Software Defined Networking (SDN)

Size: px
Start display at page:

Download "Software Defined Networking (SDN)"

Transcription

1 Software Defined Networking (SDN) Tópicos Avançados de Redes 2012/13 Pedro Brandão TAR 2012/13 - SDNs - pbrandao 2 References The slides from this presentation are a remix of external sources, namely: OpenFlow Tutorial, Open Networking Summit, by Brandon Heller, Rob Sherwood, David Erickson, Hideyuki Shimonishi, Srini Seetharaman, Murphy McCauley Software-Defined Networking (SDN), EE122, Fall 2011, by Scott Shenker Software Defined Networking 1

2 TAR 2012/13 - SDNs - pbrandao 3 Software Defined Networking What is it? Some views: Provide an abstraction and modularity to the network as it exists on software programming; Provide greater flexibility in managing networks independently of the hardware vendor lock-in, domain, network; SDN came out of Stanford Univ. Labs TAR 2012/13 - SDNs - pbrandao 4 Motivation Internet complexity Started simple New requirements use the current adding new stuff complexity No separation between control pane and data plane OSPF and packets on the same level Network development Faster not better Closed Systems (Vendor Hardware) Software Defined Networking 2

3 TAR 2012/13 - SDNs - pbrandao 5 Feature System Feature Specialized Packet The Networking Industry (2007) Routing, management, mobility management, access control, VPNs, Million of lines of source code Billions of gates 5400 RFCs Barrier to entry Complex Power Hungry Many complex functions baked into the infrastructure OSPF, BGP, multicast, differentiated services, Traffic Engineering, NAT, firewalls, MPLS, redundant layers, An industry with a mainframe-mentality Little ability for non-telco network operators to get what they want Functionality defined by standards, put in hardware, deployed on nodes 5 TAR 2012/13 - SDNs - pbrandao 6 SDN View 1 Abstractions for the network, Scott Shenker s view Software Defined Networking 3

4 TAR 2012/13 - SDNs - pbrandao 7 Internet: Layers lications built on Reliable (or unreliable) transport built on Best-effort global packet delivery built on Best-effort local packet delivery built on Physical transfer of bits Layers deal with the data plane TAR 2012/13 - SDNs - pbrandao 8 New requirements Adding complexity Isolate traffic VLANs, ACLs Traffic Eng. MPLS, ECMP Packet processing Firewalls, NATs Payload analysis Deep packet inspection (DPI) This was usually added to each network component (switch, router, NAT box, etc.) All adding to the control plane while keeping the data plane modular/simple Software Defined Networking 4

5 TAR 2012/13 - SDNs - pbrandao 9 Scott Shenker s Point Networking still focused on mastering complexity Little emphasis on extracting simplicity from control plane No recognition that there s a difference. Extracting simplicity builds intellectual foundations Necessary for creating a discipline. TAR 2012/13 - SDNs - pbrandao 10 Example: Programming Machine languages: no abstractions Mastering complexity was crucial Higher-level languages: OS and other abstractions File system, virtual memory, abstract data types,... Modern languages: even more abstractions Object orientation, garbage collection, Abstractions key to extracting simplicity Software Defined Networking 5

6 TAR 2012/13 - SDNs - pbrandao 11 Requirements to Abstractions Network impose the following requirements that can be tackled by the abstractions: 1. Operate without communication guarantees Need an abstraction for distributed state 2. Compute the configuration of each physical device Need an abstraction that simplifies configuration 3. Operate within given network-level protocol Need an abstraction for general forwarding model TAR 2012/13 - SDNs - pbrandao Distributed State Abstraction Shield control mechanisms from state distribution While allowing access to this state Natural abstraction: global network view Annotated network graph provided through an API Implemented with Network System Control mechanism is now program using API No longer a distributed protocol, now just a graph algorithm E.g. Use Dijkstra rather than Bellman-Ford Software Defined Networking 6

7 TAR 2012/13 - SDNs - pbrandao 13 Traditional control mechanism Distributed algorithm running between neighbors Network of switches/routers TAR 2012/13 - SDNs - pbrandao 14 Software Defined Network (SDN) e.g. routing, access control Control Program Global Network View Network OS Software Defined Networking 7

8 TAR 2012/13 - SDNs - pbrandao 15 Major Change in Paradigm No longer designing distributed control protocols Design one distributed system (NOS) Use for all control functions Now just defining a centralized control function Configuration = Function(view) TAR 2012/13 - SDNs - pbrandao Specification Abstraction Control program should express desired behaviour It should not be responsible for implementing that behaviour on physical network infrastructure Natural abstraction: simplified model of network Simple model with only enough detail to specify goals Requires a new shared control layer: Map abstract configuration to physical configuration This is network virtualization Software Defined Networking 8

9 TAR 2012/13 - SDNs - pbrandao 17 Simple Example: Access Control What Abstract Network Model Global Network View How TAR 2012/13 - SDNs - pbrandao 18 Software Defined Network: Take 2 Abstract Network Model Network Control Virtualization Program Global Network View Network OS Software Defined Networking 9

10 Software Defined Network: Take 2 Specifies behavior Compiles to topology Transmits to switches Control Program Abstract Network Model Network Virtualization Global Network View Network OS 3. Forwarding Abstraction Switches have two brains Management CPU (smart but slow) Forwarding ASIC (fast but dumb) Need a forwarding abstraction for both CPU abstraction can be almost anything ASIC abstraction is much more subtle: OpenFlow OpenFlow: Control switch by inserting <header;action> entries Essentially gives NOS remote access to forwarding table Instantiated in Open vswitch Software Defined Networking 10

11 22 TAR 2012/13 - SDNs - pbrandao 21 Tópicos Avançados de Redes 2012/13 SDN View 2 Refactoring Functionality, Nick McKeown s view Today Closed Boxes, Fully Distributed Protocols Closed TAR 2012/13 - SDNs - pbrandao System Specialized Packet System Specialized Packet System Specialized Packet System Specialized Packet System Specialized Packet [dcc] Software Defined Networking 11

12 23 Tópicos Avançados de Redes 2012/13 Software Defined Networking approach to open it Network System TAR 2012/13 - SDNs - pbrandao System Specialized Packet System Specialized Packet System Specialized Packet System Specialized Packet System 24 Specialized Packet [dcc] The Software-defined Network 2. At least one good operating system Extensible, possibly open-source 3. Well-defined open API Network System TAR 2012/13 - SDNs - pbrandao 1. Open interface to hardware Simple Packet Forwarding Hardware Simple Packet Forwarding Hardware Simple Packet Forwarding Hardware Simple Packet Forwarding Hardware Software Defined Networking Simple Packet Forwarding Hardware [dcc] 12

