:Generating Comprehensive Big Data Workloads as a Benchmarking May 17, 2014 Framework[1] 1 / 10 Outline

More information

On Big Data Benchmarking

On Big Data Benchmarking On Big Data Benchmarking 1 Rui Han and 2 Xiaoyi Lu 1 Department of Computing, Imperial College London 2 Ohio State University [email protected], [email protected] Abstract Big data systems address

More information

BPOE Research Highlights

BPOE Research Highlights BPOE Research Highlights Jianfeng Zhan ICT, Chinese Academy of Sciences 2013-10- 9 http://prof.ict.ac.cn/jfzhan INSTITUTE OF COMPUTING TECHNOLOGY What is BPOE workshop? B: Big Data Benchmarks PO: Performance

More information

BigDataBench: a Big Data Benchmark Suite from Internet Services

BigDataBench: a Big Data Benchmark Suite from Internet Services BigDataBench: a Big Data Benchmark Suite from Internet Services Lei Wang 1,7, Jianfeng Zhan 1, Chunjie Luo 1, Yuqing Zhu 1, Qiang Yang 1, Yongqiang He 2, Wanling Gao 1, Zhen Jia 1, Yingjie Shi 1, Shujie

More information

Evaluating Task Scheduling in Hadoop-based Cloud Systems

Evaluating Task Scheduling in Hadoop-based Cloud Systems 2013 IEEE International Conference on Big Data Evaluating Task Scheduling in Hadoop-based Cloud Systems Shengyuan Liu, Jungang Xu College of Computer and Control Engineering University of Chinese Academy

More information

Characterizing Task Usage Shapes in Google s Compute Clusters

Characterizing Task Usage Shapes in Google s Compute Clusters Characterizing Task Usage Shapes in Google s Compute Clusters Qi Zhang 1, Joseph L. Hellerstein 2, Raouf Boutaba 1 1 University of Waterloo, 2 Google Inc. Introduction Cloud computing is becoming a key

More information

CloudRank-D:A Benchmark Suite for Private Cloud Systems

CloudRank-D:A Benchmark Suite for Private Cloud Systems CloudRank-D:A Benchmark Suite for Private Cloud Systems Jing Quan Institute of Computing Technology, Chinese Academy of Sciences and University of Science and Technology of China HVC tutorial in conjunction

More information

Performance Tuning and Optimizing SQL Databases 2016

Performance Tuning and Optimizing SQL Databases 2016 Performance Tuning and Optimizing SQL Databases 2016 http://www.homnick.com [email protected] +1.561.988.0567 Boca Raton, Fl USA About this course This four-day instructor-led course provides students

More information

Big Data Simulator version

Big Data Simulator version Big Data Simulator version User Manual Website: http://prof.ict.ac.cn/bigdatabench/simulatorversion/ Content 1 Motivation... 3 2 Methodology... 3 3 Architecture subset... 3 3.1 Microarchitectural Metric

More information

A Novel Cloud Based Elastic Framework for Big Data Preprocessing

A Novel Cloud Based Elastic Framework for Big Data Preprocessing School of Systems Engineering A Novel Cloud Based Elastic Framework for Big Data Preprocessing Omer Dawelbeit and Rachel McCrindle October 21, 2014 University of Reading 2008 www.reading.ac.uk Overview

More information

Performance Workload Design

Performance Workload Design Performance Workload Design The goal of this paper is to show the basic principles involved in designing a workload for performance and scalability testing. We will understand how to achieve these principles

More information

PART IV Performance oriented design, Performance testing, Performance tuning & Performance solutions. Outline. Performance oriented design

PART IV Performance oriented design, Performance testing, Performance tuning & Performance solutions. Outline. Performance oriented design PART IV Performance oriented design, Performance testing, Performance tuning & Performance solutions Slide 1 Outline Principles for performance oriented design Performance testing Performance tuning General

More information

Report on the Dagstuhl Seminar Data Quality on the Web

Report on the Dagstuhl Seminar Data Quality on the Web Report on the Dagstuhl Seminar Data Quality on the Web Michael Gertz M. Tamer Özsu Gunter Saake Kai-Uwe Sattler U of California at Davis, U.S.A. U of Waterloo, Canada U of Magdeburg, Germany TU Ilmenau,

