96 PD Predictive Modeling: Now What? Moderator: Kara L. Clark, FSA, MAAA

Size: px
Start display at page:

Download "96 PD Predictive Modeling: Now What? Moderator: Kara L. Clark, FSA, MAAA"

Transcription

1 96 PD Predictive Modeling: Now What? Moderator: Kara L. Clark, FSA, MAAA Presenters: Philip Fiero Syed Muzayan Mehmud, ASA, FCA, MAAA Prashant Ratnakar Nayak, ASA, MAAA

2 TM Advanced Predictive Modelling Phil Fiero, Vice President, Predilytics Inc. June 2014 Prepared for:

3 Who is Predilytics? Predilytics is a healthcare analytics company that generates insight from big data to: Improve quality of care Coordinate care Attract and retain members Manage reimbursement and shared savings Reduce costs We use the latest machine learning technology and computer science to identify and predict opportunities at both the population and individual member level. This approach enables use of our expansive non-clinical data on over 225M lives and our customers structured and unstructured clinical and financial data to optimize the power and economics of predictive modeling at the individual level. Predilytics serves health, services, and risk bearing entities: Health plans Health systems Providers Health services Medical device Manufacturers At both the member and provider level CONFIDENTIAL COPYRIGHT, 2014 PREDILYTICS, INC. ALL RIGHTS RESERVED 2

4 The ideas that drive new analytic approaches... Use all available data to improve population and individual health 95% 1 of the data wake we all leave annually is not in the healthcare system Individual behavior is best predicted by socio-economic and lifestyle characteristics and consumer activities, not typically found in EMR and Claims Data Machine learning and advance computer science are required to convert massive amounts of data into actionable insights, by optimizing identification of targeted events at the actionable cohort Individual insight, population impact by deploying interventions with highest probability of success SOURCE: IDC; US Bureau of Labor Statistics; McKinsey Global Institute analysis, May 2011 Big data: The next frontier for innovation, competition, and productivity CONFIDENTIAL COPYRIGHT, 2014 PREDILYTICS, INC. ALL RIGHTS RESERVED 3

5 Expansive use of data: Demographic, administrative, operational, clinical Incorporate data in any format, structured or unstructured Mental Health Rx Member Enrollment Details CMS Files MOR/MMR Admissions Claim History Provider Office Visits Labs Approach maximizes data intake to drive highest order prospective models Required Highly recommended Recommend EMR/Clinical Including Notes Data Inputs External Data HRA Call Center Logs & Details Census Voting Consumer Social CONFIDENTIAL COPYRIGHT, 2014 PREDILYTICS, INC. ALL RIGHTS RESERVED 4

6 Unstructured data mining and linguistic analysis Can provide more accurate and predictive model results Claims and membership data often represent the majority of model input data However, specific words and word pairs in the comment fields can increase the predictive lift of the models (natural language engine) Examples of data with free text that can be mined: HRA data Sales force notes Clinical visits Call center notes EXAMPLE: Presence of the words: SON or DAUGHTER maps to the concept of family involvement and changing situation ANALYSIS: When a son (or daughter or other family member) becomes involved, it may be an early indication that the parent is experiencing health issues it can also be an early flag for disenrollment or exploring health plan changes CONFIDENTIAL COPYRIGHT, 2013 PREDILYTICS, INC. ALL RIGHTS RESERVED 5

7 Illustrative external data sources: Public, consumer, financial, social media Matched holistic view of over 220M people Public Healthcare Medicare, Medicaid Population Stats Healthcare Providers, Cost, Quality AHRQ, NIH, CDC Health Outcomes Consumer Consumer Behavior / Purchasing Ethnicity Social Security / Death Records Voter Registration Legal / Regulatory Financial Consumer spending Credit risk Public records Real estate indicators Social Media Facebook Activity Foursquare Check-in Twitter Activity Google Services, ETC. CONFIDENTIAL COPYRIGHT, 2014 PREDILYTICS, INC. ALL RIGHTS RESERVED 6

8 Machine Learning background Machine learning is a technology in which software evaluates a data set and combinations of data sets millions of times to learn and predict data relationships Machine learning is capable of exploring more data, faster and more thoroughly than traditional statistical techniques Predictive patterns in the data are discovered and retained The software builds on previous learnings and highly predictive equations evolve Genetic Algorithms (GAs) are a form of machine learning that are highly effective in spotting subtle patterns in data sets. GA modeling technology and the output are transparent and more actionable Traditional modeling relies on statistical analyses of data, in particular various forms of regression, which carry with it certain limitations that are not found in iterative based learning models These patented algorithms have been consistently used in the financial services and marketing industries for enhanced business success CONFIDENTIAL COPYRIGHT, 2013 PREDILYTICS, INC. ALL RIGHTS RESERVED 7