13 Tópicos Avançados de Redes 2012/13 Many operating systems, or Many versions 25 Isolated slices Network System 1 Network System 2 Network System 3 Network System 4 Open interface to hardware TAR 2012/13 - SDNs - pbrandao Virtualization or Slicing Layer Open interface to hardware Simple Packet Simple Packet Simple Packet [dcc] TAR 2012/13 - SDNs - pbrandao 26 Simple Packet Simple Packet SDN View 3 Design axes, Brandon Heller s view Software Defined Networking 13

14 28 TAR 2012/13 - SDNs - pbrandao 27 Tópicos Avançados de Redes 2012/13 SDN is The ability to tweak between the following configuration/control settings Centralized vs Distributed Control Microflow vs. Aggregated Reactive vs. Proactive (pre-populated) Virtual vs. Physical Fully Consistent vs. Eventually Consistent Centralized vs. Distributed Control Centralized Control Controller Distributed Control Controller OpenFlow Switch OpenFlow Switch Controller OpenFlow Switch OpenFlow Switch Controller OpenFlow Switch OpenFlow Switch Software Defined Networking 14

15 29 30 Microflow vs. Aggregated Microflow Every flow is individually set up by controller Exact-match flow entries Flow table contains one entry per flow Good for fine grain control, policy, and monitoring, e.g. campus Aggregated One flow entry covers large groups of flows Wildcard flow entries Flow table contains one entry per category of flows Good for large number of flows, e.g. backbone Reactive vs. Proactive (pre-populated) Reactive First packet of flow triggers controller to insert flow entries Efficient use of flow table Every flow incurs small additional flow setup time If control connection lost, switch has limited utility Extremely simple fault recovery Proactive Controller pre-populates flow table in switch Zero additional flow setup time Loss of control connection does not disrupt traffic Essentially requires aggregated (wildcard) rules Software Defined Networking 15

16 31 32 Virtual vs. Physical Virtual Assumes configurable switching within a host: in the OS or hypervisor Software! Memory, processing, arbitrary modifications Massive flow rates Limited to the hardware below Physical No assumption of software changes; unmodified end hosts Greater control over expensive forwarding resources Fully Consistent vs. Eventually Consistent Fully Consistent Certainty about state Consistent state is harder to scale Easier to reason about state and its transitions May eliminate route flaps Eventually Consistent Uncertainty about state now, but eventually converges Probabilistic state is easier to scale Introduces the possibility of long-lived route flaps and unstable control systems Software Defined Networking 16

17 TAR 2012/13 - SDNs - pbrandao 33 TAR 2012/13 - SDNs - pbrandao 34 What is OpenFlow Adds the ability to modify, experiment But still harder than it should be to add features to a network Effectively assembly programming [OpenFlow is just a forwarding table management protocol] Software Defined Networking 17

18 TAR 2012/13 - SDNs - pbrandao 35 OpenFlow: a pragmatic compromise + Speed, scale, fidelity of vendor hardware + Flexibility and control of software and simulation + Vendors don t need to expose implementation + Leverages hardware inside most switches today (ACL tables) - Least-common-denominator interface may prevent using all hardware features - Limited table sizes - Switches not designed for this - New failure modes to understand TAR 2012/13 - SDNs - pbrandao 36 Ethernet Switch Software Defined Networking 18

19 TAR 2012/13 - SDNs - pbrandao 37 Control Path (Software) Data Path (Hardware) TAR 2012/13 - SDNs - pbrandao 38 OpenFlow Controller OpenFlow Protocol (SSL/TCP) Control Path OpenFlow Data Path (Hardware) Software Defined Networking 19

20 TAR 2012/13 - SDNs - pbrandao 39 OpenFlow example Software Layer Hardware Layer OpenFlow Client Src Dst Flow Table Src Dst TCP SPort TCP DPort Action * * * * * port 1 port 1 port 2 port 3 port 4 Controller PC TAR 2012/13 - SDNs - pbrandao 40 OpenFlow Basics Flow Table Entries Rule Action Stats Packet + byte counters 1. Forward packet to zero or more ports 2. Encapsulate and forward to controller 3. Send to normal processing pipeline 4. Modify Fields 5. Any extensions you add! Switch Port VLAN ID VLAN pcp src dst Eth type Src Dst ToS Prot L4 sport L4 dport + mask what fields to match Software Defined Networking 20

21 TAR 2012/13 - SDNs - pbrandao 41 Examples Switching Switch Port * Src Flow Switching Switch Port Dst Eth Type VLAN ID Src Dst Prot TCP Sport TCP Dport Action * 00:1f:.. * * * * * * * port6 port3 00: :1f vlan port6 Firewall Switch Port Src Src Dst Dst Eth Type Eth Type VLAN ID VLAN ID Src Src Dst Dst Prot Prot TCP Sport TCP Sport TCP Dport TCP Dport Action Action * * * * * * * * * 22 drop TAR 2012/13 - SDNs - pbrandao 42 Examples Routing Switch Port Src * * * * * * * * * port6 VLAN Switching Switch Port Src Dst Dst Eth Type Eth Type VLAN ID VLAN ID Src Src Dst Dst Prot Prot TCP Sport TCP Sport * * 00:1f.. * vlan1 * * * * * TCP Dport TCP Dport Action Action port6, port7, port9 Software Defined Networking 21

22 TAR 2012/13 - SDNs - pbrandao 43 SDN and OpenFlow The SDN Stack oftrace oflops openseer Monitoring/ debugging tools ENVI (GUI) LAVI n-casting lications NOX Beacon Helios Maestro Controller FlowVisor Console FlowVisor Slicing Software Commercial Switches HP, NEC, Pronto, Juniper.. and many more Software Ref. Switch OpenWRT NetFPGA PCEngine WiFi AP Broadcom Ref. Switch Open vswitch OpenFlow Switches [d 44cc] Software Defined Networking 22

23 TAR 2012/13 - SDNs - pbrandao 45 Tópicos Avançados de Redes 2012/13 Implementations Slicing: FlowVisor Controllers: NOX/POX, Trema (Helios), Beacon Software switches Open VSwitch, NetFPGA, OpenWRT See all at OpenFlow Components SDN Projects ON.Lab Floodlight RouteFlow FP7 Ofelia Related: Mininet TAR 2012/13 - SDNs - pbrandao 46 Video demos from Stanford Univ. FlowVisor Hypervisor for OpenFlow Slices Aster*x Load balancing as a network primitive PAC.C Packet and Circuit Network Convergence Software Defined Networking 23

