Modelling Electricity Spot Prices A Regime-Switching Approach
|
|
|
- Chester Hampton
- 10 years ago
- Views:
Transcription
1 Modelling Electricity Spot Prices A Regime-Switching Approach Dr. Gero Schindlmayr EnBW Trading GmbH Financial Modelling Workshop Ulm September 2005 Energie braucht Impulse
2 Agenda Model Overview Daily Price Process Hourly Profile Process Backtesting Applications Outlook 2
3 Electricity Spot Prices Features seasonality (yearly, weekly, daily) spikes Explanation power not efficiently storable => no cash-and-carry arbitrage inelastic demand curve seasonal weather-dependent demand pattern events can cause market shocks (plant outages, low water levels, extreme temperature) 3
4 Marginal Costs of Generation costs include CO2 emission certificates Demand??? brown coal nuclear coal oil equilibrium price gas 4
5 Historical Hourly Spot Prices EEX 5
6 Fundamental and Stochastic Approaches Fundamental model system generation and load price = marginal generation costs needs fuel prices and data about generation capacity many sources of uncertainty (generation, import/export, ) Stochastic view power prices as time series choose appropriate stochastic process calibrate to price data needs only prices as input data Hybrid use both approaches (e.g. SMaPS 1 ) Here we concentrate on the stochastic approach! 1 M.Burger, B.Klar, A.Müller, G.Schindlmayr A spot market model for pricing derivatives in electricity markets, Quantitative Finance 4 (2004)
7 Model Overview Notation: hourly log prices regime-switching AR(1)-process daily mean log price s(t) daily log profile h(t) PCA-decomposition + ARMA-process Different processes for business days and non-business days 7
8 Daily Price Process: Seasonality Seasonal component: dummy variables for weekdays, holidays, vacation periods (1,..,N d ) sin/cos regressors for yearly seasonality linear trend 8
9 Daily Price Process: Seasonal Component EEX 9
10 Daily Price Process: Regime-Switching AR(1) Model: r k = regime at time k transition matrix (for two regimes): calibration: Hamilton filter (max. likelihood optimization) example: EEX (Jan 01 May 05) 10
11 Daily Price Process: Regime Identification residuals probability spike regime 11
12 Daily Price Process: Autocorrelation of Residuals 12
13 Daily Price Process: Q-Q Plot of Residuals 13
14 Hourly Profiles: PCA Decomposition Regression: seasonal component PCA decomposition for 24h-residuals stochastic model for factor loads ARMA(p,q) for z i k For spike regime: take random historical profile according to season and weekday 14
15 Hourly Profiles: Seasonal Component 15
16 Hourly Profiles: Principal Component Vectors 16
17 Hourly Profiles: PCA Explained Variance 17
18 Hourly Profiles: Factor Load Autocorrelation of Residuals 18
19 The Long-Term Dynamics Model: f(t) : seasonal (deterministic) component y t : regime-switching process h t : hourly profile process l t : long term process t Future price: for T>>t short term dynamics: long term dynamics long-term approximation: Black s future price model Calibration s = f ( t) + y + h + l t t t t t l µ + "! = ( t # 2 " l ) [ yt ]! E[ yt ], Et[ ht ] E[ ht ] = E [ S ]! C( T ) [ exp( l )] E! F t, T t T Et l l t t 19 historical volatility or implied volatility (depending on application)
20 Simulation Results: Sample Paths 20
21 Simulation Results: Histogram Prices /MWh 21
22 Backtesting: Calibration Stability moving two-year calibration period parameter base regime parameter spike regime transition probabilities 22
23 Backtesting: 1-Day-Forecasting Quality (excl. Holidays) Holidays 23
24 Backtesting: Quantile-Statistics How do the probability distributions compare? histogram to analyze, how often the real spot price falls into which quantile of the model distribution period: calibration off-sample (uses data from ) frequency 24 quantile