9 Genetic Algorithms (GA) Generation One Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Generation Two Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 Generation (n) Model 13 Model 14 Model 15 Model 16 Model 17 Model 18 Model (n) Fitness Accuracy Scale Low High 125 models per generation in 10 seconds 10,000 generations performed 1.25 Million equations evaluated with learning past to next generation CONFIDENTIAL COPYRIGHT, 2013 PREDILYTICS, INC. ALL RIGHTS RESERVED 8

10 Applying analytics to allocate resources Current Served Populations Historical experience indicates 1/3 of population at risk of not recertifying With predictive analytics at-risk individuals can be identified increase probability of failure to recertify to 90% likelihood Improve business performance by appropriately allocating resources to targeted cohort New Populations Integration of consumer behavior, social claiming can identify risk in unknown populations Failure to recertify risk COPYRIGHT 2014 PREDILYTICS, INC. ALL RIGHTS RESERVED 9

11 Sample Outputs: Creating member target lists Predilytics Prospective Member List Operationalize established models to Analytic Warehouse. Design, review, and develop member extracts. Generation, validation, and delivery of member extracts in the pre-determined format. Integrate directly into client operations systems and processes COPYRIGHT, 2013 PREDILYTICS, INC. ALL RIGHTS RESERVED 10

12 Sample Outputs: Key model drivers Purpose: Identify the top clinical and non-clinical drivers at a member level in order to support intervention operations. This methodology allows end users (providers, case managers, etc.) of to understand key risk drivers in a comprehensive and actionable way. Key drivers may include, but are not limited to, existing/pre-existing conditions, demographic, consumer, utilization, and financial attributes at a member/risk level. This information facilitates identification of the appropriate intervention at a member level, as well as provides an area of focus for those at the point-of-care. Member CHF Hosp. Risk Decile Key Driver 1 Key Driver 2 Key Driver 3 Person A IP-HCC85-CHF GAP-CCSPx44-Lipid Profile Person B EM-HCC22-Morbid Obesity Poor LDL-C Control GAP-Annual EM Visit Person C.97 1 History-CABG GAP-GC3- Ace inhibitors GAP-GC3- Beta- Adrenergic Blockers 2-Visits-Cardiologist- Last 30 days COPYRIGHT, 2013 PREDILYTICS, INC. ALL RIGHTS RESERVED 11

13 Case Studies CONFIDENTIAL COPYRIGHT, 2014 PREDILYTICS, INC. ALL RIGHTS RESERVED 23

14 Big Data Machine Learning Healthcare Analytics Delivering patented machine learning healthcare data analytics to generate meaningful insight to solve healthcare industry challenges CONFIDENTIAL COPYRIGHT, 2014 PREDILYTICS, INC. ALL RIGHTS RESERVED 13

15 #96: Predictive Modeling Now What? Syed M. Mehmud Director and Senior Consulting Actuary Wakely Consulting Group

16 Risk Score Optimization Continuing from session 33 A brief re-cap 2

17 Risk Score Optimization WNRAR Project Wakely Consulting Group 3

18 Risk Score Optimization 3R Predictive Analytics Where do we go from here? 4

Creating signal from noise:

Creating signal from noise: Creating signal from noise: Applying Big Data and advanced analytics Presented by: Stacy Coggeshall, Tufts Health Plan Chris Coloian, CEO Predilytics, Inc. OCTOBER 23-25, 2013 SCOTTSDALE, AZ Discussion

More information

Transformational Data-Driven Solutions for Healthcare

Transformational Data-Driven Solutions for Healthcare Transformational Data-Driven Solutions for Healthcare Transformational Data-Driven Solutions for Healthcare Today s healthcare providers face increasing pressure to improve operational performance while

More information

Session 42 PD, Predictive Analytics for Actuaries: Building an Effective Predictive Analytics Team. Moderator: Courtney Nashan

Session 42 PD, Predictive Analytics for Actuaries: Building an Effective Predictive Analytics Team. Moderator: Courtney Nashan Session 42 PD, Predictive Analytics for Actuaries: Building an Effective Predictive Analytics Team Moderator: Courtney Nashan Presenters: Ian G. Duncan, FSA, FCIA, FIA, MAAA Andy Ferris, FSA, MAAA Christine

More information

A predictive analytics platform powered by non-medical staff reduces cost of care among high-utilizing Medicare fee-for-service beneficiaries

A predictive analytics platform powered by non-medical staff reduces cost of care among high-utilizing Medicare fee-for-service beneficiaries A predictive analytics platform powered by non-medical staff reduces cost of care among high-utilizing Medicare fee-for-service beneficiaries Munevar D 1, Drozd E 1, & Ostrovsky A 2 1 Avalere Health, Inc.