24 TAR 2012/13 - SDNs - pbrandao 48 TAR 2012/13 - SDNs - pbrandao 47 That s that In summary SDN Provides a modularity/abstraction for networking Allows greater flexibility in managing networks And virtualization of physical resources Openflow defines a control protocol for instrumenting rules on net equipment that is managed by a controller Expose tables from said equipment Opens up new avenues for research and network usage (provider view) Software Defined Networking 24

25 TAR 2012/13 - SDNs - pbrandao 49 The end TAR 2012/13 - SDNs - pbrandao 50 Acronyms ACL Access Control List ASIC lication Specific Integrated Circuit DPI Deep Packet Inspection ECMP Equal Cost Multi Path MPLS Multiprotocol Label Switching NOS Network OS OS System PCP Priority Code Point RFC Request For Comments SDN Software Defined Networking Telco Telecommunication Operator ToS Type of Service Software Defined Networking 25

26 TAR 2012/13 - SDNs - pbrandao 51 References [Specs] OpenFlow Specifications at Open Networking Foundation, Latest spec Sept [WP-ONF] Software-Defined Networking (SDN): The New Norm for Networks, Open Networking Foundation [WP-Orig] Nick McKeown etal, OpenFlow: Enabling Innovation in Campus Networks, March 2008 Software Defined Networking 26

Getting to know OpenFlow. Nick Rutherford Mariano Vallés {nicholas,mariano}@ac.upc.edu

Getting to know OpenFlow. Nick Rutherford Mariano Vallés {nicholas,mariano}@ac.upc.edu Getting to know OpenFlow Nick Rutherford Mariano Vallés {nicholas,mariano}@ac.upc.edu OpenFlow Switching 1. A way to run experiments in the networks we use everyday. A pragmatic compromise Allow researchers

More information

OpenFlow/So+ware- defined Networks. Srini Seetharaman Clean Slate Lab Stanford University July 2010

OpenFlow/So+ware- defined Networks. Srini Seetharaman Clean Slate Lab Stanford University July 2010 OpenFlow/So+ware- defined Networks Srini Seetharaman Clean Slate Lab Stanford University July 2010 Outline MoFvaFon OpenFlow - Technical details Overall ecosystem Deployments We have lost our way RouFng,

More information

Project 3 and Software-Defined Networking (SDN)

Project 3 and Software-Defined Networking (SDN) Project 3 and Software-Defined Networking (SDN) EE122 Fall 2011 Scott Shenker http://inst.eecs.berkeley.edu/~ee122/ Materials with thanks to Jennifer Rexford, Ion Stoica, Vern Paxson and other colleagues

More information

OpenFlow Overview. Daniel Turull danieltt@kth.se

OpenFlow Overview. Daniel Turull danieltt@kth.se OpenFlow Overview Daniel Turull danieltt@kth.se Overview OpenFlow Software Defined Networks (SDN) Network Systems Lab activities Daniel Turull - Netnod spring meeting 2012 2 OpenFlow Why and where was

More information

Outline. Institute of Computer and Communication Network Engineering. Institute of Computer and Communication Network Engineering

Outline. Institute of Computer and Communication Network Engineering. Institute of Computer and Communication Network Engineering Institute of Computer and Communication Network Engineering Institute of Computer and Communication Network Engineering Communication Networks Software Defined Networking (SDN) Prof. Dr. Admela Jukan Dr.

More information

Software Defined Networking

Software Defined Networking Software Defined Networking Stefano Giordano Dipartimento di Ingegneria dell Informazione Università di Pisa 3D Reference model of ISDN Hourglass reference model of a TCP/IP network Network Ossification

More information

Software Defined Networks (SDN)

Software Defined Networks (SDN) Software Defined Networks (SDN) Nick McKeown Stanford University With: Martín Casado, Teemu Koponen, Scott Shenker and many others With thanks to: NSF, GPO, Stanford Clean Slate Program, Cisco, DoCoMo,

More information

Open Source Network: Software-Defined Networking (SDN) and OpenFlow

Open Source Network: Software-Defined Networking (SDN) and OpenFlow Open Source Network: Software-Defined Networking (SDN) and OpenFlow Insop Song, Ericsson LinuxCon North America, Aug. 2012, San Diego CA Objectives Overview of OpenFlow Overview of Software Defined Networking

More information

The Future of Networking, and the Past of Protocols

The Future of Networking, and the Past of Protocols 1 The Future of Networking, and the Past of Protocols Scott Shenker with Martín Casado, Teemu Koponen, Nick McKeown (and many others.) 2 Software-Defined Networking SDN clearly has advantages over status

More information

COMPSCI 314: SDN: Software Defined Networking

COMPSCI 314: SDN: Software Defined Networking COMPSCI 314: SDN: Software Defined Networking Nevil Brownlee n.brownlee@auckland.ac.nz Lecture 23 Current approach to building a network Buy 802.3 (Ethernet) switches, connect hosts to them using UTP cabling

More information

NETWORK VIRTUALIZATION BASED ON SOFTWARE DEFINED NETWORK

NETWORK VIRTUALIZATION BASED ON SOFTWARE DEFINED NETWORK NETWORK VIRTUALIZATION BASED ON SOFTWARE DEFINED NETWORK Introduction Motivation Concept Open Flow Virtual Switch SOFTWARE DEFINED NETWORK We have lost our way Routing, management, mobility management,

More information

Software Defined Networking What is it, how does it work, and what is it good for?

Software Defined Networking What is it, how does it work, and what is it good for? Software Defined Networking What is it, how does it work, and what is it good for? slides stolen from Jennifer Rexford, Nick McKeown, Michael Schapira, Scott Shenker, Teemu Koponen, Yotam Harchol and David

More information

How To Understand The Power Of A Network In A Microsoft Computer System (For A Micronetworking)

How To Understand The Power Of A Network In A Microsoft Computer System (For A Micronetworking) Digitaalne andmeülekanne IRT0150 OpenFlow /nädal 6/ Avo Ots avo.ots@ttu.ee 12. märts 2015 1 Various Services Virtual Networks LINP1 LINP3 LINP2 LINP1 Manager LINP2 Manager LINP3 Manager Virtual Resources

More information

Software Defined Networking

Software Defined Networking Software Defined Networking Richard T. B. Ma School of Computing National University of Singapore Material from: Scott Shenker (UC Berkeley), Nick McKeown (Stanford), Jennifer Rexford (Princeton) CS 4226:

More information

Tutorial: OpenFlow in GENI

Tutorial: OpenFlow in GENI Tutorial: OpenFlow in GENI GENI Project Office The current Internet is at an impasse because new architecture cannot be deployed or even adequately evaluated [PST04] [PST04]: Overcoming the Internet Impasse

More information

How SDN will shape networking

How SDN will shape networking How SDN will shape networking Nick McKeown Stanford University With: Martín Casado, Teemu Koponen, Sco> Shenker and many others With thanks to: NSF, GPO, Stanford Clean Slate Program, Cisco, DoCoMo, DT,

More information

CSCI-1680 So ware-defined Networking

CSCI-1680 So ware-defined Networking CSCI-1680 So ware-defined Networking Rodrigo Fonseca Most content from lecture notes by Scott Shenker SDN For now: a new paradigm for network management SDN widely accepted as future of networking ~1000

More information

OpenFlow and Onix. OpenFlow: Enabling Innovation in Campus Networks. The Problem. We also want. How to run experiments in campus networks?