More information

ISSN: 2320-1363 CONTEXTUAL ADVERTISEMENT MINING BASED ON BIG DATA ANALYTICS

ISSN: 2320-1363 CONTEXTUAL ADVERTISEMENT MINING BASED ON BIG DATA ANALYTICS CONTEXTUAL ADVERTISEMENT MINING BASED ON BIG DATA ANALYTICS A.Divya *1, A.M.Saravanan *2, I. Anette Regina *3 MPhil, Research Scholar, Muthurangam Govt. Arts College, Vellore, Tamilnadu, India Assistant

More information

SQL Server Performance Tuning and Optimization

SQL Server Performance Tuning and Optimization 3 Riverchase Office Plaza Hoover, Alabama 35244 Phone: 205.989.4944 Fax: 855.317.2187 E-Mail: [email protected] Web: www.discoveritt.com SQL Server Performance Tuning and Optimization Course: MS10980A

More information

BDGS: A Scalable Big Data Generator Suite in Big Data Benchmarking. Aayush Agrawal

BDGS: A Scalable Big Data Generator Suite in Big Data Benchmarking. Aayush Agrawal BDGS: A Scalable Big Data Generator Suite in Big Data Benchmarking Aayush Agrawal Last Updated: May 21, 2014 text CONTENTS Contents 1 Philosophy : 1 2 Requirements : 1 3 Observations : 2 3.1 Text Generator

More information

New Dimensions in Configurable Computing at runtime simultaneously allows Big Data and fine Grain HPC

New Dimensions in Configurable Computing at runtime simultaneously allows Big Data and fine Grain HPC New Dimensions in Configurable Computing at runtime simultaneously allows Big Data and fine Grain HPC Alan Gara Intel Fellow Exascale Chief Architect Legal Disclaimer Today s presentations contain forward-looking

More information

Data Warehouse: Introduction

Data Warehouse: Introduction Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of base and data mining group,

More information

BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON

BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON Overview * Introduction * Multiple faces of Big Data * Challenges of Big Data * Cloud Computing

More information

A Study on Workload Imbalance Issues in Data Intensive Distributed Computing

A Study on Workload Imbalance Issues in Data Intensive Distributed Computing A Study on Workload Imbalance Issues in Data Intensive Distributed Computing Sven Groot 1, Kazuo Goda 1, and Masaru Kitsuregawa 1 University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan Abstract.

More information

BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB

BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next

More information

Performance Comparison of Fujitsu PRIMERGY and PRIMEPOWER Servers

Performance Comparison of Fujitsu PRIMERGY and PRIMEPOWER Servers WHITE PAPER FUJITSU PRIMERGY AND PRIMEPOWER SERVERS Performance Comparison of Fujitsu PRIMERGY and PRIMEPOWER Servers CHALLENGE Replace a Fujitsu PRIMEPOWER 2500 partition with a lower cost solution that

More information

Tableau Server 7.0 scalability

Tableau Server 7.0 scalability Tableau Server 7.0 scalability February 2012 p2 Executive summary In January 2012, we performed scalability tests on Tableau Server to help our customers plan for large deployments. We tested three different

More information

Embedded inside the database. No need for Hadoop or customcode. True real-time analytics done per transaction and in aggregate. On-the-fly linking IP

Embedded inside the database. No need for Hadoop or customcode. True real-time analytics done per transaction and in aggregate. On-the-fly linking IP Operates more like a search engine than a database Scoring and ranking IP allows for fuzzy searching Best-result candidate sets returned Contextual analytics to correctly disambiguate entities Embedded

More information

Augmented Search for Web Applications. New frontier in big log data analysis and application intelligence

Augmented Search for Web Applications. New frontier in big log data analysis and application intelligence Augmented Search for Web Applications New frontier in big log data analysis and application intelligence Business white paper May 2015 Web applications are the most common business applications today.

