Bodily Distalization of Molars with Absolute Anchorage
|
|
|
- Johnathan Hamilton
- 10 years ago
- Views:
Transcription
1 Case Report Bodily Distalization of Molars with Absolute Anchorage Ahmet Keles, DDS, DMSc a ; Nejat Erverdi, MD, DDS b ; Serdar Sezen, MD, DDS c Abstract: Palatal implants have been used over the last two decades to eliminate headgear wear and to establish stationary anchorage. In this case report, the stability of a palatal implant for distalization of molars bodily and for anchorage maintenance was assessed. The implant was a stepped screw titanium (4.5 mm diameter 8 mm length), and it was placed in the palatal region for orthodontic purposes. A surgical template containing a metal drill housing was prepared. Angulation of the drill housing was controlled according to the radiologic tracing of the maxilla transferred to a plaster cast section in the paramedian plane. The implant was placed using a noninvasive technique (incision, flap, and suture elimination) and left transmucosally to facilitate the surgical procedure and to reduce the number of operations. The paramedian region was selected (1) to avoid the connective tissues of the palatine suture and (2) because it is considered to be a suitable host site for implant placement. After three months of healing, the implant was osseointegrated and orthodontic treatment was initiated. For molar distalization, the Keles Slider appliance was modified and, instead of a Nance button, a palatal implant was used for anchorage. The results showed that the molars were distalized bodily at five months, and no anchorage loss was observed. At the end of the treatment, the smile was improved, and an ideal Class I molar and canine relationship, an ideal overbite, and an ideal overjet were all achieved. In conclusion, palatal implants can be used effectively for anchorage maintenance and in space-gaining procedures. Use of a three-dimensional surgical template eliminated implant placement errors, reduced chair time, minimized trauma to the tissues, and enhanced osseointegration. This method can be used effectively to achieve distalization of molars bodily without anchorage loss. (Angle Orthod 2003;73: ) Key Words: Keles Slider; Palatal implant; Noncompliance therapy; Molar distalization; Anchorage; Class II malocclusion INTRODUCTION Class II malocclusion is one of the most difficult malocclusions to treat, and stationary anchorage is one of the main factors determining the success of the treatment. Conventional extraoral appliances are routinely used to establish maximum anchorage. However, many patients reject headgear wear because of social and esthetic concerns, and the success of this treatment solely depends on patient cooperation. 1 In many cases, a lack of cooperation results in anchorage loss, and unsatisfactory treatment results. Anotha Associate Professor, Department of Orthodontics, Faculty of Dentistry, Marmara University, Istanbul, Turkey b Professor and Head, Department of Orthodontics, Faculty of Dentistry, Marmara University, Istanbul, Turkey c Research fellow, Department of Orthodontics, Faculty of Dentistry, Marmara University, Istanbul, Turkey Corresponding Author: Ahmet Keles, DDS, DMSc, Director of Orthodontic Clinic, University of Connecticut Health Center, Farmington, CT ( [email protected]). Accepted: October Submitted: August by The EH Angle Education and Research Foundation, Inc. er disadvantage in the use of headgear wear is the possibility of creating serious facial injuries. 2,3 The difficulty in the use of headgear wear has motivated many investigators to develop the mechanics of intraoral molar distalization. Some investigators have used the Nance appliance to obtain anchorage from the palate; however, in most of these studies anchorage loss was unavoidable, and reduced hygiene under the acrylic resin button created inflammation of the soft tissue. 4 7 In recent years, studies have been directed toward the use of osseointegrated implants as anchorage units Experimental biomechanical studies, 14,15 studies on animal models, and clinical investigations have shown that dental implants that were placed in the alveolar bone were resistant to the orthodontic force that was applied. However, patients who need orthodontic treatment generally have a complete dentition; thus, there are no available sites for implant placement. Thus, alternative anatomic sites are required, and some investigators have used the retromolar area 11,24 or palatal region as alternative sites. Ohmae et al, 31 in an animal model, and Umemori et al, 32 in humans, applied titanium mini plates to the mandibular corpus area and used them as anchorage for the intrusion of mandibular 471
2 472 KELES, ERVERDI, SEZEN FIGURE 1. (a) Initial extraoral profile view of the patient. (b) Initial extraoral frontal view of the patient. (c) Initial extraoral view of smile of the patient. posterior segment. Both reported that they achieved effective intrusion of the mandibular posterior dentoalveolar segment and corrected anterior open-bites. Some investigators used plates at the zygomatic region as absolute anchorage for open-bite corrections and canine distalization. 33 Use of palatal implants for orthodontic anchorage is a new area of research, and investigations on this subject are limited. The orientation of palatal implants, in contrast to conventional dental implant applications in the maxilla, is in a reverse inclination. This reverse angulation of the long axis of the implant can misguide the surgeon in implant positioning and create a certain difficulty during surgical placement. Recently, for precise and easy palatal implant placement, a new method was introduced. 34 In this case report, the stability of a palatal implant for molar distalization and anchorage maintenance is assessed. MATERIALS AND METHODS Case history ZA was a 17-year, 6-month-old female diagnosed with Class II Division 1 malocclusion. She presented a pleasant straight profile, but when she smiled her maxillary canines appeared unpleasant (Figure 1a through c). Her chief complaint was buccally positioned maxillary canines (Figure 2a through d). She presented an end on molar relationship on the right side and a Class II molar relationship on the left side (Figure 2b,c). She had six mm of crowding in the maxilla and four mm in the mandible, with posterior dental constriction on both sides. Our treatment plan was palatal implant placement for anchorage and molar distalization to correct the Class II and to resolve the maxillary crowding. A stepped screw titanium implant (4.5 mm diameter 8 mm length) (Frialit-2 Implant System, Synchro Screw implants, Friadent GmbH, Mannheim, Germany) was placed in the palatal region for orthodontic purposes. Radiological evaluation and implant positioning For precise palatal implant placement, the method described by Tosun et al 34 was used. Lateral cephalograms with maxillary templates were obtained. The acrylic resin template contained a spherical metal marker at the highest point of the palate. The purpose of using these templates was to calculate magnification of the radiograph to assess the exact dimensions of the bone as well as to create a sagittal reference point for identifying the location of the drilling site for implant placement. Radiological evaluation of the palatal bone morphology, determined the path for the placement of the implant. In the transverse plane, the implant was not placed directly into the midpalatal suture that consisted of connective tissue. Rather, the lateral side of the palatal suture (paramedian region) was chosen as the implant bed to increase retention by the bony. There was enough bone volume to place an implant in a triangle formed by the nasal cavity, incisor roots, and palate but these anatomic structures were close to each other; thus, there was also a risk of penetration or damage to these anatomic structures while placing the implant.