OpenFlow and Onix. OpenFlow: Enabling Innovation in Campus Networks. The Problem. We also want. How to run experiments in campus networks? OpenFlow and Onix Bowei Xu boweixu@umich.edu [1] McKeown et al., "OpenFlow: Enabling Innovation in Campus Networks," ACM SIGCOMM CCR, 38(2):69-74, Apr. 2008. [2] Koponen et al., "Onix: a Distributed Control

More information

OpenFlow: Enabling Innovation in Campus Networks

OpenFlow: Enabling Innovation in Campus Networks OpenFlow: Enabling Innovation in Campus Networks Nick McKeown Stanford University Presenter: Munhwan Choi Table of contents What is OpenFlow? The OpenFlow switch Using OpenFlow OpenFlow Switch Specification

More information

Advanced Software Engineering. Lecture 8: Data Center by Prof. Harold Liu

Advanced Software Engineering. Lecture 8: Data Center by Prof. Harold Liu Advanced Software Engineering Lecture 8: Data Center by Prof. Harold Liu Agenda Introduction Design and Construction Management and Maintenance Hot Topics Real time traffic analysis SDN Wireless Data Center

More information

Virtualization and SDN Applications

Virtualization and SDN Applications Virtualization and SDN lications 2 Virtualization Sharing physical hardware or software resources by multiple users and/or use cases Examples system shares physical hardware resources Virtual machine shares

More information

9/8/14. Outline. SDN Basics. Concepts OpenFlow Controller: Floodlight OF- Config Mininet. SDN Concepts. What is socware defined networking? Why SDN?

9/8/14. Outline. SDN Basics. Concepts OpenFlow Controller: Floodlight OF- Config Mininet. SDN Concepts. What is socware defined networking? Why SDN? SDN Basics Concepts OpenFlow Controller: Floodlight OF- Config Mininet Outline 1 SDN Concepts What is socware defined networking? Why SDN? 2 1 Source: Nick Mckeown, Stanford App App App App App App App

More information

OpenFlow: History and Overview. Demo of OpenFlow@home routers

OpenFlow: History and Overview. Demo of OpenFlow@home routers Affan A. Syed affan.syed@nu.edu.pk Syed Ali Khayam ali.khayam@seecs.nust.edu.pk OpenFlow: History and Overview Dr. Affan A. Syed OpenFlow and Software Defined Networking Dr. Syed Ali Khayam Demo of OpenFlow@home

More information

LuaFlow, an open source Openflow Controller

LuaFlow, an open source Openflow Controller Worksho 2012 LuaFlow, an oen source Oenflow Controller Rahael Amorim rahael@atlantico.com.br rahael.leite@h.com Renato Aguiar aguiar_renato@atlantico.com.br Talk Overview What is OenFlow? How OenFlow Works

More information

OpenFlow: Concept and Practice. Dukhyun Chang (dhchang@mmlab.snu.ac.kr)

OpenFlow: Concept and Practice. Dukhyun Chang (dhchang@mmlab.snu.ac.kr) OpenFlow: Concept and Practice Dukhyun Chang (dhchang@mmlab.snu.ac.kr) 1 Contents Software-Defined Networking (SDN) Overview of OpenFlow Experiment with OpenFlow 2/24 Software Defined Networking.. decoupling

More information

Software Defined Networking (SDN) T-110.5111 Computer Networks II Hannu Flinck

Software Defined Networking (SDN) T-110.5111 Computer Networks II Hannu Flinck Software Defined Networking (SDN) T-110.5111 Computer Networks II Hannu Flinck What is Software Defined Network (SDN)? The aim of SDN is to provide open interfaces that enable the development of software

More information

Software Defined Networking What is it, how does it work, and what is it good for?

Software Defined Networking What is it, how does it work, and what is it good for? Software Defined Networking What is it, how does it work, and what is it good for? Many slides stolen from Jennifer Rexford, Nick McKeown, Scott Shenker, Teemu Koponen, Yotam Harchol and David Hay Agenda

More information

Ethernet-based Software Defined Network (SDN) Cloud Computing Research Center for Mobile Applications (CCMA), ITRI 雲 端 運 算 行 動 應 用 研 究 中 心

Ethernet-based Software Defined Network (SDN) Cloud Computing Research Center for Mobile Applications (CCMA), ITRI 雲 端 運 算 行 動 應 用 研 究 中 心 Ethernet-based Software Defined Network (SDN) Cloud Computing Research Center for Mobile Applications (CCMA), ITRI 雲 端 運 算 行 動 應 用 研 究 中 心 1 SDN Introduction Decoupling of control plane from data plane

More information

SDN AND SECURITY: Why Take Over the Hosts When You Can Take Over the Network

SDN AND SECURITY: Why Take Over the Hosts When You Can Take Over the Network SDN AND SECURITY: Why Take Over the s When You Can Take Over the Network SESSION ID: TECH0R03 Robert M. Hinden Check Point Fellow Check Point Software What are the SDN Security Challenges? Vulnerability

More information

OpenFlow. Ihsan Ayyub Qazi. Slides use info from Nick Mckeown

OpenFlow. Ihsan Ayyub Qazi. Slides use info from Nick Mckeown OpenFlow Ihsan Ayyub Qazi Slides use info from Nick Mckeown Why Openflow? Deployment of new experimental protocols is challenging Huge installed base of protocols and equipment Reluctance by network operators

More information

Cloud Networking Disruption with Software Defined Network Virtualization. Ali Khayam

Cloud Networking Disruption with Software Defined Network Virtualization. Ali Khayam Cloud Networking Disruption with Software Defined Network Virtualization Ali Khayam In the next one hour Let s discuss two disruptive new paradigms in the world of networking: Network Virtualization Software

More information

Software Defined Networks

Software Defined Networks Software Defined Networks Damiano Carra Università degli Studi di Verona Dipartimento di Informatica Acknowledgements! Credits Part of the course material is based on slides provided by the following authors