More information

Predictive analytics: Poised to drive population health. White Paper

Predictive analytics: Poised to drive population health. White Paper Predictive analytics: Poised to drive population health As health care moves toward value-based payments and accountable care, providers need better tools for population health and risk management. The

More information

Predictive Modeling for Workers Compensation Claims

Predictive Modeling for Workers Compensation Claims Predictive Modeling for Workers Compensation Claims AASCIF Super Conference Kirsten C. Hernan Deloitte Consulting LLP October 4, 2012 NOTICE: THIS DOCUMENT IS PROPRIETARY AND CONFIDENTIAL This document

More information

An Optum Company. The Journey: From Healthcare To Health

An Optum Company. The Journey: From Healthcare To Health The Journey: From Healthcare To Health June 2014 Cross-Continuum Clinical & Claims Analytics Platform Aggregate data across the continuum Clean, normalize and validate data Transform data into insight

More information

Presenters. How to Maximize Technology to Improve Care and Reduce Cost 9/17/2015

Presenters. How to Maximize Technology to Improve Care and Reduce Cost 9/17/2015 How to Maximize Technology to Improve Care and Reduce Cost Presenters Justin Miller Director of Synergy Jordan Health services Dallas, TX [email protected] Justine Garcia Director of Software Solutions

More information

Big Data and Healthcare Payers WHITE PAPER

Big Data and Healthcare Payers WHITE PAPER Knowledgent White Paper Series Big Data and Healthcare Payers WHITE PAPER Summary With the implementation of the Affordable Care Act, the transition to a more member-centric relationship model, and other

More information

An Introduction to Advanced Analytics and Data Mining

An Introduction to Advanced Analytics and Data Mining An Introduction to Advanced Analytics and Data Mining Dr Barry Leventhal Henry Stewart Briefing on Marketing Analytics 19 th November 2010 Agenda What are Advanced Analytics and Data Mining? The toolkit

More information

Extracting Value from Health Care Big Data with Predictive Analytics

Extracting Value from Health Care Big Data with Predictive Analytics Extracting Value from Health Care Big Data with Predictive Analytics Gregory Veltri, CIO, Denver Health Mical DeBrow, PhD RN, Siemens Clinical Strategic Consulting DISCLAIMER: The views and opinions expressed

More information

Identifying High-Risk Medicare Beneficiaries with Predictive Analytics

Identifying High-Risk Medicare Beneficiaries with Predictive Analytics Identifying High-Risk Medicare Beneficiaries with Predictive Analytics September 2014 Until recently, with the passage of the Affordable Care Act (ACA), Medicare Fee-for-Service (FFS) providers had little

More information

IBM Business Analytics for Higher Education. 2012 IBM Corporation

IBM Business Analytics for Higher Education. 2012 IBM Corporation IBM Business Analytics for Higher Education The external pressures on higher education institutions aren t subsiding Expectation of improved student performance Complex operations Lack of decision-quality

More information

Data Warehousing and Data Mining in Business Applications

Data Warehousing and Data Mining in Business Applications 133 Data Warehousing and Data Mining in Business Applications Eesha Goel CSE Deptt. GZS-PTU Campus, Bathinda. Abstract Information technology is now required in all aspect of our lives that helps in business

More information

Session 121 PD, Medicare Advantage Risk Score Basics. Moderator: Christine Sue Bach, ASA, FCA, MAAA

Session 121 PD, Medicare Advantage Risk Score Basics. Moderator: Christine Sue Bach, ASA, FCA, MAAA Session 121 PD, Medicare Advantage Risk Score Basics Moderator: Christine Sue Bach, ASA, FCA, MAAA Presenters: Christine Sue Bach, ASA, FCA, MAAA Gregory Joseph Herrle, FSA, MAAA 2015 SOA Annual Meeting