3 BODILY MOLAR DISTALIZATIONS WITH ABSOLUTE ANCHORAGE 473 FIGURE 2. (a) Initial intraoral frontal view of the patient (Please note ectopic maxillary canines). (b) Initial intraoral right view of the patient. To avoid such a risk, we used a surgical template to guide the implant along the path determined by the radiological evaluation. The plaster cast used for template preparation was cut along the paramedian line passing through the mesial aspect of the central incisor. On the lateral cephalogram, the radiographic view of the maxilla and central incisor was traced and then cut along the pencil line and carried to the paramedian section of the plaster cast. A drill insertion hole was prepared in the acrylic resin template using a stainless steel bur of 2.5-mm diameter. A cylindrical metal housing, 7 mm in length and 2.1 mm in diameter, containing a pilot drill was placed into the implant access hole. The drill housing was fixed by orthodontic acrylic resin according to the desired implant inclination by controlling it on the plaster model section. In the transverse plane, approximately one mm from the palatine suture and in the parasagittal plane, a palate-nasal spine path was used to avoid root tip and nasal cavity perforations. Thus, a three-dimensional surgical template for accurate implant angulation was obtained (Figure 3a,b). Surgical method The three-dimensional surgical template was placed in the mouth to mark the implant location. A pilot drill was applied through the metal housing in the template. After that, the mucosa was removed using a punch drill, and the standard surgical protocol for placing the chosen implant system was followed. Drilling was carried out at 1000 rpm under internal and external sterile saline cooling. Drills with eight-mm-long stoppers were used in the following order: a pilot drill of 2.0-mm diameter, a twist drill of 3.0-mm diameter, and finally a spade drill of 4.5-mm diameter. The implant was placed transmucosally to avoid a second surgery and to facilitate impression and laboratory procedures. The implant was not loaded with any force for a minimum of three months. After the healing period, impressions were made using a conventional technique for transferring the impression post and molar bands to a plaster cast. An orthodontic abutment (Friadent GmbH) was fixed to the implant analog on the plaster.
4 474 KELES, ERVERDI, SEZEN FIGURE 2. Continued. (c) Initial intraoral left view of the patient. (d) Initial intraoral upper occlusal view of the patient. Cephalograms were obtained after a healing period of three months to detect the presence of any radiolucent area in the peri-implant bone. Percussion by a metal probe was used to evaluate implant mobility. Peri-implant soft-tissue health at each recall was recorded using the modified plaque index 35 and a modified sulcus bleeding index. 36 Appliance construction For molar distalization, Keles Slider appliance (patent pending) was modified and, instead of using a Nance button for anchorage, the anchorage was obtained from the palatal implant. This modification in the design eliminated the support of the palatal soft tissues, first premolars, and anterior teeth. Maxillary first molars were banded, and on the palatal side of the first molar bands, tubes of inch diameter were soldered (Leone A076-45, Firenze, Italy). A stainless steel wire of inch diameter was attached to the palatal implant and the wire oriented about five mm apical to the gingival margin of the first molars, which passed through the tube and oriented parallel to the occlusal plane. A Ni-Ti coil spring (Leone C ), two cm length, inch diameter, and inch thickness, was placed in between the lock on the wire and the tube in full compression for molar distalization. The amount of force generated with the full compression of the two cm open coil was about 200 gm. This force system would allow application of consistent force at the level of the center of resistance of the first molars. The biomechanics of the force system is presented in Figure 4. The patient was seen once every month, and a Gurin lock (3M Unitek, Orthodontic Products, Monrovia, Calif., ) was activated with the Gurin lock wrench (3M Unitek, ). After the distalization, the coil springs were removed, the locks were tightened and flushed to the tubes of the molar bands. RESULTS After the three-month healing period, neither a peri-implant radiolucent layer on the cephalometric radiograph nor an implant mobility was detected. Thus, the implant was considered to be osseointegrated and was loaded with orthodontic forces. Orthodontic treatment results showed that the maxillary
5 BODILY MOLAR DISTALIZATIONS WITH ABSOLUTE ANCHORAGE 475 FIGURE 3. (a) Lateral view of plaster cast section with a tracing and surgical template with drill housing containing a pilot drill. (b) Frontal view of plaster cast section and surgical template with drill housing containing a pilot drill. (Please note the inclination of the drill through the paramedian region.) FIGURE 4. Biomechanics of the Modified Keles Slider. Palatal implant; inch stainless steel rod; Gurin lock; Heavy Ni-Ti coil spring; inch tube that was soldered to the first molar band. molars distalized by three mm on both sides five months after the cementation of the appliance (Figure 5a through d). A super Class I relationship was achieved on both sides, and the maxillary first and second premolars drifted distally. This allowed the crowded and ectopically positioned maxillary canines to align into a Class I relationship with the help of the transeptal fibers and distal drift. Molars were distalized in a bodily fashion (Figure 6a,b), and there was no anchorage loss at the anterior segment with no upper incisor proclination or increase of the overjet (Figures 5a, 6b, and 7). The coil springs were removed, and the locks were flushed to the mesial side of the molar tubes thus converting the appliance into a passive anchorage appliance (Figure 8). Second stage fixed orthodontic therapy was initiated and lasted 12 months. Three months before the end of the fixed orthodontic treatment, the palatal implant was easily removed by loosening the implant with the help of a hollow drill (Figure 9a,b). The implant site healed rapidly within five days. One month later, there was no scar tissue on the palate, and the palatal cortical bone bridge appeared (Figures 10 and 11). At the end of the treatment, a pleasant profile was pre-
6 476 KELES, ERVERDI, SEZEN FIGURE 5. (a) Upper incisors did not proclined, and the overjet did not increase after the distalization. (b) Super Class I relationship was achieved in five months, and the premolars were drifted distally with the help of transeptal fibers, ectopic maxillary canines got into the arch (right view). (c) Super Class I relationship was achieved in five months, and the premolars were drifted distally with the help of transeptal fibers, ectopic maxillary canines got into the arch (left view). (d) Ectopic maxillary canines got into the arch with the distal drift of the first premolars and the stretch of transeptal fibers (occlusal view). sent, the smile was improved, and an ideal Class I molar and canine relationship, an ideal overbite, and an ideal overjet were all achieved. Extraoral and intraoral pictures of the patient at the end of the fixed orthodontic treatment and the cephalometric values and superimpositions are presented in Figures 12 through 14 and in Table 1. DISCUSSION The use of palatal implants has become an alternative mode of treatment in orthodontics over the last two decades The esthetic and social concerns of the use of headgear wear for molar distalization and the anchorage loss that occurs with the application of intraoral molar distalization mechanics stimulated many investigators to use palatal implants for anchorage. This treatment option can be criticized as necessitating surgery for a transient implant. But the benefits of this treatment, in comparison with those of the conventional treatment that uses headgear or intraoral appliances, are significant. The major advantage of using palatal implants is the preservation of the anchorage while moving the molars distally. For molar distalization, the Keles Slider appliance was modified. To preserve the anchorage, a Nance button and first premolar bands were eliminated; instead, the wire rod for molar distalization was connected directly to the palatal implant. This modification in the design also allowed distal drift of the first and second premolars with the help of the transeptal fibers while moving the molars distally. Our results showed that the implant was stable after the application of orthodontic forces, there was no anchorage loss in the anterior segment, and the molars were distalized bodily by three mm on both sides. In our patient, third