More information

Funded in part by: NSF, Cisco, DoCoMo, DT, Ericsson, Google, Huawei, NEC, Xilinx

Funded in part by: NSF, Cisco, DoCoMo, DT, Ericsson, Google, Huawei, NEC, Xilinx Funded in part by: NSF, Cisco, DoCoMo, DT, Ericsson, Google, Huawei, NEC, Xilinx Nick McKeown, Guru Parulkar, Guido Appenzeller, Nick Bastin, David Erickson, Glen Gibb, Nikhil Handigol, Brandon Heller,

More information

基 於 SDN 與 可 程 式 化 硬 體 架 構 之 雲 端 網 路 系 統 交 換 器

基 於 SDN 與 可 程 式 化 硬 體 架 構 之 雲 端 網 路 系 統 交 換 器 基 於 SDN 與 可 程 式 化 硬 體 架 構 之 雲 端 網 路 系 統 交 換 器 楊 竹 星 教 授 國 立 成 功 大 學 電 機 工 程 學 系 Outline Introduction OpenFlow NetFPGA OpenFlow Switch on NetFPGA Development Cases Conclusion 2 Introduction With the proposal

More information

Cloud Computing Security: What Changes with Software-Defined Networking?

Cloud Computing Security: What Changes with Software-Defined Networking? Cloud Computing Security: What Changes with Software-Defined Networking? José Fortes Center for Cloud and Autonomic Computing Advanced Computing and Information Systems Lab ARO Workshop on Cloud Security

More information

SDN/OpenFlow. Outline. Performance U!, Winterschool, Zurich. www.openflow.org. SDN to OpenFlow. OpenFlow a valid technology!

SDN/OpenFlow. Outline. Performance U!, Winterschool, Zurich. www.openflow.org. SDN to OpenFlow. OpenFlow a valid technology! SDN/OenFlow Performance U!, Winterschool, Zurich www.oenflow.org Kurt Baumann kurt.baumann@switch.ch Zurich, 08. March 2013 Outline SDN to OenFlow OenFlow a valid technology! Basic Concet How it works

More information

LTE - Can SDN paradigm be applied?

LTE - Can SDN paradigm be applied? LTE - Can SDN paradigm be applied? Source of this presentation: Towards Software Defined Cellular Networks Li Erran Li (Bell Labs, Alcatel-Lucent) Morley Mao (University of Michigan) Jennifer Rexford (Princeton

More information

Introduction to Software Defined Networking. Xenofontas Dimitropoulos 21/5/2015

Introduction to Software Defined Networking. Xenofontas Dimitropoulos 21/5/2015 Introduction to Software Defined Networking Xenofontas Dimitropoulos 21/5/2015 Credits HY436 course preparation: Teaching Assistants: Dimitrios Gkounis, George Nomikos, Manos Lakiotakis, Manos Surligas

More information

SDN 交 換 機 核 心 技 術 - 流 量 分 類 以 及 應 用 辨 識 技 術. 黃 能 富 教 授 國 立 清 華 大 學 特 聘 教 授, 資 工 系 教 授 E-mail: nfhuang@cs.nthu.edu.tw

SDN 交 換 機 核 心 技 術 - 流 量 分 類 以 及 應 用 辨 識 技 術. 黃 能 富 教 授 國 立 清 華 大 學 特 聘 教 授, 資 工 系 教 授 E-mail: nfhuang@cs.nthu.edu.tw SDN 交 換 機 核 心 技 術 - 流 量 分 類 以 及 應 用 辨 識 技 術 黃 能 富 教 授 國 立 清 華 大 學 特 聘 教 授, 資 工 系 教 授 E-mail: nfhuang@cs.nthu.edu.tw Contents 1 2 3 4 5 6 Introduction to SDN Networks Key Issues of SDN Switches Machine

More information

Towards Software Defined Cellular Networks

Towards Software Defined Cellular Networks Towards Software Defined Cellular Networks Li Erran Li (Bell Labs, Alcatel-Lucent) Morley Mao (University of Michigan) Jennifer Rexford (Princeton University) 1 Outline Critiques of LTE Architecture CellSDN

More information

The Internet: A Remarkable Story. Inside the Net: A Different Story. Networks are Hard to Manage. Software Defined Networking Concepts

The Internet: A Remarkable Story. Inside the Net: A Different Story. Networks are Hard to Manage. Software Defined Networking Concepts The Internet: A Remarkable Story Software Defined Networking Concepts Based on the materials from Jennifer Rexford (Princeton) and Nick McKeown(Stanford) Tremendous success From research experiment to

More information

Software-Defined Networks (SDN): Bridging the application-network divide

Software-Defined Networks (SDN): Bridging the application-network divide Software-Defined Networks (SDN): Bridging the application-network divide Inder Monga Chief Technologist and Area Lead, Engineering, Research and Software development CHEP 2013 Shared historical moment

More information

OpenFlow and Software Defined Networking presented by Greg Ferro. OpenFlow Functions and Flow Tables

OpenFlow and Software Defined Networking presented by Greg Ferro. OpenFlow Functions and Flow Tables OpenFlow and Software Defined Networking presented by Greg Ferro OpenFlow Functions and Flow Tables would like to thank Greg Ferro and Ivan Pepelnjak for giving us the opportunity to sponsor to this educational

More information

SOFTWARE DEFINED NETWORKS REALITY CHECK. DENOG5, Darmstadt, 14/11/2013 Carsten Michel

SOFTWARE DEFINED NETWORKS REALITY CHECK. DENOG5, Darmstadt, 14/11/2013 Carsten Michel SOFTWARE DEFINED NETWORKS REALITY CHECK DENOG5, Darmstadt, 14/11/2013 Carsten Michel Software Defined Networks (SDN)! Why Software Defined Networking? There s a hype in the industry!! Dispelling some myths

More information

Network Virtualization Based on Flows

Network Virtualization Based on Flows TERENA NETWORKING CONFERENCE 2009 June 9, 2009 Network Virtualization Based on Flows Peter Sjödin Markus Hidell, Georgia Kontesidou, Kyriakos Zarifis KTH Royal Institute of Technology, Stockholm Outline

More information

How To Understand The Power Of The Internet

How To Understand The Power Of The Internet DATA COMMUNICATOIN NETWORKING Instructor: Ouldooz Baghban Karimi Course Book: Computer Networking, A Top-Down Approach, Kurose, Ross Slides: - Course book Slides - Slides from Princeton University COS461

More information

OpenFlow: Load Balancing in enterprise networks using Floodlight Controller

OpenFlow: Load Balancing in enterprise networks using Floodlight Controller OpenFlow: Load Balancing in enterprise networks using Floodlight Controller Srinivas Govindraj, Arunkumar Jayaraman, Nitin Khanna, Kaushik Ravi Prakash srinivas.govindraj@colorado.edu, arunkumar.jayaraman@colorado.edu,

More information

Multiple Service Load-Balancing with OpenFlow

Multiple Service Load-Balancing with OpenFlow 2012 IEEE 13th International Conference on High Performance Switching and Routing Multiple Service Load-Balancing with OpenFlow Marc Koerner Technische Universitaet Berlin Department of Telecommunication

More information

Software Defined Networking A quantum leap for Devops?