More information

Microsoft SQL Server: MS-10980 Performance Tuning and Optimization Digital

Microsoft SQL Server: MS-10980 Performance Tuning and Optimization Digital coursemonster.com/us Microsoft SQL Server: MS-10980 Performance Tuning and Optimization Digital View training dates» Overview This course is designed to give the right amount of Internals knowledge and

More information

A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM

A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM Sneha D.Borkar 1, Prof.Chaitali S.Surtakar 2 Student of B.E., Information Technology, J.D.I.E.T, [email protected] Assistant Professor, Information

More information

Enhancing Dataset Processing in Hadoop YARN Performance for Big Data Applications

Enhancing Dataset Processing in Hadoop YARN Performance for Big Data Applications Enhancing Dataset Processing in Hadoop YARN Performance for Big Data Applications Ahmed Abdulhakim Al-Absi, Dae-Ki Kang and Myong-Jong Kim Abstract In Hadoop MapReduce distributed file system, as the input

More information

Big Data. Value, use cases and architectures. Petar Torre Lead Architect Service Provider Group. Dubrovnik, Croatia, South East Europe 20-22 May, 2013

Big Data. Value, use cases and architectures. Petar Torre Lead Architect Service Provider Group. Dubrovnik, Croatia, South East Europe 20-22 May, 2013 Dubrovnik, Croatia, South East Europe 20-22 May, 2013 Big Data Value, use cases and architectures Petar Torre Lead Architect Service Provider Group 2011 2013 Cisco and/or its affiliates. All rights reserved.

More information

Business Usage Monitoring for Teradata

Business Usage Monitoring for Teradata Managing Big Analytic Data Business Usage Monitoring for Teradata Increasing Operational Efficiency and Reducing Data Management Costs How to Increase Operational Efficiency and Reduce Data Management

More information

Fast, Low-Overhead Encryption for Apache Hadoop*

Fast, Low-Overhead Encryption for Apache Hadoop* Fast, Low-Overhead Encryption for Apache Hadoop* Solution Brief Intel Xeon Processors Intel Advanced Encryption Standard New Instructions (Intel AES-NI) The Intel Distribution for Apache Hadoop* software

More information

I/O Characterization of Big Data Workloads in Data Centers

I/O Characterization of Big Data Workloads in Data Centers I/O Characterization of Big Data Workloads in Data Centers Fengfeng Pan 1 2 Yinliang Yue 1 Jin Xiong 1 Daxiang Hao 1 1 Research Center of Advanced Computer Syste, Institute of Computing Technology, Chinese

More information

Prerequisites. Course Outline

Prerequisites. Course Outline MS-55040: Data Mining, Predictive Analytics with Microsoft Analysis Services and Excel PowerPivot Description This three-day instructor-led course will introduce the students to the concepts of data mining,

More information

Memory System Characterization of Big Data Workloads

Memory System Characterization of Big Data Workloads 2013 IEEE International Conference on Big Data Memory System Characterization of Big Data Workloads Martin Dimitrov*, Karthik Kumar*, Patrick Lu**, Vish Viswanathan*, Thomas Willhalm* *Software and Services

More information

Types of Workloads. Raj Jain. Washington University in St. Louis

Types of Workloads. Raj Jain. Washington University in St. Louis Types of Workloads Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 [email protected] These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse567-08/ 4-1 Overview!

More information

Performance Analysis of Web based Applications on Single and Multi Core Servers

Performance Analysis of Web based Applications on Single and Multi Core Servers Performance Analysis of Web based Applications on Single and Multi Core Servers Gitika Khare, Diptikant Pathy, Alpana Rajan, Alok Jain, Anil Rawat Raja Ramanna Centre for Advanced Technology Department

More information

Cloud Management: Knowing is Half The Battle

Cloud Management: Knowing is Half The Battle Cloud Management: Knowing is Half The Battle Raouf BOUTABA David R. Cheriton School of Computer Science University of Waterloo Joint work with Qi Zhang, Faten Zhani (University of Waterloo) and Joseph

More information

Application Performance Testing Basics

Application Performance Testing Basics Application Performance Testing Basics ABSTRACT Todays the web is playing a critical role in all the business domains such as entertainment, finance, healthcare etc. It is much important to ensure hassle-free

More information

Concept and Project Objectives

Concept and Project Objectives 3.1 Publishable summary Concept and Project Objectives Proactive and dynamic QoS management, network intrusion detection and early detection of network congestion problems among other applications in the