More information

PREDICTIVE ANALYTICS DEMYSTIFIED

PREDICTIVE ANALYTICS DEMYSTIFIED PREDICTIVE ANALYTICS DEMYSTIFIED 12.12.2014 Agenda Introduction Who we are! What is Predictive Analytics? Who needs Predictive Analytics? How to build Predictive Models? Demonstration: IBM SPSS Success

More information

WHITE PAPER. Payment Integrity Trends: What s A Code Worth. A White Paper by Equian

WHITE PAPER. Payment Integrity Trends: What s A Code Worth. A White Paper by Equian WHITE PAPER Payment Integrity Trends: What s A Code Worth A White Paper by Equian June 2014 To install or not install a pre-payment code edit, that is the question. Not all standard coding rules and edits

More information

Infogix Healthcare e book

Infogix Healthcare e book CHAPTER FIVE Infogix Healthcare e book PREDICTIVE ANALYTICS IMPROVES Payer s Guide to Turning Reform into Revenue 30 MILLION REASONS DATA INTEGRITY MATTERS It is a well-documented fact that when it comes

More information

ElegantJ BI. White Paper. The Competitive Advantage of Business Intelligence (BI) Forecasting and Predictive Analysis

ElegantJ BI. White Paper. The Competitive Advantage of Business Intelligence (BI) Forecasting and Predictive Analysis ElegantJ BI White Paper The Competitive Advantage of Business Intelligence (BI) Forecasting and Predictive Analysis Integrated Business Intelligence and Reporting for Performance Management, Operational

More information

Session 190 PD, Model Risk Management and Controls Moderator: Chad R. Runchey, FSA, MAAA

Session 190 PD, Model Risk Management and Controls Moderator: Chad R. Runchey, FSA, MAAA Session 190 PD, Model Risk Management and Controls Moderator: Chad R. Runchey, FSA, MAAA Presenters: Michael N. Failor, ASA, MAAA Michael A. McDonald, FSA, FCIA Chad R. Runchey, FSA, MAAA SOA 2014 Annual

More information

Welcome to the Era of Big Data and Predictive Analytics in Higher Education

Welcome to the Era of Big Data and Predictive Analytics in Higher Education Welcome to the Era of Big Data and Predictive Analytics in Higher Education Ellen Wagner WICHE Cooperative for Educational Technologies Joel Hartman University of Central Florida The Focus of this Session

More information

Accountable Care Organizations: Medicare MSSP & Pioneer Options

Accountable Care Organizations: Medicare MSSP & Pioneer Options Accountable Care Organizations: Medicare MSSP & Pioneer Options Presented by Bill O Brien, FSA, MAAA Consulting Actuary Milliman Houston, TX (713) 658-3008 [email protected] SEAC/ACSW Annual Meeting

More information

Not all NLP is Created Equal:

Not all NLP is Created Equal: Not all NLP is Created Equal: CAC Technology Underpinnings that Drive Accuracy, Experience and Overall Revenue Performance Page 1 Performance Perspectives Health care financial leaders and health information

More information

How Big Is Big Data Adoption? Survey Results. Survey Results... 4. Big Data Company Strategy... 6

How Big Is Big Data Adoption? Survey Results. Survey Results... 4. Big Data Company Strategy... 6 Survey Results Table of Contents Survey Results... 4 Big Data Company Strategy... 6 Big Data Business Drivers and Benefits Received... 8 Big Data Integration... 10 Big Data Implementation Challenges...

More information

Tapping the benefits of business analytics and optimization

Tapping the benefits of business analytics and optimization IBM Sales and Distribution Chemicals and Petroleum White Paper Tapping the benefits of business analytics and optimization A rich source of intelligence for the chemicals and petroleum industries 2 Tapping

More information

How To Analyze Health Data

How To Analyze Health Data POPULATION HEALTH ANALYTICS ANALYTICALLY-DRIVEN INSIGHTS FOR POPULATION HEALTH LAURIE ROSE, PRINCIPAL CONSULTANT HEALTH CARE GLOBAL PRACTICE DISCUSSION TOPICS Population Health: What & Why Now? Population

More information

Big Data Text Mining and Visualization. Anton Heijs

Big Data Text Mining and Visualization. Anton Heijs Copyright 2007 by Treparel Information Solutions BV. This report nor any part of it may be copied, circulated, quoted without prior written approval from Treparel7 Treparel Information Solutions BV Delftechpark

More information

Leveraging EHR to Improve Patient Safety: A Davies Story

Leveraging EHR to Improve Patient Safety: A Davies Story Leveraging EHR to Improve Patient Safety: A Davies Story Claudia Colgan, Vice President of Quality Initiatives Bruce Darrow, MD, PhD, Interim Chief Medical Information Officer Jill Kalman, MD, Director