Software Defined Networking A quantum leap for Devops? Software Defined Networking A quantum leap for Devops? TNG Technology Consulting GmbH, http://www.tngtech.com/ Networking is bottleneck in today s devops Agile software development and devops is increasing

More information

Network Virtualization and Software-defined Networking. Chris Wright and Thomas Graf Red Hat June 14, 2013

Network Virtualization and Software-defined Networking. Chris Wright and Thomas Graf Red Hat June 14, 2013 Network Virtualization and Software-defined Networking Chris Wright and Thomas Graf Red Hat June 14, 2013 Agenda Problem Statement Definitions Solutions She can't take much more of this, captain! Challenges

More information

Software Defined Networking & Openflow

Software Defined Networking & Openflow Software Defined Networking & Openflow Autonomic Computer Systems, HS 2015 Christopher Scherb, 01.10.2015 Overview What is Software Defined Networks? Brief summary on routing and forwarding Introduction

More information

From Active & Programmable Networks to.. OpenFlow & Software Defined Networks. Prof. C. Tschudin, M. Sifalakis, T. Meyer, M. Monti, S.

From Active & Programmable Networks to.. OpenFlow & Software Defined Networks. Prof. C. Tschudin, M. Sifalakis, T. Meyer, M. Monti, S. From Active & Programmable Networks to.. OpenFlow & Software Defined Networks Prof. C. Tschudin, M. Sifalakis, T. Meyer, M. Monti, S. Braun University of Basel Cs321 - HS 2012 (Slides material from www.bigswitch.com)

More information

Software Defined Networking (SDN)

Software Defined Networking (SDN) Software Defined Networking (SDN) Overview Traditional Switches Approaches and Issues Software Defined Networking Overview OpenFlow Controller/Network Operating Systems Traditional Switch Configuration

More information

Open Source Tools & Platforms

Open Source Tools & Platforms Open Source Tools & Platforms Open Networking Lab Ali Al-Shabibi Agenda Introduction to ON.Lab; Who we are? What we are doing? ONOS Overview OpenVirtex Overview ONRC Organizational Structure Berkeley Scott

More information

Information- Centric Networks. Section # 13.2: Alternatives Instructor: George Xylomenos Department: Informatics

Information- Centric Networks. Section # 13.2: Alternatives Instructor: George Xylomenos Department: Informatics Information- Centric Networks Section # 13.2: Alternatives Instructor: George Xylomenos Department: Informatics Funding These educational materials have been developed as part of the instructors educational

More information

Introduction to OpenFlow:

Introduction to OpenFlow: Introduction to OpenFlow: Bringing Experimental Protocols to a Network Near You! Chris Tracy, Network Engineer ESnet Engineering Group Overview Fundamentals and Terminology Hardware Options for Deploying

More information

Towards Software-Defined Networks. Network Infrastructures. Tommaso Melodia E-mail: tmelodia@eng.buffalo.edu

Towards Software-Defined Networks. Network Infrastructures. Tommaso Melodia E-mail: tmelodia@eng.buffalo.edu Towards Software-Defined Networks Network Infrastructures Tommaso Melodia E-mail: tmelodia@eng.buffalo.edu Based on Slides from Nick McKewon, Scott Shenker, Kurose-Ross, Tim Hinrichs 1 Outline A brief

More information

Facilitating Network Management with Software Defined Networking

Facilitating Network Management with Software Defined Networking Facilitating Network Management with Software Defined Networking Nick Feamster Georgia Tech feamster@cc.gatech.edu Steve Woodrow, Srikanth Sundaresan, Hyojoon Kim, Russ Clark Georgia Tech Andreas Voellmy

More information

Network Management and Software-Defined Networking (SDN)" EE122 Fall 2013 Scott Shenker (understudy to Sylvia Ratnasamy)

Network Management and Software-Defined Networking (SDN) EE122 Fall 2013 Scott Shenker (understudy to Sylvia Ratnasamy) Network Management and Software-Defined Networking (SDN)" EE122 Fall 2013 Scott Shenker (understudy to Sylvia Ratnasamy) 1 Goal for today" Provide the why of software-defined networking Some history Some

More information

Software Defined Networking

Software Defined Networking Software Defined Networking Dr. Nick Feamster Associate Professor In this course, you will learn about software defined networking and how it is changing the way communications networks are managed, maintained,

More information

Software-Defined Networking for the Data Center. Dr. Peer Hasselmeyer NEC Laboratories Europe

Software-Defined Networking for the Data Center. Dr. Peer Hasselmeyer NEC Laboratories Europe Software-Defined Networking for the Data Center Dr. Peer Hasselmeyer NEC Laboratories Europe NW Technology Can t Cope with Current Needs We still use old technology... but we just pimp it To make it suitable

More information

Software Defined Networking and Network Virtualization

Software Defined Networking and Network Virtualization Software Defined Networking and Network Virtualization Aryan TaheriMonfared aryan.taherimonfared@uis.no October 02, 2013 Software Defined Networking and Agenda Motivation 1 Motivation 2 What is OpenFlow?

More information

SDN. What's Software Defined Networking? Angelo Capossele

SDN. What's Software Defined Networking? Angelo Capossele SDN What's Software Defined Networking? Angelo Capossele Outline Introduction to SDN OpenFlow Network Functions Virtualization Some examples Opportunities Research problems Security Case study: LTE (Mini)Tutorial

More information

Why Software Defined Networking (SDN)? Boyan Sotirov

Why Software Defined Networking (SDN)? Boyan Sotirov Why Software Defined Networking (SDN)? Boyan Sotirov Agenda Current State of Networking Why What How When 2 Conventional Networking Many complex functions embedded into the infrastructure OSPF, BGP, Multicast,

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK SOFTWARE DEFINED NETWORKING A NEW ARCHETYPE PARNAL P. PAWADE 1, ANIKET A. KATHALKAR

More information

CS6204 Advanced Topics in Networking

CS6204 Advanced Topics in Networking CS6204 Advanced Topics in Networking Assoc Prof. Chan Mun Choon School of Computing National University of Singapore Aug 14, 2015 CS6204 Lecturer Chan Mun Choon Office: COM2, #04-17 Email: chanmc@comp.nus.edu.sg