More information

Big Data: Study in Structured and Unstructured Data

Big Data: Study in Structured and Unstructured Data Big Data: Study in Structured and Unstructured Data Motashim Rasool 1, Wasim Khan 2 [email protected], [email protected] Abstract With the overlay of digital world, Information is available

More information

BIG DATA IN BUSINESS ENVIRONMENT

BIG DATA IN BUSINESS ENVIRONMENT Scientific Bulletin Economic Sciences, Volume 14/ Issue 1 BIG DATA IN BUSINESS ENVIRONMENT Logica BANICA 1, Alina HAGIU 2 1 Faculty of Economics, University of Pitesti, Romania [email protected] 2 Faculty

More information

Key Issues for Data Management and Integration, 2006

Key Issues for Data Management and Integration, 2006 Research Publication Date: 30 March 2006 ID Number: G00138812 Key Issues for Data Management and Integration, 2006 Ted Friedman The effective management and leverage of data represent the greatest opportunity

More information

Selecting the Right Service Virtualization Tool. www.grid-tools.com E: [email protected] UK: +44 01865 884 600 US: +1 866 519 3751

Selecting the Right Service Virtualization Tool. www.grid-tools.com E: info@grid-tools.com UK: +44 01865 884 600 US: +1 866 519 3751 Selecting the Right Service Virtualization Tool Selecting Your Service Virtualization Tool In recent years, the adoption of SOA (Service-Oriented Architectures) has become the solution of choice amongst

More information

Recommendations for Performance Benchmarking

Recommendations for Performance Benchmarking Recommendations for Performance Benchmarking Shikhar Puri Abstract Performance benchmarking of applications is increasingly becoming essential before deployment. This paper covers recommendations and best

More information

UPS battery remote monitoring system in cloud computing

UPS battery remote monitoring system in cloud computing , pp.11-15 http://dx.doi.org/10.14257/astl.2014.53.03 UPS battery remote monitoring system in cloud computing Shiwei Li, Haiying Wang, Qi Fan School of Automation, Harbin University of Science and Technology

More information

Executive Summary... 2 Introduction... 3. Defining Big Data... 3. The Importance of Big Data... 4 Building a Big Data Platform...

Executive Summary... 2 Introduction... 3. Defining Big Data... 3. The Importance of Big Data... 4 Building a Big Data Platform... Executive Summary... 2 Introduction... 3 Defining Big Data... 3 The Importance of Big Data... 4 Building a Big Data Platform... 5 Infrastructure Requirements... 5 Solution Spectrum... 6 Oracle s Big Data

More information

Petabyte Scale Data at Facebook. Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013

Petabyte Scale Data at Facebook. Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013 Petabyte Scale Data at Facebook Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013 Agenda 1 Types of Data 2 Data Model and API for Facebook Graph Data 3 SLTP (Semi-OLTP) and Analytics

More information

Benchmarking and Ranking Big Data Systems

Benchmarking and Ranking Big Data Systems Benchmarking and Ranking Big Data Systems Xinhui Tian ICT, Chinese Academy of Sciences and University of Chinese Academy of Sciences INSTITUTE OF COMPUTING TECHNOLOGY Outline n BigDataBench n BigDataBench

More information

locuz.com Big Data Services

locuz.com Big Data Services locuz.com Big Data Services Big Data At Locuz, we help the enterprise move from being a data-limited to a data-driven one, thereby enabling smarter, faster decisions that result in better business outcome.

More information

Black-box Performance Models for Virtualized Web. Danilo Ardagna, Mara Tanelli, Marco Lovera, Li Zhang [email protected]

Black-box Performance Models for Virtualized Web. Danilo Ardagna, Mara Tanelli, Marco Lovera, Li Zhang ardagna@elet.polimi.it Black-box Performance Models for Virtualized Web Service Applications Danilo Ardagna, Mara Tanelli, Marco Lovera, Li Zhang [email protected] Reference scenario 2 Virtualization, proposed in early

More information

Well packaged sets of preinstalled, integrated, and optimized software on select hardware in the form of engineered systems and appliances

Well packaged sets of preinstalled, integrated, and optimized software on select hardware in the form of engineered systems and appliances INSIGHT Oracle's All- Out Assault on the Big Data Market: Offering Hadoop, R, Cubes, and Scalable IMDB in Familiar Packages Carl W. Olofson IDC OPINION Global Headquarters: 5 Speen Street Framingham, MA

More information

Scalability and Performance Report - Analyzer 2007

Scalability and Performance Report - Analyzer 2007 - Analyzer 2007 Executive Summary Strategy Companion s Analyzer 2007 is enterprise Business Intelligence (BI) software that is designed and engineered to scale to the requirements of large global deployments.