25 Applications: Option Pricing Electricity Option Option on Forwards Underlying: Forward contract for delivery month/quarter/year Swing Option Daily/hourly exercise energy constraints Daily/Hourly Option Virtual Power Plants Hourly exercise multi-commodity technical constraints Strip of options for daily/hourly exercise Underlying: daily product (base/peak) or single hour 25
26 Applications: Option Pricing and Hedging Hourly call option period: 01/01/ /01/2007 strike: 60 /MWh capacity: 10 MW Pricing results price: inner value: profit-at-risk (95%): mean exercise 16 GWh (1600 h) 26
27 Applications: Mean Exercise Schedule MW January
28 Applications: Hedging Strategies energetic hedging calculate mean exercise schedule sell energetic equivalent base and peak contracts delta hedging calculate delta sensitivities with respect to base/peak forward prices construct delta neutral portfolio variance-minimizing hedge calculate hedge ratios by minimizing portfolio variance 28
29 Applications: Analyzing Hedging Strategies 350 frequency no hedge delta hedge energy hedge P&L [EUR] 29
30 Outlook better coupling of business days and non-business days improve dynamics of hourly profiles, especially during spike regime integration of spot and future price models multi-commodity model: integrate fuel and CO2 prices 30
A Regime-Switching Model for Electricity Spot Prices. Gero Schindlmayr EnBW Trading GmbH [email protected]
A Regime-Switching Model for Electricity Spot Prices Gero Schindlmayr EnBW Trading GmbH [email protected] May 31, 25 A Regime-Switching Model for Electricity Spot Prices Abstract Electricity markets
Probabilistic Forecasting of Medium-Term Electricity Demand: A Comparison of Time Series Models
Fakultät IV Department Mathematik Probabilistic of Medium-Term Electricity Demand: A Comparison of Time Series Kevin Berk and Alfred Müller SPA 2015, Oxford July 2015 Load forecasting Probabilistic forecasting
Modelling electricity market data: the CARMA spot model, forward prices and the risk premium
Modelling electricity market data: the CARMA spot model, forward prices and the risk premium Formatvorlage des Untertitelmasters Claudia Klüppelberg durch Klicken bearbeiten Technische Universität München
VI. Real Business Cycles Models
VI. Real Business Cycles Models Introduction Business cycle research studies the causes and consequences of the recurrent expansions and contractions in aggregate economic activity that occur in most industrialized
Integrated Resource Plan
Integrated Resource Plan March 19, 2004 PREPARED FOR KAUA I ISLAND UTILITY COOPERATIVE LCG Consulting 4962 El Camino Real, Suite 112 Los Altos, CA 94022 650-962-9670 1 IRP 1 ELECTRIC LOAD FORECASTING 1.1
Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies
Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies Drazen Pesjak Supervised by A.A. Tsvetkov 1, D. Posthuma 2 and S.A. Borovkova 3 MSc. Thesis Finance HONOURS TRACK Quantitative
Time Series Laboratory
Time Series Laboratory Computing in Weber Classrooms 205-206: To log in, make sure that the DOMAIN NAME is set to MATHSTAT. Use the workshop username: primesw The password will be distributed during the
Contents. List of Figures. List of Tables. List of Examples. Preface to Volume IV
Contents List of Figures List of Tables List of Examples Foreword Preface to Volume IV xiii xvi xxi xxv xxix IV.1 Value at Risk and Other Risk Metrics 1 IV.1.1 Introduction 1 IV.1.2 An Overview of Market
Program for Energy Trading, Derivatives and Risk Management by Kyos Energy Consulting, dr Cyriel de Jong Case studies
Program for Energy Trading, Derivatives and Risk Management by Kyos Energy Consulting, dr Cyriel de Jong Case studies We use cases throughout its course in various forms. The cases support the application
Real Business Cycle Models
Real Business Cycle Models Lecture 2 Nicola Viegi April 2015 Basic RBC Model Claim: Stochastic General Equlibrium Model Is Enough to Explain The Business cycle Behaviour of the Economy Money is of little