More information

Software Defined Networking Basics

Software Defined Networking Basics Software Defined Networking Basics Anupama Potluri School of Computer and Information Sciences University of Hyderabad Software Defined Networking (SDN) is considered as a paradigm shift in how networking

More information

SOFTWARE-DEFINED NETWORKING AND OPENFLOW

SOFTWARE-DEFINED NETWORKING AND OPENFLOW SOFTWARE-DEFINED NETWORKING AND OPENFLOW Freddie Örnebjär TREX Workshop 2012 2012 Brocade Communications Systems, Inc. 2012/09/14 Software-Defined Networking (SDN): Fundamental Control

More information

Virtualization, SDN and NFV

Virtualization, SDN and NFV Virtualization, SDN and NFV HOW DO THEY FIT TOGETHER? Traditional networks lack the flexibility to keep pace with dynamic computing and storage needs of today s data centers. In order to implement changes,

More information

YI-CHIH HSU & JEI-WEI CHANG @ ESTINET TECHNOLOGIES

YI-CHIH HSU & JEI-WEI CHANG @ ESTINET TECHNOLOGIES YI-CHIH HSU & JEI-WEI CHANG @ ESTINET TECHNOLOGIES A Professional Company in Software-Defined Networking Copyright 2000-2015, EstiNet Technologies Inc. All Rights Reserved. 1 About EstiNet A Professional

More information

SDN, OpenFlow and the ONF

SDN, OpenFlow and the ONF SDN, OpenFlow and the ONF OpenFlow/Software-Defined Networking (SDN) OpenFlow/SDN is emerging as one of the most promising and disruptive networking technologies of recent years. It has the potential to

More information

Data Analysis Load Balancer

Data Analysis Load Balancer Data Analysis Load Balancer Design Document: Version: 1.0 Last saved by Chris Small April 12, 2010 Abstract: The project is to design a mechanism to load balance network traffic over multiple different

More information

Multicasting on SDN. Prof. Sunyoung Han Konkuk University syhan@cclab.konkuk.ac.kr 23 July 2015

Multicasting on SDN. Prof. Sunyoung Han Konkuk University syhan@cclab.konkuk.ac.kr 23 July 2015 Multicasting on SDN Prof. Sunyoung Han Konkuk University syhan@cclab.konkuk.ac.kr 23 July 2015 1 Contents 1. Software Defined Networking (SDN) 2. OpenFlow 3. Multicasting 4. Open vswitch 5. OpenFlow Protocol

More information

1.264 Lecture 37. Telecom: Enterprise networks, VPN

1.264 Lecture 37. Telecom: Enterprise networks, VPN 1.264 Lecture 37 Telecom: Enterprise networks, VPN 1 Enterprise networks Connections within enterprise External connections Remote offices Employees Customers Business partners, supply chain partners Patients

More information

The State of OpenFlow: Advice for Those Considering SDN. Steve Wallace Executive Director, InCNTRE SDN Lab Indiana University ssw@iu.

The State of OpenFlow: Advice for Those Considering SDN. Steve Wallace Executive Director, InCNTRE SDN Lab Indiana University ssw@iu. The State of OpenFlow: Advice for Those Considering SDN Steve Wallace Executive Director, InCNTRE SDN Lab Indiana University ssw@iu.edu 2 3 4 SDN is an architecture Separation of Control and Data Planes

More information

Network Virtualization and Application Delivery Using Software Defined Networking

Network Virtualization and Application Delivery Using Software Defined Networking Network Virtualization and Application Delivery Using Software Defined Networking Project Leader: Subharthi Paul Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Keynote at

More information

OpenFlow / SDN: A New Approach to Networking

OpenFlow / SDN: A New Approach to Networking OpenFlow / SDN: A New Approach to Networking Guru Parulkar (parulkar@stanford.edu) Johan van Reijendam (jvanreij@stanford.edu) Joe LiHle (jlihle@ee.stanford.edu) A Quick Overview The Biggest Thing Since

More information

Conference. Smart Future Networks THE NEXT EVOLUTION OF THE INTERNET FROM INTERNET OF THINGS TO INTERNET OF EVERYTHING

Conference. Smart Future Networks THE NEXT EVOLUTION OF THE INTERNET FROM INTERNET OF THINGS TO INTERNET OF EVERYTHING Conference THE NEXT EVOLUTION OF THE INTERNET FROM INTERNET OF THINGS TO INTERNET OF Smart Future Networks www.internet-of-things.no EVERYTHING Patrick Waldemar Vice President Telenor Research and Future

More information

Software Defined Networking technology details and openlab research overview

Software Defined Networking technology details and openlab research overview Software Defined Networking technology details and openlab research overview 14.02.2014 CERN openlab / IT-CS IT Technical Forum Dan Savu Stefan Stancu Outline Software Defined Networking From traditional

More information

Software Defined Networking (SDN) - Open Flow

Software Defined Networking (SDN) - Open Flow Software Defined Networking (SDN) - Open Flow Introduction Current Internet: egalitarian routing/delivery based on destination address, best effort. Future Internet: criteria based traffic management,

More information

Real-World Insights from an SDN Lab. Ron Milford Manager, InCNTRE SDN Lab Indiana University

Real-World Insights from an SDN Lab. Ron Milford Manager, InCNTRE SDN Lab Indiana University Real-World Insights from an SDN Lab Ron Milford Manager, InCNTRE SDN Lab Indiana University 1 A bit about IU, the GlobalNOC, and InCNTRE... Indiana University s Network History 1998 University Corporation

More information

Limitations of Current Networking Architecture OpenFlow Architecture

Limitations of Current Networking Architecture OpenFlow Architecture CECS 572 Student Name Monday/Wednesday 5:00 PM Dr. Tracy Bradley Maples OpenFlow OpenFlow is the first open standard communications interface that enables Software Defined Networking (SDN) [6]. It was

More information

How To Write A Network Plan In Openflow V1.3.3 (For A Test)

How To Write A Network Plan In Openflow V1.3.3 (For A Test) OpenFlowand IPv6 Two great tastes that taste great together! Scott Hogg, CTO GTRI Chair Emeritus RMv6TF Infoblox IPv6 COE Today s Outline Software-Defined Networking Background Introduction to OpenFlow

More information

A collaborative model for routing in multi-domains OpenFlow networks

A collaborative model for routing in multi-domains OpenFlow networks A collaborative model for routing in multi-domains OpenFlow networks Xuan Thien Phan, Nam Thoai Faculty of Computer Science and Engineering Ho Chi Minh City University of Technology Ho Chi Minh city, Vietnam

More information

SIMPLE NETWORKING QUESTIONS?