7 BODILY MOLAR DISTALIZATIONS WITH ABSOLUTE ANCHORAGE 477 FIGURE 7. Cephalometric superimposition of the maxilla that shows the dental changes in the maxilla. Solid line after the distalization,, dotted line after the distalization. FIGURE 6. (a) Bodily distal movement of first molars with the application of force closer to the center of resistance of the first molars (please note distal drift of second and first premolars). (b) Bodily distal moment of the first molars with the application of force closer to the center of resistance of the first molars (please note the incisors were not proclined). molars were present on both sides. In fact, if more than two-to three-mm distalization is required, we recommend the extraction of the third molars before the distalization. When a minimally invasive placement technique that eliminates the incision, flap, and sutures is combined with a one-stage surgery, the surgical approach is simplified and well tolerated by patients. The patient s acceptance regarding surgical effects was positive, and postoperative pain and discomfort symptoms were negligible. Bernhatr et al 36 used the conventional surgical procedure ad modum Branemark for the placement of palatal implants. This conventional implant surgery requires a fullthickness flap with considerable extension to view the operation field. For implant placement in alveolar bone, this requirement is helpful for detecting possible dehiscences or fenestrations around the implant and facilitates decisions concerning implant angulation and diameter. With palatal implants, the surgical procedure can be simplified by the elimination of the incision, flap raising, and sutures because the operating field in the palate is a quasiflat surface and there is no risk of creating defects in the bone around the implant. Thus, a punch drill can perforate the mucosa overlying the already decided implant site. This can decrease operation time, postoperative complications, edema, and pain. As the palatal mucosa is highly keratinized, peri-implant soft-tissue conditions are favorable, creating a firm connective tissue sealing. Thus, there is no risk in allowing the implant to heal transmucosally. Transmucosal palatal implants cannot be disturbed by chewing forces and are not preloaded because of their central localization. In the present study, the implant neck was not totally embedded into the cortical level but rather at the mucosal level to achieve one-stage advantages. The findings of another one-stage orthodontic implant system study also confirmed these results. 29,30 At the conclusion of the orthodontic treatment, surgical attempts can be made to cover the implant using punched mucosa or sliding flaps. In the present study, the implant was removed with a hollow drill and a reverse torque using extracting forceps, and the implant socket was left to heal without further treatment. Major difficulties in the treatment involved the nonconventional angulation that occurs during the positioning of the implant, which can misguide the surgeon. The reverse inclination of the impression posts from the pharyngeal direction makes a normally easy procedure a time-consuming step. Primary stability is a prerequisite in implant dentistry. In the present study, lateral angling of the implant was performed to avoid placement into the connective tissues of
8 478 KELES, ERVERDI, SEZEN FIGURE 8. After the distalization, the appliance is converted to passive holding arch (please note the removal of the coil springs). FIGURE 10. Rapid healing of the implant site (occlusal view). FIGURE 9. (a) Application of the hollow drill to remove the implant. (b) The removed palatal implant. the palatine suture and to obtain more retention in the bone, as shown in the study of Bernhatr et al 36 This lateral angling of the implant also facilitates viewing and handling of the handpiece. To eliminate mistakes in the radiologic evaluation of the pertinent anatomic structures, the use of a template is mandatory. Because of cephalometric radiograph magnification, metallic markers were used, and they served as a dimensional reference to assess the exact dimensions on the radiograph and to select the implant of correct size. The same template also can be used for treatment planning on the plaster cast and as a surgical template during surgery to facilitate preparation of the implant bed. In the preparation of the surgical template, attention was paid to directing the drill housing from the palate toward the nasal spine. The drill housing was angled at about 30 in the frontal plane.
9 BODILY MOLAR DISTALIZATIONS WITH ABSOLUTE ANCHORAGE FIGURE 11. Cephalometric radiograph that shows the healing of the implant site (please note the cortical bone bridge formation at the implant site). TABLE 1. Treatment 479 Cephalometric Values of the Patient Before and After Measurements Normal Initial Final Go-Me-Sn Saddle angle Articular angle Gonial angle Jarabak ANSMe/NM Maximum height Facial axis angle FMA Y-axis angle SNA SNB ANB Witt s appraisal SL SE Nper-PA Maximum depth -SN -NA -NA -FH IMPA I-NB I-NB Pog-NB Holdaway ratio -I mm 51 mm 22 mm 1 mm mm mm 4mm 1/ FIGURE 12. (a) Final view of extraoral profile of the patient (note the maintenance of the profile). (b) Final extraoral frontal view of the patient. (c) Final extraoral view of smile of the patient (please note improved smile).
10 480 KELES, ERVERDI, SEZEN FIGURE 13. (a) Final intraoral frontal view of the patient. (b) Final intraoral right view of the patient. (c) Final intraoral left view of the patient. (d) Final intraoral upper occlusal view of the patient. The purpose of placing the implant at this inclination was to have adequate bone volume around the implant. The tracing of the maxilla was enabled by this procedure, and the risk of surgical penetration into the nasal cavity also was avoided. In this study, the use of surgical templates reduced operation time, increased the precision of implant angulation, eliminated improper positioning of the implant, avoided damage to anatomical structures, thereby confirming the results of other authors who have described the use of surgical templates. 40,41 Schlegel et al 42 studied the anatomical basis for the placement of the palatal implant by obtaining trephine bur biopsy samples from the palate for histological observations. Their results showed that the anterior region of the median suture palatine is often less ossified than the posterior region. Their findings support our method of using the paramedian regions for the placement of the implant to avoid the connective tissues of the palatine suture. CONCLUSIONS A palatal implant was used for effective maintenance of anchorage and in space-gaining procedures in a patient. The molars translated distally without the loss of anchorage and tipping. No cooperation was required (no headgear), except good oral hygiene. Minimal invasive techniques eased the surgical procedure and reduced the operation time. The paramedian region could be a suitable implant site for orthodontic purposes. Transmucosal placement eliminates second-stage surgery. Use of a three-dimensional surgical template eliminated faulty implant placement and simplified intraoperative decisions concerning correct inclination of the long axis of the implant. Further work needs to be done with an increased number of treated cases.