More information

Three proven methods to achieve a higher ROI from data mining

Three proven methods to achieve a higher ROI from data mining IBM SPSS Modeler Three proven methods to achieve a higher ROI from data mining Take your business results to the next level Highlights: Incorporate additional types of data in your predictive models By

More information

Text Analytics. A business guide

Text Analytics. A business guide Text Analytics A business guide February 2014 Contents 3 The Business Value of Text Analytics 4 What is Text Analytics? 6 Text Analytics Methods 8 Unstructured Meets Structured Data 9 Business Application

More information

Value of. Clinical and Business Data Analytics for. Healthcare Payers NOUS INFOSYSTEMS LEVERAGING INTELLECT

Value of. Clinical and Business Data Analytics for. Healthcare Payers NOUS INFOSYSTEMS LEVERAGING INTELLECT Value of Clinical and Business Data Analytics for Healthcare Payers NOUS INFOSYSTEMS LEVERAGING INTELLECT Abstract As there is a growing need for analysis, be it for meeting complex of regulatory requirements,

More information

Better planning and forecasting with IBM Predictive Analytics

Better planning and forecasting with IBM Predictive Analytics IBM Software Business Analytics SPSS Predictive Analytics Better planning and forecasting with IBM Predictive Analytics Using IBM Cognos TM1 with IBM SPSS Predictive Analytics to build better plans and

More information

Voice of the Customer: How to Move Beyond Listening to Action Merging Text Analytics with Data Mining and Predictive Analytics

Voice of the Customer: How to Move Beyond Listening to Action Merging Text Analytics with Data Mining and Predictive Analytics WHITEPAPER Voice of the Customer: How to Move Beyond Listening to Action Merging Text Analytics with Data Mining and Predictive Analytics Successful companies today both listen and understand what customers

More information

Self-Service Big Data Analytics for Line of Business

Self-Service Big Data Analytics for Line of Business I D C A N A L Y S T C O N N E C T I O N Dan Vesset Program Vice President, Business Analytics and Big Data Self-Service Big Data Analytics for Line of Business March 2015 Big data, in all its forms, is

More information

High-Performance Business Analytics: SAS and IBM Netezza Data Warehouse Appliances

High-Performance Business Analytics: SAS and IBM Netezza Data Warehouse Appliances High-Performance Business Analytics: SAS and IBM Netezza Data Warehouse Appliances Highlights IBM Netezza and SAS together provide appliances and analytic software solutions that help organizations improve

More information

IBM's Fraud and Abuse, Analytics and Management Solution

IBM's Fraud and Abuse, Analytics and Management Solution Government Efficiency through Innovative Reform IBM's Fraud and Abuse, Analytics and Management Solution Service Definition Copyright IBM Corporation 2014 Table of Contents Overview... 1 Major differentiators...

More information

New York DISCOs: Managed care plans for people with developmental disabilities - Critical factors for financial viability

New York DISCOs: Managed care plans for people with developmental disabilities - Critical factors for financial viability New York DISCOs: Managed care plans for people with developmental disabilities - Critical factors for financial viability Melissa Fredericks, FSA, MAAA Rob Parke, FIA, ASA, MAAA Jane Suh The model for

More information

SOA Annual Symposium Shanghai. November 5-6, 2012. Shanghai, China. Session 4b: Health Insurance Market in China. Jesse Song

SOA Annual Symposium Shanghai. November 5-6, 2012. Shanghai, China. Session 4b: Health Insurance Market in China. Jesse Song SOA Annual Symposium Shanghai November 5-6, 2012 Shanghai, China Session b: Health Insurance Market in China Jesse Song Jesse Song, FSA, MAAA Agenda China health insurance market overview US health insurance

More information

MedInsight Healthcare Analytics Brief: Population Health Management Concepts

MedInsight Healthcare Analytics Brief: Population Health Management Concepts Milliman Brief MedInsight Healthcare Analytics Brief: Population Health Management Concepts WHAT IS POPULATION HEALTH MANAGEMENT? Population health management has been an industry concept for decades,

More information

Electronic Medical Records Programs

Electronic Medical Records Programs Electronic Medical Records Programs Idaho Provider Outreach and Health IT Advisory Council Presentation January 20, 2011 The Office of the National Coordinator for Health Information Technology (ONC) established

More information

Analyzing Big Data: The Path to Competitive Advantage

Analyzing Big Data: The Path to Competitive Advantage White Paper Analyzing Big Data: The Path to Competitive Advantage by Marcia Kaplan Contents Introduction....2 How Big is Big Data?................................................................................