Generation Asset Valuation with Operational Constraints A Trinomial Tree Approach
Generation Asset Valuation with Operational Constraints A Trinomial Tree Approach Andrew L. Liu ICF International September 17, 2008 1 Outline Power Plants Optionality -- Intrinsic vs. Extrinsic Values
Corporate Defaults and Large Macroeconomic Shocks
Corporate Defaults and Large Macroeconomic Shocks Mathias Drehmann Bank of England Andrew Patton London School of Economics and Bank of England Steffen Sorensen Bank of England The presentation expresses
Managing Risks and Optimising an Energy Portfolio with PLEXOS
Managing Risks and Optimising an Energy Portfolio with PLEXOS Tom Forrest, B.Com. (Hons) Senior Power Market Consultant - Europe 1 Introduction Energy markets inherently exhibit far greater risk compared
Volatility, risk and risk premium in German and Continental power markets
Volatility, risk and risk premium in German and Continental power markets Stefan Judisch / Andree Stracke RWE Supply & Trading GmbH 22 nd January 2015 RWE Supply & Trading PAGE 0 Agenda 1. What are the
The Causal Effect of Mortgage Refinancing on Interest-Rate Volatility: Empirical Evidence and Theoretical Implications by Jefferson Duarte
The Causal Effect of Mortgage Refinancing on Interest-Rate Volatility: Empirical Evidence and Theoretical Implications by Jefferson Duarte Discussion Daniel Smith Simon Fraser University May 4, 2005 Very
6 Hedging Using Futures
ECG590I Asset Pricing. Lecture 6: Hedging Using Futures 1 6 Hedging Using Futures 6.1 Types of hedges using futures Two types of hedge: short and long. ECG590I Asset Pricing. Lecture 6: Hedging Using Futures
Return to Risk Limited website: www.risklimited.com. Overview of Options An Introduction
Return to Risk Limited website: www.risklimited.com Overview of Options An Introduction Options Definition The right, but not the obligation, to enter into a transaction [buy or sell] at a pre-agreed price,
Trading Power Options at European Energy Exchange (EEX) Copyright 2015 All rights reserved Page 1
Trading Power Options at European Energy Exchange (EEX) Copyright 2015 All rights reserved Page 1 Agenda 1. Explanation of Options 2. Option products on EEX 3. Margin calculation 4. Advantages of using
Market Risk Analysis. Quantitative Methods in Finance. Volume I. The Wiley Finance Series
Brochure More information from http://www.researchandmarkets.com/reports/2220051/ Market Risk Analysis. Quantitative Methods in Finance. Volume I. The Wiley Finance Series Description: Written by leading
Call Price as a Function of the Stock Price
Call Price as a Function of the Stock Price Intuitively, the call price should be an increasing function of the stock price. This relationship allows one to develop a theory of option pricing, derived
Valuation of Natural Gas Contracts and Storages
Valuation of Natural Gas Contracts and Storages Based on Stochastic Optimization (Scenario Tree) Under Consideration of Asset Backed Trading February 2014 Dr. Georg Ostermaier, Karsten Hentsch Overview
Booth School of Business, University of Chicago Business 41202, Spring Quarter 2015, Mr. Ruey S. Tsay. Solutions to Midterm
Booth School of Business, University of Chicago Business 41202, Spring Quarter 2015, Mr. Ruey S. Tsay Solutions to Midterm Problem A: (30 pts) Answer briefly the following questions. Each question has
3. Regression & Exponential Smoothing
3. Regression & Exponential Smoothing 3.1 Forecasting a Single Time Series Two main approaches are traditionally used to model a single time series z 1, z 2,..., z n 1. Models the observation z t as a
Algorithmic Trading Session 1 Introduction. Oliver Steinki, CFA, FRM
Algorithmic Trading Session 1 Introduction Oliver Steinki, CFA, FRM Outline An Introduction to Algorithmic Trading Definition, Research Areas, Relevance and Applications General Trading Overview Goals
Forecasting and Hedging in the Foreign Exchange Markets