11 BODILY MOLAR DISTALIZATIONS WITH ABSOLUTE ANCHORAGE FIGURE 14. Cephalometric superimposition of the patient. Solid line Initial, Dotted line Final. ACKNOWLEDGMENTS We thank Drs Tosun Tosun and Hussam Shaban. REFERENCES Egolf RJ, Begole EA, Upshaw HS. Factors associated with orthodontic patient compliance with intraoral elastic and headgear wear. Am J Orthod. 1990;97: American Association of Orthodontists. Special bulletin on extraoral appliance care. Am J Orthod Dentofacial Orthop. 1975;75: American Association of Orthodontists Bulletin. Preliminary results of head gear survey. The Bulletin. 1982;1:2. 4. Bondemark L, Kurol J. Distalization of first and second molars simultaneously with repelling magnets. Eur J Orthodont. 1992; 14: Erverdi N, Koyuturk Ö, Kucukkeles N. Nickel-titanium coil springs and repelling magnets: a comparison of two different intra-oral molar distalization techniques. Br J Orthodont. 1997;24: Fuhrmann R, Wehrbein H, Diedrich P. Anteriore Verankerungsqualitat der odifizierten Nance Apparatur bei der Molarendistalisierung. Kieferorthop. 1994;8: Keles A, Sayinsu K. A new approach in maxillary molar distalization: intraoral bodily molar distalizer. Am J Orthod Dentofacial Orthop. 2000;117: Ödman J, Lekholm U, Jemt T, Branemark P-I, Thilander B. Osseointegrated titanium implants a new approach in orthodontic treatment. Eur J Orthodont. 1988;10: Roberts WE, Smith R, Zilberman Y, Mozsary PG, Smith RS. Osseous adaptation to continuous loading of rigid endosseous implants. Am J Orthod. 1984;86: Roberts WE, Helm FR, Marshall KJ, Gonglof RK. Rigid endosseous implants for orthodontic and orthopedic anchorage. Angle Orthod. 1989;59: Roberts WE, Marshall KJ, Mozsary PG. Rigid endosseous implant utilized as anchorage to protract molars and close an atrophic extraction site. Angle Orthod. 1990;60: Turley PK, Kean C, Sehur J, Stefanac J, Gray J, Hennes J, Poon LC. Orthodontic force application to titanium endosseous implants. Angle Orthod. 1988;58: Van Roekel NB. The use of Branemark system implants for orthodontic anchorage: report of a case. Int J Oral Maxillofac Implants. 1989;4: Chen J, Chen K, Garetto LP, Roberts WE. Mechanical response to functional and therapeutic loading of a retromolar endosseous implant used for orthodontic anchorage to mesially translate mandibular molars. Implant Dent. 1995;4: Melsen B, Lang NP. Biological reactions of alveolar bone to orthodontic loading of oral implants. Clin Oral Impl Res. 2001;12: Linder-Aronson S, Nordenram A, Anneroth G. Titanium implant anchorage in orthodontic treatment an experimental investigation in monkeys. Eur J Orthod. 1990;12: Ödman J, Grondahl K, Lekholm U, Thilander B. The effect of osseointegrated implants on the dento-alveolar development. A clinical and radiographic study in growing pigs. Eur J Orthod. 1991;13: Sennerby L, Ödman J, Lekholm U, Thilander B. Tissue reactions towards titanium implants inserted in growing jaws. A histological study in the pig. Clin Oral Impl Res. 1993;4: Smalley WM, Shapiro PA, Hohl TH, Kokich VG, Branemark P- I. Osseointegrated titanium implants for maxillofacial protraction in monkeys. Am J Orthod Dentofacial Orthop. 1988;94: Thilander B, Ödman J, Grondahl K, Lekholm U. Aspects on osseointegrated implants inserted in growing jaws. A biometric and radiographic study in the young pig. Eur J Orthod. 1992;14: Haanaes HR, Stenvik A, Beyer Olsen ES, Tryti T, Faehn O. The efficacy of two-stage titanium implants as orthodontic anchorage in the preprosthodontic correction of third molars in adults: a report of three cases. Eur J Orthod. 1991;13: Ödman J, Lekholm U, Jemt T, Thilander B. Osseointegrated implants as orthodontic anchorage in the treatment of partially edentulous adult patients. Eur J Orthod. 1994;16: Thilander B, Ödman J, Grondahl K, Friberg B. Osseointegrated implants in adolescents. An alternative in replacing missing teeth? Eur J Orthod. 1994;16: Higuchi KW, Slack JM. The use of titanium fixtures for intraoral anchorage to facilitate orthodontic tooth movement. Int J Oral Maxillofac Implants. 1991;6: Abels N, Schiel HJ, Hery-Langer G, Neugebauer J, Engel M. Bone condensing in the placement of endosteal palatal implants: a case report. Int J Oral Maxillofac Implants. 1999;14: Glatzmaier J, Wehrbein H, Diedrich P. Die Entwicklung eines resorbierbaren Implantatsystems zur orthodontischen Verankerung. Fortschr Kieferorthop. 1995;56: Triaca A, Antonini M, Wintermantel E. Ein neues Titan-Flachschraubenimplantat zur Verankerung am anterioren Gaumen. Inf Orthod Orthop. 1992;24: Turley PK, Shapiro PA, Moffett BC. The loading of bioglass-
12 482 KELES, ERVERDI, SEZEN coated aluminum oxide implants to produce sutural expansion of the maxillary complex in the pigtail monkey (Macaca nemestrina). Arch Oral Biol. 1980;25: Wehrbein H. Enossale Titanimplantate als orthodontische Verankerungselemente. Experimentelle Untersuchungen und klinische Anwendung. Fortschr Kieferorhop. 1994;5: Wehrbein H, Glatzmaier J, Mundwiller U, Diedrich P. The orthosystem: a new implant system for orthodontic anchorage in the palate. J Orofac Orthop. 1996;57: Ohmae M, Saito S, Morohashi T, et al. A clinical and histological evaluation of titanium mini-implants as anchors for orthodontic intrusion in the beagle dog. Am J Orthod Dentofacial Orthop. 2001;119: Umemori M, Sugawara J, Mitani H, Nagasaka H, Kawamura H. Skeletal anchorage system for openbite correction. Am J Orthod Dentofacial Orthop. 1999;115: Erverdi N, Tosun T, Keles A. A new anchorage site for the treatment of anterior open bite: Zygomatic anchorage. A case report. World J Ortho. 2002;3: Tosun T, Keles A, Erverdi N. Method for the placement of palatal implants. Int J Oral Maxillofac Implants. 2002;17: Mombelli A, van Oosten MAC, Schürch E, Lang NP. The microbiota associated with successful or failing osseointegrated titanium implants. Oral Microbiol Immunol. 1987;2: Bernhatr T, Vollgruber A, Gahleitner A, Dörtbudak O, Haas R. Alternative to median region of the palate for placement of an orthodontic implant. Clin Oral Impl Res. 2000;11: Keles A. Maxillary unilateral molar distalization with sliding mechanics: a preliminary investigation. Eur J Orthod. 2001;23: Keles A, Pamukcu B, Tokmak EC. Bilateral molar distalization with sliding mechanics: Keles Slider. World J Orthod. 2002;3: Keles A. Unilateral distalization of a maxillary molar with sliding mechanics: a case report. J. Orthod. 2002;29: Cehreli MC, Sahin S. Fabrication of a dual-purpose surgical template for correct labiopalatal positioning of dental implants. Int J Oral Maxillofac Implants. 2000;15: Higginbottom FL, Wilson TG. Three-dimensional templates for placement of root-form dental implants: a technical note. Int J Oral Maxillofac Implants. 1996;11: Schlegel KA, Kinner F, Schlegel KD. The anatomic basis for palatal implants in orthodontics. Int J Adult Orthod Orthognath Surg. 2002;17:
COPYRIGHT 2002 BY QUINTESSENCE PUBLISHING CO, INC. PRINTING OF THIS DOCUMENT IS RESTRICTED TO PERSONAL USE ONLY. NO PART OF THIS ARTICLE MAY BE
A New w Anchorag age e Site e for f the Treatment of Anterior Open Bite: Zygomatic Anchorag age. Case ReporR eport Nejat Erverdi, Prof Med Dent 1 /Tosun Tosun, Dr Med Dent 2 /Ahmet Keles, DDS, DMSc 3 Aim:
Ideal treatment of the impaired
RESEARCH IMPLANTS AS ANCHORAGE IN ORTHODONTICS: ACLINICAL CASE REPORT Dale B. Herrero, DDS KEY WORDS External anchorage Pneumatized Often, in dental reconstruction, orthodontics is required for either
!! # # % &! % # () +, . # / (/, 0 1 2 /+340 /)4 5 6 / //78 /+34 /) +))4 //+7)
!! # # % &! % # () +,. # / (/, 0 1 2 /+340 /)4 5 6 / //78 /+34 /) +))4 //+7) 9 Journal of Orthodontics, Vol. 31, 2004, 3 8 CLINICAL SECTION Orthodontic palatal implants: clinical technique D. Tinsley*,
Orthodontic miniscrews have become increasingly
2008 JCO, Inc. May not be distributed without permission. www.jco-online.com Miniscrew System with Interchangeable butments ENEDICT WILMES, DDS, MSC DIETER DRESCHER, DDS, PHD Orthodontic miniscrews have
ORTHODONTIC MINI IMPLANTS Clinical procedure for positioning. Orthodontics and Implantology
ORTHODONTIC MINI IMPLANTS Clinical procedure for positioning Orthodontics and Implantology 2 All rights are reserved. Any reproduction of the present publication is prohibited in whole or in part and by
Orthodontic mini-implants, or temporary anchorage devices
Anchors, away by John Marshall Grady, DMD, Dan E. Kastner, DMD, and Matthew C. Gornick, DMD Drs. John Marshall Grady (center), Dan E. Kastner (left), and Matthew C. Gornick (right). Drs. John Marshall
Universal Screw Removal System (USR)
Craniomaxillofacial Surgery 3 Universal Screw Removal System (USR) Craniomaxillofacial rigid fixation systems are available from a variety of manufacturers. The USR system is a complete screwdriver array
IMPLANT DENTISTRY EXAM BANK
IMPLANT DENTISTRY EXAM BANK 1. Define osseointegration. (4 points, 1/4 2. What are the critical components of an acceptable clinical trial? (10 points) 3. Compare the masticatory performance of individuals
Objectives. Objectives. Objectives. Objectives. Describe Class II div 1
Class II div 1 Malocclusion Class II div 1 Malocclusion Objectives OR What can we do about Goofy? Objectives Describe Class II div 1 Objectives Describe Class II div 1 Describe principles of treatment
Ridge Reconstruction for Implant Placement
Volume 1, No. 5 July/August 2009 The Journal of Implant & Advanced Clinical Dentistry Ridge Reconstruction for Implant Placement 2 Hours of CE Credit Oral Implications of Cancer Chemotherapy Immediate
Molar Uprighting Dr. Margherita Santoro Division of Orthodontics School of Dental and Oral surgery. Consequences of tooth loss.
Molar Uprighting Dr. Margherita Santoro Division of Orthodontics School of Dental and Oral surgery Molars The wide occlusal surface is designed for food grinding. The surface needs to be aligned with the
ABSTRACT INTRODUCTION. Facial Esthetics. Dental Esthetics
ABSTRACT The FACE philosophy is characterized by clearly defined treatment goals. This increases diagnostic ability and improves the quality and stability of the end result. The objective is to establish
In adult patients, the loss of teeth or periodontal support
CASE REPORT Multidisciplinary management including periodontics, orthodontics, implants, and prosthetics for an adult Teresa Pinho, a Manuel Neves, b and Celia Alves c Gandra and Porto, Portugal, and Bordeaux,
Removable appliances II. Functional jaw orthopedics
Removable appliances II. Functional jaw orthopedics Melinda Madléna DMD, PhD Associate professor Department of Pedodontics and Orthodontics Faculty of Dentistry Semmelweis University Budapest Classification
Headgear Appliances. Dentofacial Orthopedics and Orthodontics. A Common Misconception. What is Headgear? Ideal Orthodontic Treatment Sequence
Ideal Orthodontic Treatment Sequence Headgear Appliances Natalie A. Capan, D.M.D. 580 Sylvan Avenue, Suite 1M Englewood Cliffs, New Jersey 07632 (201)569-9055 www.capanorthodontics.com [email protected]
Implants in Orthodontics - A Litterature Rewiev
Implants in Orthodontics - A Litterature Rewiev Thorir Schiöth University of Berne, Switzerland School of Dental Medicine Department of Orthodontics Implants in Orthodontics Published reports with specific
Anchorage control is an important factor in the
ORIGINAL ARTICLE Factors affecting the clinical success of screw implants used as orthodontic anchorage Hyo-Sang Park, a Seong-Hwa Jeong, b and Oh-Won Kwon c Daegu, Republic of South Korea Introduction:
Congenital absence of mandibular second premolars
CLINICIAN S CORNER Congenitally missing mandibular second premolars: Clinical options Vincent G. Kokich a and Vincent O. Kokich b Seattle, Wash Introduction: Congenital absence of mandibular second premolars
Dental Implant Treatment after Improvement of Oral Environment by Orthodontic Therapy
Dental implant treatment after impr Title environment by orthodontic therapy. Sekine, H; Miyazaki, H; Takanashi, Author(s) Matsuzaki, F; Taguchi, T; Katada, H Journal Bulletin of Tokyo Dental College,
SYSTEMATIC APPROACH TO ORTHODONTIC DIAGNOSIS DENT 656
SYSTEMATIC APPROACH TO ORTHODONTIC DIAGNOSIS DENT 656 ORTHODONTIC CLASSIFICATION / DIAGNOSIS Goal of diagnosis: An orderly reduction of the data base to a useful list of the patient s problems Useful??