SIMPLE NETWORKING QUESTIONS? DECODING SDN SIMPLE NETWORKING QUESTIONS? Can A talk to B? If so which what limitations? Is VLAN Y isolated from VLAN Z? Do I have loops on the topology? SO SDN is a recognition by the Networking industry

More information

VXLAN: Scaling Data Center Capacity. White Paper

VXLAN: Scaling Data Center Capacity. White Paper VXLAN: Scaling Data Center Capacity White Paper Virtual Extensible LAN (VXLAN) Overview This document provides an overview of how VXLAN works. It also provides criteria to help determine when and where

More information

Software Defined Networking (SDN) OpenFlow and OpenStack. Vivek Dasgupta Principal Software Maintenance Engineer Red Hat

Software Defined Networking (SDN) OpenFlow and OpenStack. Vivek Dasgupta Principal Software Maintenance Engineer Red Hat Software Defined Networking (SDN) OpenFlow and OpenStack Vivek Dasgupta Principal Software Maintenance Engineer Red Hat CONTENTS Introduction SDN and components SDN Architecture, Components SDN Controller

More information

What is OpenFlow? What does OFELIA? An Introduction to OpenFlow and what OFELIA has to do with it

What is OpenFlow? What does OFELIA? An Introduction to OpenFlow and what OFELIA has to do with it What is OpenFlow? What does OFELIA? An Introduction to OpenFlow and what OFELIA has to do with it The internet is a GREAT INVENTION! The Internet is great! But, ehem.. Houston, we have a problem 2012 2

More information

Software Defined Networking Subtitle: Network Virtualization Terry Slattery Chesapeake NetCraftsmen Principal Consultant CCIE #1026.

Software Defined Networking Subtitle: Network Virtualization Terry Slattery Chesapeake NetCraftsmen Principal Consultant CCIE #1026. Software Defined Networking Subtitle: Network Virtualization Terry Slattery Chesapeake NetCraftsmen Principal Consultant CCIE #1026 1 What is Virtualization? Virtual Existing or resulting in essence or

More information

DEMYSTIFYING ROUTING SERVICES IN SOFTWAREDEFINED NETWORKING

DEMYSTIFYING ROUTING SERVICES IN SOFTWAREDEFINED NETWORKING DEMYSTIFYING ROUTING SERVICES IN STWAREDEFINED NETWORKING GAUTAM KHETRAPAL Engineering Project Manager, Aricent SAURABH KUMAR SHARMA Principal Systems Engineer, Technology, Aricent DEMYSTIFYING ROUTING

More information

SDN Overview. Southern Partnership in Advanced Networking John Hicks, jhicks@internet2.edu November 3, 2015

SDN Overview. Southern Partnership in Advanced Networking John Hicks, jhicks@internet2.edu November 3, 2015 SDN Overview Southern Partnership in Advanced Networking John Hicks, jhicks@internet2.edu November 3, 2015 Slide material excerpted from presentations at the OIN workshop series and other sources. Acknowledgement

More information

Software Defined Networking and the design of OpenFlow switches

Software Defined Networking and the design of OpenFlow switches Software Defined Networking and the design of OpenFlow switches Paolo Giaccone Notes for the class on Packet Switch Architectures Politecnico di Torino December 2015 Outline 1 Introduction to SDN 2 OpenFlow

More information

Securing Local Area Network with OpenFlow

Securing Local Area Network with OpenFlow Securing Local Area Network with OpenFlow Master s Thesis Presentation Fahad B. H. Chowdhury Supervisor: Professor Jukka Manner Advisor: Timo Kiravuo Department of Communications and Networking Aalto University

More information

A Case for Overlays in DCN Virtualization Katherine Barabash, Rami Cohen, David Hadas, Vinit Jain, Renato Recio and Benny Rochwerger IBM

A Case for Overlays in DCN Virtualization Katherine Barabash, Rami Cohen, David Hadas, Vinit Jain, Renato Recio and Benny Rochwerger IBM Presenter: Vinit Jain, STSM, System Networking Development, IBM System & Technology Group A Case for Overlays in DCN Virtualization Katherine Barabash, Rami Cohen, David Hadas, Vinit Jain, Renato Recio

More information

HP OpenFlow Protocol Overview

HP OpenFlow Protocol Overview HP OpenFlow Protocol Overview Technical Solution Guide Version: 1 September 2013 Table of Contents Introduction: Traditional Switch and Openflow... 2 Destination Address-based Switching... 2 Flow-based

More information

The Past, Present, and Future of Software Defined Networking

The Past, Present, and Future of Software Defined Networking The Past, Present, and Future of Software Defined Networking Nick Feamster University of Maryland feamster@cs.umd.edu Steve Woodrow, Srikanth Sundaresan, Hyojoon Kim, Russ Clark Georgia Tech Andreas Voellmy

More information

Project 4: SDNs Due: 11:59 PM, Dec 11, 2014

Project 4: SDNs Due: 11:59 PM, Dec 11, 2014 CS168 Computer Networks Fonseca Project 4: SDNs Due: 11:59 PM, Dec 11, 2014 Contents 1 Introduction 1 2 Overview 2 2.1 Components......................................... 2 3 Setup 3 4 Shortest-path Switching

More information

Software Defined Network Application in Hospital

Software Defined Network Application in Hospital InImpact: The Journal of Innovation Impact: ISSN 2051-6002 : http://www.inimpact.org Special Edition on Innovation in Medicine and Healthcare : Vol. 6. No. 1 : pp.1-11 : imed13-011 Software Defined Network

More information

A Presentation at DGI 2014 Government Cloud Computing and Data Center Conference & Expo, Washington, DC. September 18, 2014.

A Presentation at DGI 2014 Government Cloud Computing and Data Center Conference & Expo, Washington, DC. September 18, 2014. A Presentation at DGI 2014 Government Cloud Computing and Data Center Conference & Expo, Washington, DC September 18, 2014 Charles Sun www.linkedin.com/in/charlessun @CharlesSun_ 1 What is SDN? Benefits

More information

STRUCTURE AND DESIGN OF SOFTWARE-DEFINED NETWORKS TEEMU KOPONEN NICIRA, VMWARE

STRUCTURE AND DESIGN OF SOFTWARE-DEFINED NETWORKS TEEMU KOPONEN NICIRA, VMWARE STRUCTURE AND DESIGN OF SOFTWARE-DEFINED NETWORKS TEEMU KOPONEN NICIRA, VMWARE WARNING: I DON T DESIGN PROTOCOLS. I WRITE C++. TRANSLATION: THIS IS NOT YOUR TYPICAL NETWORK TALK. AGENDA: 5 YEARS OF SDN

More information