Christian Ullrich Forecasting and Hedging in the Foreign Exchange Markets 4u Springer Contents Part I Introduction 1 Motivation 3 2 Analytical Outlook 7 2.1 Foreign Exchange Market Predictability 7 2.2
Enhancing Business Resilience under Power Shortage: Effective Allocation of Scarce Electricity Based on Power System Failure and CGE Models
Enhancing Business Resilience under Power Shortage: Effective Allocation of Scarce Electricity Based on Power System Failure and CGE Models Yoshio Kajitani *1, Kazuyoshi Nakano 2 and Ayumi Yuyama 1 1Civil
GERMAN ENERGY TRANSITION: BEST PRACTICES IN SECURING A RELIABLE AND EFFICIENT ENERGY SUPPLY AND SEIZING NEW MARKET OPPORTUNITIES
GERMAN ENERGY TRANSITION: BEST PRACTICES IN SECURING A RELIABLE AND EFFICIENT ENERGY SUPPLY AND SEIZING NEW MARKET OPPORTUNITIES DIRK VAHLAND / ENERGY MANAGEMENT OVERVIEW 1 German energy transition 2 Negative
Quantifying the Influence of Volatile Renewable Electricity Generation on EEX Spotmarket Prices using Artificial Neural Networks.
Quantifying the Influence of Volatile Renewable Electricity Generation on EEX Spotmarket Prices using Artificial Neural Networks Bachelorarbeit zur Erlangung des akademischen Grades Bachelor of Science
ECC Trading Limits Services. EEX Group Workshop 11 June 2015
ECC Trading Limits Services EEX Group Workshop 11 June 2015 Agenda ECC Limit Service Rationale Legal Framework Achievements Spot Markets Derivatives Markets Handling Outlook 2 ECC Limit Service - Rationale
MVO has Eaten my Alpha
Dear Investor: MVO has Eaten my Alpha Sebastian Ceria, CEO Axioma, Inc. January 28 th, 2013 Columbia University Copyright 2013 Axioma The Mean Variance Optimization Model Expected Return - Alpha Holdings
C(t) (1 + y) 4. t=1. For the 4 year bond considered above, assume that the price today is 900$. The yield to maturity will then be the y that solves
Economics 7344, Spring 2013 Bent E. Sørensen INTEREST RATE THEORY We will cover fixed income securities. The major categories of long-term fixed income securities are federal government bonds, corporate
4 DAY Course Outline. Power Purchase Agreements. for Emerging Countries
4 DAY Course Outline Power Purchase Agreements for Emerging Countries Overview This intensive and highly interactive four day hands-on course will provide a comprehensive analysis of issues associated
Rob J Hyndman. Forecasting using. 11. Dynamic regression OTexts.com/fpp/9/1/ Forecasting using R 1
Rob J Hyndman Forecasting using 11. Dynamic regression OTexts.com/fpp/9/1/ Forecasting using R 1 Outline 1 Regression with ARIMA errors 2 Example: Japanese cars 3 Using Fourier terms for seasonality 4
Lecture 14 More on Real Business Cycles. Noah Williams
Lecture 14 More on Real Business Cycles Noah Williams University of Wisconsin - Madison Economics 312 Optimality Conditions Euler equation under uncertainty: u C (C t, 1 N t) = βe t [u C (C t+1, 1 N t+1)
System-friendly wind power
System-friendly wind power Lion Hirth (neon) Simon Müller (IEA) BELEC 28 May 2015 [email protected] Seeking advice on power markets? Neon Neue Energieökonomik is a Berlin-based boutique consulting
9 Hedging the Risk of an Energy Futures Portfolio UNCORRECTED PROOFS. Carol Alexander 9.1 MAPPING PORTFOLIOS TO CONSTANT MATURITY FUTURES 12 T 1)
Helyette Geman c0.tex V - 0//0 :00 P.M. Page Hedging the Risk of an Energy Futures Portfolio Carol Alexander This chapter considers a hedging problem for a trader in futures on crude oil, heating oil and
Single Electricity Market (SEM) and interaction with EMIR. Central Bank of Ireland
Single Electricity Market (SEM) and interaction with EMIR Central Bank of Ireland 11 th July 2014 About EAI Overview of SEM and its Participants The market is a gross mandatory pool and consists of generators
Quantifying flexibility markets
Quantifying flexibility markets Marit van Hout Paul Koutstaal Ozge Ozdemir Ad Seebregts December 2014 ECN-E--14-039 Acknowledgement The authors would like to thank TenneT for its support of this project.