Classification of Malocclusion
Classification of Malocclusion What s going on here? How would you describe this? Dr. Robert Gallois REFERENCE: Where Do We Begin? ESSENTIALS FOR ORTHODONTIC PRACTICE By Riolo and Avery Chapter 6 pages
Skeletal Class lll Severe Openbite Treatment Using Implant Anchorage
Case Report Skeletal Class lll Severe Openbite Treatment Using Implant Anchorage Yuichi Sakai a ; Shingo Kuroda b ; Sakhr A. Murshid c ; Teruko Takano-Yamamoto d Abstract: A female patient with a skeletal
SURGICAL. Straumann Orthosystem Palatal Implant. www.straumann.com
SURGICAL Straumann Orthosystem Palatal Implant www.straumann.com Straumann is the exclusive industrial partner of the ITI (International Team for Implantology) in the areas of research, development and
LOMAS / MONDEFIT ORTHODONTICS. The most innovative anchorage method for tooth correction
LOMAS / MONDEFIT The most innovative anchorage method for tooth correction No extraction of healthy teeth Completion of tooth correction without gaps Symmetrical, beautiful smile For young people and young
LATERAL BONE EXPANSION FOR IMMEDIATE PLACEMENT OF ENDOSSEOUS DENTAL IMPLANTS
LATERAL BONE EXPANSION FOR IMMEDIATE PLACEMENT OF ENDOSSEOUS DENTAL IMPLANTS Department of Oral Maxillofacial Surgery, Chisinau Abstract: The study included 10 using the split control expansion technique
Prosthodontist s Perspective
Unless otherwise noted, the content of this course material is licensed under a Creative Commons Attribution - Non-Commercial - Share Alike 3.0 License. Copyright 2008, Dr. Jeff Shotwell. The following
Straumann Bone Level Tapered Implant Peer-to-peer communication
Straumann Bone Level Tapered Implant Peer-to-peer communication Clinical cases April, 2015 Clinical Cases Case No. Site 1 Single unit; Anterior Maxilla 2 Multi-unit; Anterior Maxilla Implant placement
Multimodality Treatment for Rehabilitation of Adult Orthodontic Patient with Complicated Dental Condition and Jaw Relation
CASE REPORT Multimodality Treatment for Rehabilitation of Adult Orthodontic Patient with Complicated Dental Condition and Jaw Relation Yu-Cheng Liaw 1,2, Shou-Hsin Kuang 1,2, Ya-Wei Chen 1,2, Kai-Feng
Appropriate soft tissue closure represents a critical
Periosteoplasty for Soft Tissue Closure and Augmentation in Preprosthetic Surgery: A Surgical Report Albino Triaca, Dr Med, Dr Med Dent 1 /Roger Minoretti, Dr Med, Dr Med Dent 1 / Mauro Merli, DMD 2 /Beat
Improving Esthetics with Sequential Treatment Planning and Implant-Retained Dentures
Improving Esthetics with Sequential Treatment Planning and Implant-Retained Dentures by Timothy F. Kosinski, DDS, MAGD While oral function is the primary concern for most patients, the importance of esthetics
2016 Buy Up Dental Care Plan Procedure List
* This is in addition to the embedded Preventive Plan (see procedure list at deltadentalco.com/kp_preventive. BASIC SERVICES Minor Restorative Services D2140 Amalgam 1 surface, primary or permanent D2150
Clinical Practice Guideline For Orthodontics
Clinical Practice Guideline For Orthodontics MOH- Oral Health CSN -Orthodontics -2010 Page 1 of 15 Orthodontic Management Guidelines 1. Definitions: Orthodontics is the branch of dentistry concerned with
Compared with the past, more patients receive
REVIEW ARTICLE Dental implants for orthodontic anchorage Lien-Hui Huang, a Jeffrey Lynn Shotwell, b and Hom-Lay Wang c Ann Arbor, Mich The purpose of this article is to review and update current concepts
Case Report Case studies on local orthodontic traction by minis-implants before implant rehabilitation
Int J Clin Exp Med 2015;8(5):8178-8184 www.ijcem.com /ISSN:1940-5901/IJCEM0006299 Case Report Case studies on local orthodontic traction by minis-implants before implant rehabilitation Pei Shen *, Wei-Feng
Modern Tooth Replacement Strategies & Digital Workflow
Modern Tooth Replacement Strategies & Digital Workflow Case Studies by Dr Maurice Salama, DMD AS PUBLISHED BY Dentistry Today, June 2014 Complete Implant Restoration System FACTS: Implant Dentistry Has
Mini-screw implants (temporary anchorage devices): orthodontic and pre-prosthetic applications
Journal of Orthodontics, Vol. 34, 2007, 80 94 CLINICAL SECTION Mini-screw implants (temporary anchorage devices): orthodontic and pre-prosthetic applications Eliakim Mizrahi Whipps Cross University Hospital,
Severe Anterior Open-Bite Case Treated Using Titanium Screw Anchorage
Case Report Severe Anterior Open-Bite Case Treated Using Titanium Screw Anchorage Shingo Kuroda, DDS, PhD a ; Akira Katayama, DDS b ; Teruko Takano-Yamamoto, DDS, PhD c Abstract: Anterior open bite is
Long-term success of osseointegrated implants
Against All Odds A No Bone Solution Long-term success of osseointegrated implants depends on the length of the implants used and the quality and quantity of bone surrounding these implants. As surgical
Orthodontic treatment of gummy smile by using mini-implants (Part I): Treatment of vertical growth of upper anterior dentoalveolar complex
O n l i n e O n l y Orthodontic treatment of gummy smile by using mini-implants (Part I): Treatment of vertical growth of upper anterior dentoalveolar complex Tae-Woo Kim*, Benedito Viana Freitas** Abstract
Unless a prosthetic replacement is inserted soon
2013 JCO, Inc. May not be distributed without permission. www.jco-online.com Preprosthetic Molar Uprighting Using Skeletal nchorage MNUEL NIENKEMPER, DDS, MSC LEXNDER PULS, DDS JÖRN LUDWIG, DMD, MSD ENEDICT
Orthodontic Treatment of an Ankylosed Maxillary Central Incisor through Osteogenic Distraction
Case Report Orthodontic Treatment of an Ankylosed Maxillary Central Incisor through Osteogenic Distraction Doğan Dolanmaz a ; Ali Ihya Karaman b ; A.Alper Pampu c ; Ahu Topkara d ABSTRACT Tooth ankylosis
SKELETAL ANCHORAGE IN ORTHODONTIC ARCH ALIGNMENT: CLINICAL PRINCIPLES FOR ORAL & MAXILLOFACIAL SURGEONS
SKELETL NCHORGE IN ORTHODONTIC RCH LIGNMENT: CLINICL PRINCIPLES FOR ORL & MXILLOFCIL SURGEONS Jessica J. Lee, DDS INTRODUCTION The concept of absolute anchorage has been the topic of extensive investigations
The distal movement of mandibular molars is
ORIGINAL ARTICLE Distal movement of mandibular molars in adult patients with the skeletal anchorage system Junji Sugawara, DDS, PhD, a Takayoshi Daimaruya, DDS, PhD, b Mikako Umemori, DDS, PhD, b Hiroshi
Replacement of the upper left central incisor with a Straumann Bone Level Implant and a Straumann Customized Ceramic Abutment
Replacement of the upper left central incisor with a Straumann Bone Level Implant and a Straumann Customized Ceramic Abutment by Dr. Ronald Jung and Master Dental Technician Xavier Zahno Initial situation
Clinical and Laboratory Procedures for Fixed Margin Implant Abutments