More information

Energy Efficient MapReduce

Energy Efficient MapReduce Energy Efficient MapReduce Motivation: Energy consumption is an important aspect of datacenters efficiency, the total power consumption in the united states has doubled from 2000 to 2005, representing

More information

Characterizing Workload of Web Applications on Virtualized Servers

Characterizing Workload of Web Applications on Virtualized Servers Characterizing Workload of Web Applications on Virtualized Servers Xiajun Wang 1,2, Song Huang 2, Song Fu 2 and Krishna Kavi 2 1 Department of Information Engineering Changzhou Institute of Light Industry

More information

SQL Server Instance-Level Benchmarks with DVDStore

SQL Server Instance-Level Benchmarks with DVDStore SQL Server Instance-Level Benchmarks with DVDStore Dell developed a synthetic benchmark tool back that can run benchmark tests against SQL Server, Oracle, MySQL, and PostgreSQL installations. It is open-sourced

More information

Advanced Analytics. The Way Forward for Businesses. Dr. Sujatha R Upadhyaya

Advanced Analytics. The Way Forward for Businesses. Dr. Sujatha R Upadhyaya Advanced Analytics The Way Forward for Businesses Dr. Sujatha R Upadhyaya Nov 2009 Advanced Analytics Adding Value to Every Business In this tough and competitive market, businesses are fighting to gain

More information

Software Performance and Scalability

Software Performance and Scalability Software Performance and Scalability A Quantitative Approach Henry H. Liu ^ IEEE )computer society WILEY A JOHN WILEY & SONS, INC., PUBLICATION Contents PREFACE ACKNOWLEDGMENTS xv xxi Introduction 1 Performance

More information

Performance Testing. Why is important? An introduction. Why is important? Delivering Excellence in Software Engineering

Performance Testing. Why is important? An introduction. Why is important? Delivering Excellence in Software Engineering Delivering Excellence in Software Engineering Performance Testing An introduction. Why is important? Why is important? 2 1 https://www.youtube.com/watch?v=8y8vqjqbqdc 3 4 2 Introduction Why is important?

More information

Architecture Support for Big Data Analytics

Architecture Support for Big Data Analytics Architecture Support for Big Data Analytics Ahsan Javed Awan EMJD-DC (KTH-UPC) (http://uk.linkedin.com/in/ahsanjavedawan/) Supervisors: Mats Brorsson(KTH), Eduard Ayguade(UPC), Vladimir Vlassov(KTH) 1

More information

Oracle s Big Data solutions. Roger Wullschleger. <Insert Picture Here>

Oracle s Big Data solutions. Roger Wullschleger. <Insert Picture Here> s Big Data solutions Roger Wullschleger DBTA Workshop on Big Data, Cloud Data Management and NoSQL 10. October 2012, Stade de Suisse, Berne 1 The following is intended to outline

More information

DELL s Oracle Database Advisor

DELL s Oracle Database Advisor DELL s Oracle Database Advisor Underlying Methodology A Dell Technical White Paper Database Solutions Engineering By Roger Lopez Phani MV Dell Product Group January 2010 THIS WHITE PAPER IS FOR INFORMATIONAL

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 21 CHAPTER 1 INTRODUCTION 1.1 PREAMBLE Wireless ad-hoc network is an autonomous system of wireless nodes connected by wireless links. Wireless ad-hoc network provides a communication over the shared wireless

More information

SQL Maestro and the ELT Paradigm Shift

SQL Maestro and the ELT Paradigm Shift SQL Maestro and the ELT Paradigm Shift Abstract ELT extract, load, and transform is replacing ETL (extract, transform, load) as the usual method of populating data warehouses. Modern data warehouse appliances

More information

Benchmarking Cassandra on Violin

Benchmarking Cassandra on Violin Technical White Paper Report Technical Report Benchmarking Cassandra on Violin Accelerating Cassandra Performance and Reducing Read Latency With Violin Memory Flash-based Storage Arrays Version 1.0 Abstract

More information

There are a number of factors that increase the risk of performance problems in complex computer and software systems, such as e-commerce systems.