Haksun Li [email protected] www.numericalmethod.com MY EXPERIENCE WITH ALGORITHMIC TRADING
Haksun Li [email protected] www.numericalmethod.com MY EXPERIENCE WITH ALGORITHMIC TRADING SPEAKER PROFILE Haksun Li, Numerical Method Inc. Quantitative Trader Quantitative Analyst PhD, Computer
Pricing of electricity futures The risk premium
Pricing of electricity futures The risk premium Fred Espen Benth In collaboration with Alvaro Cartea, Rüdiger Kiesel and Thilo Meyer-Brandis Centre of Mathematics for Applications (CMA) University of Oslo,
Quantifying Risk in the Electricity Business: A RAROC-based Approach
Quantifying Risk in the Electricity Business: A RAROC-based Approach Marcel Prokopczuk a, Svetlozar T. Rachev b,c, Gero Schindlmayr e and Stefan Trück d,1 a Lehrstuhl für Finanzierung, Universität Mannheim,
ESC Project: INMES Integrated model of the energy system
ESC Project: INMES Integrated model of the energy system Frontiers in Energy Research, March, 2015 Dr. Pedro Crespo Del Granado Energy Science Center, ETH Zürich ESC 19/03/2015 1 Presentation outline 1.
The financial market. An introduction to Nord Pool s financial market and its products. Bernd Botzet
The financial market An introduction to Nord Pool s financial market and its products Bernd Botzet Introduction to Nord Pool s financial market Financial products Case: Forwards Contracts for difference
Recent Developments of Statistical Application in. Finance. Ruey S. Tsay. Graduate School of Business. The University of Chicago
Recent Developments of Statistical Application in Finance Ruey S. Tsay Graduate School of Business The University of Chicago Guanghua Conference, June 2004 Summary Focus on two parts: Applications in Finance:
The theory of storage and the convenience yield. 2008 Summer School - UBC 1
The theory of storage and the convenience yield 2008 Summer School - UBC 1 The theory of storage and the normal backwardation theory explain the relationship between the spot and futures prices in commodity
The UK Electricity Market Reform and the Capacity Market
The UK Electricity Market Reform and the Capacity Market Neil Bush, Head Energy Economist University Paris-Dauphine Tuesday 16 th April, 2013 Overview 1 Rationale for Electricity Market Reform 2 Why have
Chapter 4: Vector Autoregressive Models
Chapter 4: Vector Autoregressive Models 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie IV.1 Vector Autoregressive Models (VAR)...