More information

TACKLING POPULATION HEALTH MANAGEMENT with Worksite Wellness & Community Outreach

TACKLING POPULATION HEALTH MANAGEMENT with Worksite Wellness & Community Outreach TACKLING POPULATION HEALTH MANAGEMENT with Worksite Wellness & Community Outreach APRIL 2015 THE PRESIDENT S MESSAGE Daniel T. Yunker Why do we need population health management in the health care delivery

More information

www.pwc.com/oracle Next presentation starting soon Business Analytics using Big Data to gain competitive advantage

www.pwc.com/oracle Next presentation starting soon Business Analytics using Big Data to gain competitive advantage www.pwc.com/oracle Next presentation starting soon Business Analytics using Big Data to gain competitive advantage If every image made and every word written from the earliest stirring of civilization

More information

A Population Based Risk Algorithm for the Development of Type 2 Diabetes: in the United States

A Population Based Risk Algorithm for the Development of Type 2 Diabetes: in the United States A Population Based Risk Algorithm for the Development of Type 2 Diabetes: Validation of the Diabetes Population Risk Tool (DPoRT) in the United States Christopher Tait PhD Student Canadian Society for

More information

PALANTIR HEALTH. Maximizing data assets to improve quality, risk, and compliance. 100 Hamilton Ave, Suite 300 Palo Alto, California 94301

PALANTIR HEALTH. Maximizing data assets to improve quality, risk, and compliance. 100 Hamilton Ave, Suite 300 Palo Alto, California 94301 100 Hamilton Ave, Suite 300 Palo Alto, California 94301 [email protected] www.palantir.com/health PALANTIR HEALTH Maximizing data assets to improve quality, risk, and compliance Palantir Health: Maximizing

More information

Data Mining for Successful Healthcare Organizations

Data Mining for Successful Healthcare Organizations Data Mining for Successful Healthcare Organizations For successful healthcare organizations, it is important to empower the management and staff with data warehousing-based critical thinking and knowledge

More information

A Glimpse at the Future of Predictive Analytics in Healthcare

A Glimpse at the Future of Predictive Analytics in Healthcare A Glimpse at the Future of Predictive Analytics in Healthcare 1 Dr. Thomas Hill Dell Executive Director, Analytics Dell Software Group [email protected] www.linkedin.com/in/drthomashill @DrTomHill

More information

Interactive data analytics drive insights

Interactive data analytics drive insights Big data Interactive data analytics drive insights Daniel Davis/Invodo/S&P. Screen images courtesy of Landmark Software and Services By Armando Acosta and Joey Jablonski The Apache Hadoop Big data has

More information

Predictive Modeling and Big Data

Predictive Modeling and Big Data Predictive Modeling and Presented by Eileen Burns, FSA, MAAA Milliman Agenda Current uses of predictive modeling in the life insurance industry Potential applications of 2 1 June 16, 2014 [Enter presentation

More information

Text Mining for Business Intelligence

Text Mining for Business Intelligence Project Proposal (Draft) Text Mining for Business Intelligence By Abhinut Srimasorn (5322793399) Advisor Dr. Thanaruk Theeramunkong School of Information, Computer and Communication Technology, Sirindhorn

More information

KPMG Unlocks Hidden Value in Client Information with Smartlogic Semaphore

KPMG Unlocks Hidden Value in Client Information with Smartlogic Semaphore CASE STUDY KPMG Unlocks Hidden Value in Client Information with Smartlogic Semaphore Sponsored by: IDC David Schubmehl July 2014 IDC OPINION Dan Vesset Big data in all its forms and associated technologies,

More information

How To Use Predictive Analytics To Improve Health Care

How To Use Predictive Analytics To Improve Health Care Unlocking the Value of Healthcare s Big Data with Predictive Analytics Background The volume of electronic data in the healthcare industry continues to grow. Adoption of electronic solutions and increased

More information

Voice. listen, understand and respond. enherent. wish, choice, or opinion. openly or formally expressed. May 2010. - Merriam Webster. www.enherent.