There are a number of factors that increase the risk of performance problems in complex computer and software systems, such as e-commerce systems. ASSURING PERFORMANCE IN E-COMMERCE SYSTEMS Dr. John Murphy Abstract Performance Assurance is a methodology that, when applied during the design and development cycle, will greatly increase the chances

More information

CLOUDDMSS: CLOUD-BASED DISTRIBUTED MULTIMEDIA STREAMING SERVICE SYSTEM FOR HETEROGENEOUS DEVICES

CLOUDDMSS: CLOUD-BASED DISTRIBUTED MULTIMEDIA STREAMING SERVICE SYSTEM FOR HETEROGENEOUS DEVICES CLOUDDMSS: CLOUD-BASED DISTRIBUTED MULTIMEDIA STREAMING SERVICE SYSTEM FOR HETEROGENEOUS DEVICES 1 MYOUNGJIN KIM, 2 CUI YUN, 3 SEUNGHO HAN, 4 HANKU LEE 1,2,3,4 Department of Internet & Multimedia Engineering,

More information

TRENDS IN THE DEVELOPMENT OF BUSINESS INTELLIGENCE SYSTEMS

TRENDS IN THE DEVELOPMENT OF BUSINESS INTELLIGENCE SYSTEMS 9 8 TRENDS IN THE DEVELOPMENT OF BUSINESS INTELLIGENCE SYSTEMS Assist. Prof. Latinka Todoranova Econ Lit C 810 Information technology is a highly dynamic field of research. As part of it, business intelligence

More information

LPV model identification for power management of Web service systems Mara Tanelli, Danilo Ardagna, Marco Lovera

LPV model identification for power management of Web service systems Mara Tanelli, Danilo Ardagna, Marco Lovera LPV model identification for power management of Web service systems Mara Tanelli, Danilo Ardagna, Marco Lovera, Politecnico di Milano {tanelli, ardagna, lovera}@elet.polimi.it Outline 2 Reference scenario:

More information

Improve Business Productivity and User Experience with a SanDisk Powered SQL Server 2014 In-Memory OLTP Database

Improve Business Productivity and User Experience with a SanDisk Powered SQL Server 2014 In-Memory OLTP Database WHITE PAPER Improve Business Productivity and User Experience with a SanDisk Powered SQL Server 2014 In-Memory OLTP Database 951 SanDisk Drive, Milpitas, CA 95035 www.sandisk.com Table of Contents Executive

More information

Toad for Oracle 8.6 SQL Tuning

Toad for Oracle 8.6 SQL Tuning Quick User Guide for Toad for Oracle 8.6 SQL Tuning SQL Tuning Version 6.1.1 SQL Tuning definitively solves SQL bottlenecks through a unique methodology that scans code, without executing programs, to

More information

INTRODUCTION TO CASSANDRA

INTRODUCTION TO CASSANDRA INTRODUCTION TO CASSANDRA This ebook provides a high level overview of Cassandra and describes some of its key strengths and applications. WHAT IS CASSANDRA? Apache Cassandra is a high performance, open

More information

How To Test For Elulla

How To Test For Elulla EQUELLA Whitepaper Performance Testing Carl Hoffmann Senior Technical Consultant Contents 1 EQUELLA Performance Testing 3 1.1 Introduction 3 1.2 Overview of performance testing 3 2 Why do performance testing?