PRICING OF GAS SWING OPTIONS. Andrea Pokorná. UNIVERZITA KARLOVA V PRAZE Fakulta sociálních věd Institut ekonomických studií
9 PRICING OF GAS SWING OPTIONS Andrea Pokorná UNIVERZITA KARLOVA V PRAZE Fakulta sociálních věd Institut ekonomických studií 1 Introduction Contracts for the purchase and sale of natural gas providing
FRAUNHOFER INSTITUTE FOR SOLAR ENERGY SYSTEMS ISE
FRAUNHOFER INSTITUTE FOR SOLAR ENERGY SYSTEMS ISE Electricity production from solar and wind in Germany in 2014 Prof. Dr. Bruno Burger aunhofer Institute for Solar Energy Systems ISE eiburg, Germany December
GDF SUEZ. Introduction. Jean-François Cirelli
GDF SUEZ Introduction Jean-François Cirelli Content 1. Focus on gas market dynamics 2. Focus on electricity market dynamics 3. Focus on P&L resilience and sensitivities 4. Focus on synergies and performance
Time Series Analysis of Aviation Data
Time Series Analysis of Aviation Data Dr. Richard Xie February, 2012 What is a Time Series A time series is a sequence of observations in chorological order, such as Daily closing price of stock MSFT in
Non Linear Dependence Structures: a Copula Opinion Approach in Portfolio Optimization
Non Linear Dependence Structures: a Copula Opinion Approach in Portfolio Optimization Jean- Damien Villiers ESSEC Business School Master of Sciences in Management Grande Ecole September 2013 1 Non Linear
Rafał Weron. Hugo Steinhaus Center Wrocław University of Technology
Rafał Weron Hugo Steinhaus Center Wrocław University of Technology Options trading at Nord Pool commenced on October 29, 1999 with two types of contracts European-style Electric/Power Options (EEO/EPO)
Facilitating On-Demand Risk and Actuarial Analysis in MATLAB. Timo Salminen, CFA, FRM Model IT
Facilitating On-Demand Risk and Actuarial Analysis in MATLAB Timo Salminen, CFA, FRM Model IT Introduction It is common that insurance companies can valuate their liabilities only quarterly Sufficient
Hedging Strategies Using
Chapter 4 Hedging Strategies Using Futures and Options 4.1 Basic Strategies Using Futures While the use of short and long hedges can reduce (or eliminate in some cases - as below) both downside and upside
Lecture 4: Seasonal Time Series, Trend Analysis & Component Model Bus 41910, Time Series Analysis, Mr. R. Tsay
Lecture 4: Seasonal Time Series, Trend Analysis & Component Model Bus 41910, Time Series Analysis, Mr. R. Tsay Business cycle plays an important role in economics. In time series analysis, business cycle
Java Modules for Time Series Analysis
Java Modules for Time Series Analysis Agenda Clustering Non-normal distributions Multifactor modeling Implied ratings Time series prediction 1. Clustering + Cluster 1 Synthetic Clustering + Time series
Consumer Cost Effectiveness of CO 2 Mitigation Policies in Restructured Electricity Markets. Jared Moore and Jay Apt.
Consumer Cost Effectiveness of CO 2 Mitigation Policies in Restructured Electricity Markets Jared Moore and Jay Apt Supporting Data Consumer Cost Effectiveness of CO 2 Mitigation Policies in Restructured
Agent-Based Micro-Storage Management for the Smart Grid
Agent-Based Micro-Storage Management for the Smart Grid Perukrishnen Vytelingum, Thomas D. Voice, Sarvapali D. Ramchurn, Alex Rogers and Nicholas R. Jennings University of Southampton Outline Energy Domain
A non-gaussian Ornstein-Uhlenbeck process for electricity spot price modeling and derivatives pricing
A non-gaussian Ornstein-Uhlenbeck process for electricity spot price modeling and derivatives pricing Thilo Meyer-Brandis Center of Mathematics for Applications / University of Oslo Based on joint work
A Model for Solar Renewable Energy Certificates:
A Model for Solar Renewable Energy Certificates: Shining some light on price dynamics and optimal market design Michael Coulon (work at Princeton University with Javad Khazaei & Warren Powell) August 15th,
Sales forecasting # 2
Sales forecasting # 2 Arthur Charpentier [email protected] 1 Agenda Qualitative and quantitative methods, a very general introduction Series decomposition Short versus long term forecasting
Operating Hydroelectric and Pumped Storage Units In A Competitive Environment
Operating electric and Pumped Storage Units In A Competitive Environment By Rajat Deb, PhD 1 LCG Consulting In recent years as restructuring has gained momentum, both new generation investment and efficient
gasnetworks.ie Methodology for forecasting gas demand
gasnetworks.ie Methodology for forecasting gas demand 1 Contents 1 Introduction 2 1.1 Scope of the report 3 1.2 Use and publication of the forecasts 4 1.3 Structure of the document 5 2 Conceptual background
The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series.