Voice. listen, understand and respond. enherent. wish, choice, or opinion. openly or formally expressed. May 2010. - Merriam Webster. www.enherent. Voice wish, choice, or opinion openly or formally expressed - Merriam Webster listen, understand and respond May 2010 2010 Corp. All rights reserved. www..com Overwhelming Dialog Consumers are leading

More information

Turning Big Data into More Effective Customer Experiences. Experience the Difference with Lily Enterprise

Turning Big Data into More Effective Customer Experiences. Experience the Difference with Lily Enterprise Turning Big into More Effective Experiences Experience the Difference with Lily Enterprise Table of Contents Confidentiality Purpose of this Document The Conceptual Solution About NGDATA The Solution The

More information

ACCOUNTABLE CARE ANALYTICS: DEVELOPING A TRUSTED 360 DEGREE VIEW OF THE PATIENT

ACCOUNTABLE CARE ANALYTICS: DEVELOPING A TRUSTED 360 DEGREE VIEW OF THE PATIENT ACCOUNTABLE CARE ANALYTICS: DEVELOPING A TRUSTED 360 DEGREE VIEW OF THE PATIENT Accountable Care Analytics: Developing a Trusted 360 Degree View of the Patient Introduction Recent federal regulations have

More information

and Analytic s i n Consu m e r P r oducts

and Analytic s i n Consu m e r P r oducts Global Headquarters: 5 Speen Street Framingham, MA 01701 USA P.508.988.7900 F.508.988.7881 www.idc-mi.com Creating Big O p portunities with Big Data and Analytic s i n Consu m e r P r oducts W H I T E

More information

Profit from Big Data flow. Hospital Revenue Leakage: Minimizing missing charges in hospital systems

Profit from Big Data flow. Hospital Revenue Leakage: Minimizing missing charges in hospital systems Profit from Big Data flow Hospital Revenue Leakage: Minimizing missing charges in hospital systems Hospital Revenue Leakage White Paper 2 Tapping the hidden assets in hospitals data Missed charges on patient

More information

Big Data 101: Harvest Real Value & Avoid Hollow Hype

Big Data 101: Harvest Real Value & Avoid Hollow Hype Big Data 101: Harvest Real Value & Avoid Hollow Hype 2 Executive Summary Odds are you are hearing the growing hype around the potential for big data to revolutionize our ability to assimilate and act on

More information

How Organisations Are Using Data Mining Techniques To Gain a Competitive Advantage John Spooner SAS UK

How Organisations Are Using Data Mining Techniques To Gain a Competitive Advantage John Spooner SAS UK How Organisations Are Using Data Mining Techniques To Gain a Competitive Advantage John Spooner SAS UK Agenda Analytics why now? The process around data and text mining Case Studies The Value of Information

More information

Big Data-Challenges and Opportunities

Big Data-Challenges and Opportunities Big Data-Challenges and Opportunities White paper - August 2014 User Acceptance Tests Test Case Execution Quality Definition Test Design Test Plan Test Case Development Table of Contents Introduction 1

More information

Big Data: How can it enhance your strategy?

Big Data: How can it enhance your strategy? 7 Big Data: How can it enhance your strategy? Practice Area: IT Strategy Topic Area: Big Data Connecting the data dots for better strategic decisions Data is essential for organisations looking for answers

More information

Big Data Analytics in Health Care

Big Data Analytics in Health Care Big Data Analytics in Health Care S. G. Nandhini 1, V. Lavanya 2, K.Vasantha Kokilam 3 1 13mss032, 2 13mss025, III. M.Sc (software systems), SRI KRISHNA ARTS AND SCIENCE COLLEGE, 3 Assistant Professor,

More information

Response to Serving the Medi Cal SPD Population in Alameda County

Response to Serving the Medi Cal SPD Population in Alameda County Expanding Health Coverage and Increasing Access to High Quality Care Response to Serving the Medi Cal SPD Population in Alameda County As the State has acknowledged in the 1115 waiver concept paper, the

More information

Big Data Analytics in Healthcare In pursuit of the Triple Aim with Analytics. David Wiggin, Director, Industry Marketing, Teradata 20 November, 2014

Big Data Analytics in Healthcare In pursuit of the Triple Aim with Analytics. David Wiggin, Director, Industry Marketing, Teradata 20 November, 2014 Big Data Analytics in Healthcare In pursuit of the Triple Aim with Analytics David Wiggin, Director, Industry Marketing, Teradata 20 November, 2014 Agenda The Triple Aim Population Health in Russia The

More information

Benefit Design and ACOs: How Will Private Employers and Health Plans Proceed?