More information

The Methodology Behind the Dell SQL Server Advisor Tool

The Methodology Behind the Dell SQL Server Advisor Tool The Methodology Behind the Dell SQL Server Advisor Tool Database Solutions Engineering By Phani MV Dell Product Group October 2009 Executive Summary The Dell SQL Server Advisor is intended to perform capacity

More information

Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database

Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Managing Big Data with Hadoop & Vertica A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Copyright Vertica Systems, Inc. October 2009 Cloudera and Vertica

More information

QoS based Cloud Service Provider Selection Framework

QoS based Cloud Service Provider Selection Framework Abstract Research Journal of Recent Sciences ISSN 2277-2502 QoS based Cloud Service Provider Selection Framework Kumar N. and Agarwal S. Department of Computer Science, Babasaheb Bhimrao Ambedkar University,

More information

How To Model A System

How To Model A System Web Applications Engineering: Performance Analysis: Operational Laws Service Oriented Computing Group, CSE, UNSW Week 11 Material in these Lecture Notes is derived from: Performance by Design: Computer

More information

The 4 Pillars of Technosoft s Big Data Practice

The 4 Pillars of Technosoft s Big Data Practice beyond possible Big Use End-user applications Big Analytics Visualisation tools Big Analytical tools Big management systems The 4 Pillars of Technosoft s Big Practice Overview Businesses have long managed

More information

OnX Big Data Reference Architecture

OnX Big Data Reference Architecture OnX Big Data Reference Architecture Knowledge is Power when it comes to Business Strategy The business landscape of decision-making is converging during a period in which: > Data is considered by most

More information

TRACE PERFORMANCE TESTING APPROACH. Overview. Approach. Flow. Attributes

TRACE PERFORMANCE TESTING APPROACH. Overview. Approach. Flow. Attributes TRACE PERFORMANCE TESTING APPROACH Overview Approach Flow Attributes INTRODUCTION Software Testing Testing is not just finding out the defects. Testing is not just seeing the requirements are satisfied.

More information

A Tour of the Zoo the Hadoop Ecosystem Prafulla Wani

A Tour of the Zoo the Hadoop Ecosystem Prafulla Wani A Tour of the Zoo the Hadoop Ecosystem Prafulla Wani Technical Architect - Big Data Syntel Agenda Welcome to the Zoo! Evolution Timeline Traditional BI/DW Architecture Where Hadoop Fits In 2 Welcome to

More information

Tuning Tableau Server for High Performance

Tuning Tableau Server for High Performance Tuning Tableau Server for High Performance I wanna go fast PRESENT ED BY Francois Ajenstat Alan Doerhoefer Daniel Meyer Agenda What are the things that can impact performance? Tips and tricks to improve

More information

On a Hadoop-based Analytics Service System

On a Hadoop-based Analytics Service System Int. J. Advance Soft Compu. Appl, Vol. 7, No. 1, March 2015 ISSN 2074-8523 On a Hadoop-based Analytics Service System Mikyoung Lee, Hanmin Jung, and Minhee Cho Korea Institute of Science and Technology

More information

Text Mining Approach for Big Data Analysis Using Clustering and Classification Methodologies

Text Mining Approach for Big Data Analysis Using Clustering and Classification Methodologies Text Mining Approach for Big Data Analysis Using Clustering and Classification Methodologies Somesh S Chavadi 1, Dr. Asha T 2 1 PG Student, 2 Professor, Department of Computer Science and Engineering,

More information

Outline. Introduction. State-of-the-art Forensic Methods. Hardware-based Workload Forensics. Experimental Results. Summary. OS level Hypervisor level

Outline. Introduction. State-of-the-art Forensic Methods. Hardware-based Workload Forensics. Experimental Results. Summary. OS level Hypervisor level Outline Introduction State-of-the-art Forensic Methods OS level Hypervisor level Hardware-based Workload Forensics Process Reconstruction Experimental Results Setup Result & Overhead Summary 1 Introduction

More information

Process Mining in Big Data Scenario

Process Mining in Big Data Scenario Process Mining in Big Data Scenario Antonia Azzini, Ernesto Damiani SESAR Lab - Dipartimento di Informatica Università degli Studi di Milano, Italy antonia.azzini,[email protected] Abstract. In

More information

Big Data Storage Architecture Design in Cloud Computing

Big Data Storage Architecture Design in Cloud Computing Big Data Storage Architecture Design in Cloud Computing Xuebin Chen 1, Shi Wang 1( ), Yanyan Dong 1, and Xu Wang 2 1 College of Science, North China University of Science and Technology, Tangshan, Hebei,

More information