Cointegration The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series. Economic theory, however, often implies equilibrium
What Drives Natural Gas Prices?
-A Structural VAR Approach - Changing World of Natural Gas I Moscow I 27th September I Sebastian Nick I Stefan Thoenes Institute of Energy Economics at the University of Cologne Agenda 1.Research Questions
Fixed Income Arbitrage
Risk & Return Fixed Income Arbitrage: Nickels in Front of a Steamroller by Jefferson Duarte Francis A. Longstaff Fan Yu Fixed Income Arbitrage Broad set of market-neutral strategies intended to exploit
Ontario Wholesale Electricity Market Price Forecast. Ontario Energy Board
Ontario Wholesale Electricity Market Price Forecast For the Period May 1, 2015 through October 31, 2016 Presented to Ontario Energy Board April 20, 2015 Navigant Consulting Ltd. 333 Bay Street, Suite 1250
IL GOES OCAL A TWO-FACTOR LOCAL VOLATILITY MODEL FOR OIL AND OTHER COMMODITIES 15 // MAY // 2014
IL GOES OCAL A TWO-FACTOR LOCAL VOLATILITY MODEL FOR OIL AND OTHER COMMODITIES 15 MAY 2014 2 Marie-Lan Nguyen / Wikimedia Commons Introduction 3 Most commodities trade as futures/forwards Cash+carry arbitrage
Predicting U.S. Industrial Production with Oil and Natural Gas Prices
Predicting U.S. Industrial Production with Oil and Natural Gas Prices Matthew L. Higgins Department of Economics Western Michigan University Prediction is very important in economic analysis. The prediction
A Regression Model of Natural Gas/Wholesale Electricity Price Relationship and Its Application for Detecting Potentially Anomalous Electricity Prices
A Regression Model of Natural Gas/Wholesale Electricity Price Relationship and Its Application for Detecting Potentially Anomalous Electricity Prices Young Yoo ([email protected]) Bill Meroney ([email protected])
Addressing the Level of Florida s Electricity Prices
Addressing the Level of Florida s Electricity Prices Theodore Kury 1 Public Utility Research Center Department of Economics University of Florida September 28, 2011 1 Director of Energy Studies. I wish
REINSURANCE PROFIT SHARE
REINSURANCE PROFIT SHARE Prepared by Damian Thornley Presented to the Institute of Actuaries of Australia Biennial Convention 23-26 September 2007 Christchurch, New Zealand This paper has been prepared
Price Responsive Demand for Operating Reserves in Co-Optimized Electricity Markets with Wind Power
Price Responsive Demand for Operating Reserves in Co-Optimized Electricity Markets with Wind Power Zhi Zhou, Audun Botterud Decision and Information Sciences Division Argonne National Laboratory [email protected],
A Fuel Cost Comparison of Electric and Gas-Powered Vehicles
$ / gl $ / kwh A Fuel Cost Comparison of Electric and Gas-Powered Vehicles Lawrence V. Fulton, McCoy College of Business Administration, Texas State University, [email protected] Nathaniel D. Bastian, University
Carbon Price Transfer in Norway
Public ISDN nr. 978-82-93150-03-9 THEMA Report 2011-1 Carbon Price Transfer in Norway The Effect of the EU-ETS on Norwegian Power Prices Commissioned by Energy Norway, Federation of Norwegian Industries
When supply meets demand: the case of hourly spot electricity prices
When supply meets demand: the case of hourly spot electricity prices Alexander Boogert Commodities 2007 London, 17-18/01/2007 Essent Energy Trading, the Netherlands Birkbeck College, University of London,