Clinical and Laboratory Procedures for Fixed Margin Implant Abutments Dr. Carl Drago DDS, MS, American Board of Prosthodontics Director, Dental Research BIOMET 3i, Adjunct Faculty Department of Prosthodontics,
Implants in your Laboratory: Abutment Design
1/2 point CDT documented scientific credit. See Page 41. Implants in your Laboratory: Abutment Design By Leon Hermanides, CDT A patient s anatomical limitations have the greatest predictive value for successful
Dr. Park's Publications
Dr. Park's Publications Jae Hyun Park, D.M.D., M.S.D., M.S., Ph.D. Diplomate, American Board of Orthodontics Editor-in-Chief, Pacific Coast Society of Orthodontists Chief Editor, Computed Tomography: New
Control of mandibular incisors with the combined Herbst and completely customized lingual appliance - a pilot study
Control of mandibular incisors with the combined Herbst and completely customized lingual appliance - a pilot study Dirk Wiechmann 1 *, Rainer Schwestka-Polly 2 *, Hans Pancherz 3 *, Ariane Hohoff 4 *
SCD Case Study. Treatment Considerations for Implant Rehabilitation
SCD Case Study Treatment Considerations for Implant Rehabilitation Multiple surgical and restorative factors play a role in the treatment planning of implant restorations for the edentulous patient (Ali
The Mandibular Two-Implant Overdenture First-Choice. Standard of Care for the Edentulous Denture Patient
The Mandibular Two-Implant Overdenture First-Choice Standard of Care for the Edentulous Denture Patient Joseph R. Carpentieri, DDS Dennis P. Tarnow, DDS ii Preface Preface The prosthetic management of
Supervisors: Dr. Farhan Raza Khan
1 Presenter: Dr. Sana Ehsen Supervisors: Dr. Farhan Raza Khan 2 A dental implant (also known as an endosseous implant or fixture) is a surgical component that interfaces with the bone of the jaw to support
Unilateral closure of a large maxillary extraction
CASE REPORT Correction of a Class III malocclusion with over 20 mm of space to close in the maxilla by using miniscrews for extra anchorage K. Hero Breuning Tiel, the Netherlands Unilateral closure of
Microimplant Anchorage in Orthodontics
Microimplant Anchorage in Orthodontics *Hee-Moon Kyung, **Bong-Gyu chang,*** Seong-Min Bae *Professor, ** Post-graduate student, *** Clinical Associate Professor Department of Orthodontics Dental School,
More than a fixed rehabilitation.
More than a fixed rehabilitation. A reason to smile. In combination with: Patient expectations drive dental treatments for fixed edentulous immediate restorations. Patients today have increasingly high
Residency Competency and Proficiency Statements
Residency Competency and Proficiency Statements 1. REQUEST AND RESPOND TO REQUESTS FOR CONSULTATIONS Identify needs and make referrals to appropriate health care providers for the treatment of physiologic,
Implant Replacement of the Maxillary Central Incisor Utilizing a Modified Ceramic Abutment (Thommen SPI ART) and Ceramic Restoration
Implant Replacement of the Maxillary Central Incisor Utilizing a Modified Ceramic Abutment (Thommen SPI ART) and Ceramic Restoration ROBERT SCHNEIDER, DDS, MS* ABSTRACT The prosthetic restoration of a
General Dentist Fees
General Dentist Fees January 1, 2015 Not all codes are covered benefits. Please check the member s plan for verification and limitations. There are no fee increases for 2015, but new CDT codes have been
Use of variable torque brackets to enhance treatment outcomes
Use of variable torque brackets to enhance treatment outcomes Ralph Nicassio DDS Many clinicians performing Orthodontics for their patients are missing an opportunity to get better results because they
Treatment of dental and skeletal bimaxillary protrusion in patient with Angle Class I malocclusion
Treatment of dental and skeletal bimaxillary protrusion in patient with Angle Class I malocclusion Claudio José Ramos 1 In the orthodontic clinic, skeletal and dental bimaxillary protrusion is presented
Boston College, BS in Biology 1980-1984. University of Southern California, Doctor of Dental Surgery, DDS, 1990.
CLINICAL CASE REPORT Sinus Augmentation with Immediate Implant insertion Multidisciplinary Approach to Anterior Implant Therapy Immediate Implant after Extraction of Lower Molar Tooth DR. SHERMAN LIN Boston
General Explanation of the Straight Wire Appliance in the Treatment of Young People and Adults Publication for the Journal du Dentiste in Belgium
General Explanation of the Straight Wire Appliance in the Treatment of Young People and Adults Publication for the Journal du Dentiste in Belgium Today, our dental patients are asking us to provide them,
Restoration of the Edentulous Maxilla: The Case for the Zygomatic Implants
CLINICAL CONTROVERSIES IN ORAL AND MAXILLOFACIAL SURGERY: PART ONE J Oral Maxillofac Surg 62:1418-1422, 2004 Restoration of the Edentulous Maxilla: The Case for the Zygomatic Implants Eric D. Ferrara,
Another Implant Option for Missing Teeth with Challenging Symmetry Patrick Gannon, DDS and Luke Kahng, CDT
Another Implant Option for Missing Teeth with Challenging Symmetry Patrick Gannon, DDS and Luke Kahng, CDT Introduction A 58 year old male had been missing teeth #7=12 for approximately 28 years. During
Taking the Mystique out of Implant Dentistry. Dr. Michael Weinberg B.Sc., DDS, FICOI
Taking the Mystique out of Implant Dentistry Dr. Michael Weinberg B.Sc., DDS, FICOI What is Restorative Implant Dentistry? Restorative implant dentistry involves taking a few simple mechanical principles
CHAPTER 10 RESTS AND PREPARATIONS. 4. Serve as a reference point for evaluating the fit of the framework to the teeth.
CHAPTER 10 RESTS AND DEFINITIONS A REST is any rigid part of an RPD framework which contacts a properly prepared surface of a tooth. A REST PREPARATION or REST SEAT is any portion of a tooth or restoration
Histologic comparison of biologic width around teeth versus implants: The effect on bone preservation
Clinical Histologic comparison of biologic width around teeth versus implants: The effect on bone preservation Kazuto Makigusa 1 Abstract Histological analysis of the biological width surrounding primate
CDT 2015 Code Change Summary New codes effective 1/1/2015
CDT 2015 Code Change Summary New codes effective 1/1/2015 Code Nomenclature Delta Dental Policy D0171 Re-Evaluation Post Operative Office Visit Not a Covered Benefit D0351 3D Photographic Image Not a Covered
PREPARATION OF MOUTH FOR REMOVABLE PARTIAL DENTURES Dr. Mazen kanout
PREPARATION OF MOUTH FOR REMOVABLE PARTIAL DENTURES Dr. Mazen kanout Mouth preparation includes procedures in four categories: 1. Oral Surgical Preparation. 2. Conditioning of Abused and Irritated Tissue.
What Dental Implants Can Do For You!
What Dental Implants Can Do For You! Putting Smiles into Motion About Implants 01. What if a Tooth is Lost and the Area is Left Untreated? 02. Do You Want to Restore Confidence in Your Appearance? 03.