Benefit Design and ACOs: How Will Private Employers and Health Plans Proceed? Benefit Design and ACOs: How Will Private Employers and Health Plans Proceed? Accountable Care Organizations: Implications for Consumers October 14, 2010 Washington, DC Sam Nussbaum, M.D. Executive Vice

More information

Predicting & Preventing Banking Customer Churn by Unlocking Big Data

Predicting & Preventing Banking Customer Churn by Unlocking Big Data Predicting & Preventing Banking Customer Churn by Unlocking Big Data Customer Churn: A Key Performance Indicator for Banks In 2012, 50% of customers, globally, either changed their banks or were planning

More information

Risk adjustment and shared savings agreements

Risk adjustment and shared savings agreements Risk adjustment and shared savings agreements Hans K. Leida, PhD, FSA, MAAA Leigh M. Wachenheim, FSA, MAAA In a typical shared savings arrangement, claim costs during the measurement or experience period

More information

The Business Value of Predictive Analytics

The Business Value of Predictive Analytics The Business Value of Predictive Analytics Alys Woodward Program Manager, European Business Analytics, Collaboration and Social Solutions, IDC London, UK 15 November 2011 Copyright IDC. Reproduction is

More information

Session 35 PD, Predictive Modeling for Actuaries: Integrating Predictive Analytics in Assumption Setting Moderator: David Wang, FSA, FIA, MAAA

Session 35 PD, Predictive Modeling for Actuaries: Integrating Predictive Analytics in Assumption Setting Moderator: David Wang, FSA, FIA, MAAA Session 35 PD, Predictive Modeling for Actuaries: Integrating Predictive Analytics in Assumption Setting Moderator: David Wang, FSA, FIA, MAAA Presenters: Guillaume Briere-Giroux, FSA, MAAA Eileen Sheila

More information

The Definitive Guide to Data Blending. White Paper

The Definitive Guide to Data Blending. White Paper The Definitive Guide to Data Blending White Paper Leveraging Alteryx Analytics for data blending you can: Gather and blend data from virtually any data source including local, third-party, and cloud/ social

More information

Enterprise Analytics Strategic Planning

Enterprise Analytics Strategic Planning Enterprise Analytics Strategic Planning June 5, 2013 1 "The first question a data driven organization needs to ask itself is not "what do we think?" but rather "what do we know? Big Data: The Management

More information

Global Headquarters: 5 Speen Street Framingham, MA 01701 USA P.508.935.4445 F.508.988.7881 www.idc-hi.com

Global Headquarters: 5 Speen Street Framingham, MA 01701 USA P.508.935.4445 F.508.988.7881 www.idc-hi.com Global Headquarters: 5 Speen Street Framingham, MA 01701 USA P.508.935.4445 F.508.988.7881 www.idc-hi.com L e v e raging Big Data to Build a F o undation f o r Accountable Healthcare C U S T O M I N D

More information

PREDICTIVE ANALYTICS FOR THE HEALTHCARE INDUSTRY

PREDICTIVE ANALYTICS FOR THE HEALTHCARE INDUSTRY PREDICTIVE ANALYTICS FOR THE HEALTHCARE INDUSTRY By Andrew Pearson Qualex Asia Today, healthcare companies are drowning in data. According to IBM, most healthcare organizations have terabytes and terabytes

More information

CoolaData Predictive Analytics

CoolaData Predictive Analytics CoolaData Predictive Analytics 9 3 6 About CoolaData CoolaData empowers online companies to become proactive and predictive without having to develop, store, manage or monitor data themselves. It is an

More information

Business Analytics and Data Warehousing in Higher Education

Business Analytics and Data Warehousing in Higher Education WHITE PAPER Business Analytics and Data Warehousing in Higher Education by Jim Gallo Table of Contents Introduction...3 Business Analytics and Data Warehousing...4 The Role of the Data Warehouse...4 Big

More information

Harnessing the power of advanced analytics with IBM Netezza

Harnessing the power of advanced analytics with IBM Netezza IBM Software Information Management White Paper Harnessing the power of advanced analytics with IBM Netezza How an appliance approach simplifies the use of advanced analytics Harnessing the power of advanced

More information

RISK ADJUSTMENT ARRIVES FOR COMMERCIAL HEALTH INSURANCE

RISK ADJUSTMENT ARRIVES FOR COMMERCIAL HEALTH INSURANCE POINT OF VIEW RISK ADJUSTMENT ARRIVES FOR COMMERCIAL HEALTH INSURANCE HHS s risk adjustment program for the small group and individual markets will reduce some of the effects of adverse selection but it

More information