Simulating the electricity spot market from a Danish perspective
Simulating the electricity spot market from a Danish perspective OptAli Industry Days, Copenhagen Mette Gamst and Thomas Sejr Jensen, Energinet.dk [email protected] and [email protected] 1 About Energinet.dk
Winter Impacts of Energy Efficiency In New England
Winter Impacts of Energy Efficiency In New England April 2015 Investments in electric efficiency since 2000 reduced electric demand in New England by over 2 gigawatts. 1 These savings provide significant
9M10 Results Presentation
9M10 Results Presentation November 5th, 2010 9M10: Highlights of the period EBITDA: 2,651m, +9% YoY EBITDA from Brazil: +28% YoY: 19% of EDP Group EBITDA in 9M10 Electricity distributed +15% YoY EBITDA
Topic 5: Stochastic Growth and Real Business Cycles
Topic 5: Stochastic Growth and Real Business Cycles Yulei Luo SEF of HKU October 1, 2015 Luo, Y. (SEF of HKU) Macro Theory October 1, 2015 1 / 45 Lag Operators The lag operator (L) is de ned as Similar
USBR PLEXOS Demo November 8, 2012
PLEXOS for Power Systems Electricity Market Simulation USBR PLEXOS Demo November 8, 2012 Who We Are PLEXOS Solutions is founded in 2005 Acquired by Energy Exemplar in 2011 Goal People To solve the challenge
Measuring downside risk of stock returns with time-dependent volatility (Downside-Risikomessung für Aktien mit zeitabhängigen Volatilitäten)
Topic 1: Measuring downside risk of stock returns with time-dependent volatility (Downside-Risikomessung für Aktien mit zeitabhängigen Volatilitäten) One of the principal objectives of financial risk management
Webinar #2. Introduction to IAS-39 hedge accounting with Fairmat. Fairmat Srl 18/07/2013
Webinar #2 Introduction to IAS-39 hedge accounting with Fairmat Fairmat Srl 18/07/2013 Agenda Brief notes on IAS-39 hedge accounting 1 Brief notes on IAS-39 hedge accounting 2 3 Introduction Prospective
Trading Power Options at European Energy Exchange (EEX) Copyright 2016 All rights reserved Page 1
Trading Power Options at European Energy Exchange (EEX) Copyright 2016 All rights reserved Page 1 Agenda 1. Explanation of Options 2. Option products on EEX 3. Margin calculation 4. Advantages of using
Electricity Supply. Monthly Energy Output by Fuel Type (MWh)
Ontario Energy Report Q4 Electricity October December Electricity Supply Electricity production was lower in Q4 than in previous years, with milder than normal weather in October and December resulting
Energy Productivity & Pricing
Energy Productivity & Pricing Markets for energy, renewable energy and carbon Dr Jenny Riesz February 2014 2 Average electricity retail prices Electricity price rises CSIRO Future Grid (2013) Change and
Techno-Economics of Distributed Generation and Storage of Solar Hydrogen
Techno-Economics of Distributed Generation and Storage of Solar Hydrogen Philipp Grünewald, Tim Cockerill, Marcello Contestabile, Imperial College London, UK Abstract For hydrogen to become a truly sustainable
Market Review 2014 H1
Market Review 214 H1 Electricity market insights First half 214 2 Given the positive response to the first edition, published in March this year, we decided to continue the publication of a market review
Energy Trading. E.ON Cleaner & better energy
Energy Trading E.ON Cleaner & better energy E.ON strategy Europe Focused & synergistic positioning Investment Less capital, more value Performance Efficiency & effective organization Cleaner & better energy