Healing Abutment Selection. Perio Implant Part I. Implant Surface Characteristics. Single Tooth Restorations. Credit and Thanks for Lecture Material
Healing Abutment Selection Perio Implant Part I Credit and Thanks for Lecture Material Implant Surface Characteristics!CAPT Robert Taft!CAPT Greg Waskewicz!Periodontal Residents NPDS and UMN!Machined Titanium!Tiunite!Osseotite
Ando A., Nakamura Y., Kanbara R., Kumano H., Miyata T., Masuda T., Ohno Y. and Tanaka Y.
11. The Effect of Abutment Tooth Connection with Extracoronal Attachment using the Three Dimensional Finite Element Method - Part 2. The Construction of Finite Element Model from CT Data - Ando A., Nakamura
The Immediate Placement of Dental Implants Into Extraction Sites With Periapical Lesions: A Retrospective Chart Review
IMPLANTS The Immediate Placement of Dental Implants Into Extraction Sites With Periapical Lesions: A Retrospective Chart Review Christopher Lincoln Bell,* David Diehl, Brian Michael Bell, and Robert E.
Powertome Assisted Atraumatic Tooth Extraction
Powertome Assisted Atraumatic Tooth Extraction White et al Jason White, DDS 1 2 3 Abstract Background: While traditional dental extraction techniques encourage minimal trauma, luxated elevation and forceps
Replacement of a single front tooth Surgical procedure and three-year results
Case Report 10 2011 Replacement of a single front tooth Surgical procedure and three-year results Dr Peter Randelzhofer Munich, Germany Prosthetics Dr Peter Randelzhofer studied dentistry in Munich, Germany,
Resorptive Changes of Maxillary and Mandibular Bone Structures in Removable Denture Wearers
Resorptive Changes of Maxillary and Mandibular Bone Structures in Removable Denture Wearers Dubravka KnezoviÊ-ZlatariÊ Asja»elebiÊ Biserka LaziÊ Department of Prosthodontics School of Dental Medicine University
Seminar 10 expectations
Seminar 10 expectations Diagnosis 1. Explain why the transverse dimensions are so important when doing mandibular advancement surgery? How do you determine if maxillary expansion is needed to accept the
Ahmed Abdel Moneim El Sayed Beirut Arab University (961) 1 300110 Ext: 2263 [email protected] [email protected]
PERSONAL INFORMATION Ahmed Abdel Moneim El Sayed Beirut Arab University (961) 1 300110 Ext: 2263 [email protected] [email protected] Gender Male Date of birth 19/10/1952 Nationality Egyptian
SURGICAL MANUAL. Step By Step Techniques
SURGICAL MANUAL Step By Step Techniques TABLE OF CONTENTS PRE-SURGICAL 1 8 MEASUREMENT OF BONE.......................... 2 BONE CLASSIFICATION........................... 3 IMPLANT SIZE SELECTION.........................
Cross-sectional. Translate Lp3 after. Translate Lp3 after. Tipping Up3 after. ext Up2. ext Lp2. ext Lp2. Bur buc-ling with flap
Table 2.1 Tooth movement following alveolar decortication injury is represented by 10 evidence-based, refereed, professional journal articles through to May 2013. All investigations include measurements
Topics for the Orthodontics Board Exam
Topics for the Orthodontics Board Exam I. Diagnostics, relations to paediatric dentistry, prevention 1. Etiology of dental anomalies. 2. Orthodontic anomalies, relationship between orthodontic treatment
HEALTH SERVICES POLICY & PROCEDURE MANUAL. SUBJECT: Types of Dental Treatments Provided EFFECTIVE DATE: July 2014 SUPERCEDES DATE: January 2014
PAGE 1 of 5 References Related ACA Standards 4 th Edition Standards for Adult Correctional Institutions 4-4369, 4-4375 PURPOSE To provide guidelines for determining appropriate levels of care and types
Expansion Screws. 600-400-10 1 piece 600-400-30 10 pieces. 600-300-30 10 pieces 600-300-60 100 pieces. 600-301-30 10 pieces 600-301-60 100 pieces
Standard Expansion Screws Expansion Screws 600-400-10 1 piece 600-400-30 10 pieces rematitan -Expansion Screw, Medium Made of pure titanium. Skeleton design For transversal expansion and distalization
Efficiency of Three Mandibular Anchorage Forms in Herbst Treatment: A Cephalometric Investigation
Original Article Efficiency of Three Mandibular Anchorage Forms in Herbst Treatment: A Cephalometric Investigation Dominique Weschler, DDS, Dr Med Dent a ; Hans Pancherz, DDS, Odont Dr, FCDSHK (Hon) b
Oftentimes, as implant surgeons, we are
CLINICAL AVOIDING INJURY TO THE INFERIOR ALVEOLAR NERVE BY ROUTINE USE OF INTRAOPERATIVE RADIOGRAPHS DURING IMPLANT PLACEMENT Jeffrey Burstein, DDS, MD; Chris Mastin, DMD; Bach Le, DDS, MD Injury to the
Group Distal Movement of Teeth Using Microscrew Implant Anchorage
Original Article Group Distal Movement of Teeth Using Microscrew Implant Anchorage Hyo-Sang Park a ; Soo-Kyung Lee b ; Oh-Won Kwon c Abstract: The purpose of this study was to quantify the treatment effects
NARROW DIAMETER implant
ND NARROW DIAMETER implant TABLE OF CONTENTS ND - NARROW DIAMETER implant Implant characteristics page 04 Dental implant page 05 Open Tray Impression Transfer page 06 Titanium Abutments page 07 O-Ball
BIOMECHANICAL ANALYSIS OF NORMAL AND IMPLANTED TOOTH USING BITING FORCE MEASUREMENT
BIOMECHANICAL ANALYSIS OF NORMAL AND IMPLANTED TOOTH USING BITING FORCE MEASUREMENT B K Biswas 1 S Bag 2 & S Pal 3 1. Dept. of Dental Surgery, Associate Professor, KPC Medical College & Hospital, Kolkata,
The SATURN implant by Cortex Dental Industries
The SATURN implant by Cortex Dental Industries By Dr. Zvi Laster DMD W e P r o v e I t E v e r y D a y A case report using a newly designed implant specifically designed for immediate post-extraction loading
ATLANTIS abutments design guide CAD/CAM patient-specific abutments
ATLANTIS abutments design guide CAD/CAM patient-specific abutments Contents Introduction 4 This manual helps you to explore all the benefits of ATLANTIS CAD/CAM patient-specific abutments. It gives you
THE SINGLE-TOOTH IMPLANT TREATMENT FOR MAXILLARY CENTRAL INCISORS LOSS AFTER TRAUMA: CASE REPORTS
CLINICAL DENTISTRY AND RESEARCH 2011; 35(1): 47-52 THE SINGLE-TOOTH IMPLANT TREATMENT FOR MAXILLARY CENTRAL INCISORS LOSS AFTER TRAUMA: CASE REPORTS Hakan Tuna, DDS, PhD Assistant Professor, Department
