Text Analysis for Big Data. Magnus Sahlgren

Size: px
Start display at page:

Download "Text Analysis for Big Data. Magnus Sahlgren"

Transcription

1 Text Analysis for Big Data Magnus Sahlgren

2

3

4 Data Size Style (editorial vs social) Language (there are other languages than English out there!)

5 Data Size Style (editorial vs social) Language (there are other languages than English out there!)

6 Data Size Style (editorial vs social) Language (there are other languages than English out there!)

7 Data Size Style (editorial vs social) Language (there are other languages than English out there!)

8 Data Size Style (editorial vs social) Language (there are other languages than English out there!)

9 Data Size Style (editorial vs social) Language (there are other languages than English out there!)

10 Data Size Style (editorial vs social) Language (there are other languages than English out there!)

11

12 Technologies Knowledge-based (use resources like Wikipedia) Supervised machine learning (use annotated data) Unsupervised machine learning (use unstructured data)

13 Technologies Knowledge-based (use resources like Wikipedia) Supervised machine learning (use annotated data) Unsupervised machine learning (use unstructured data)

14 Technologies Knowledge-based (use resources like Wikipedia) Supervised machine learning (use annotated data) Unsupervised machine learning (use unstructured data)

15 Technologies Knowledge-based (use resources like Wikipedia) Supervised machine learning (use annotated data) Unsupervised machine learning (use unstructured data)

16 Technologies Knowledge-based (use resources like Wikipedia) Supervised machine learning (use annotated data) Unsupervised machine learning (use unstructured data)

17 Technologies Knowledge-based (use resources like Wikipedia) Supervised machine learning (use annotated data) Unsupervised machine learning (use unstructured data)

18 Technologies Knowledge-based (use resources like Wikipedia) Supervised machine learning (use annotated data) Unsupervised machine learning (use unstructured data)

19 Semantic memories

20 Semantic memories (systems that learn language by reading large amounts of text)

21 Semantic memories (systems that learn language by reading large amounts of text)

22

23 Insights Identify and extract items (e.g. entities and events) Find relations (e.g. synonyms and associations) Compress and refine the information (e.g. summarization and topic detection) Measure things (e.g. attitudes and opinions)

24 Insights Identify and extract items (e.g. entities and events) Find relations (e.g. synonyms and associations) Compress and refine the information (e.g. summarization and topic detection) Measure things (e.g. attitudes and opinions)

25 Insights Identify and extract items (e.g. entities and events) Find relations (e.g. synonyms and associations) Compress and refine the information (e.g. summarization and topic detection) Measure things (e.g. attitudes and opinions)

26 Insights Identify and extract items (e.g. entities and events) Find relations (e.g. synonyms and associations) Compress and refine the information (e.g. summarization and topic detection) Measure things (e.g. attitudes and opinions)

27 Insights Identify and extract items (e.g. entities and events) Find relations (e.g. synonyms and associations) Compress and refine the information (e.g. summarization and topic detection) Measure things (e.g. attitudes and opinions)

28 Find relations

29 Find relations

30 Find relations (lexicon.gavagai.se)

31 Insights Identify and extract items (e.g. entities and events) Find relations (e.g. synonyms and associations) Compress and refine the information (e.g. summarization and topic detection) Measure things (e.g. attitudes and opinions)

32 Insights Identify and extract items (e.g. entities and events) Find relations (e.g. synonyms and associations) Compress and refine the information (e.g. summarization and topic detection) Measure things (e.g. attitudes and opinions)

33 Insights Identify and extract items (e.g. entities and events) Find relations (e.g. synonyms and associations) Compress and refine the information (e.g. summarization and topic detection) Measure things (e.g. attitudes and opinions)

34 Compress and refine Summarization and topic detection

35 Compress and refine (monitor.gavagai.se) Summarization and topic detection

36 Compress and refine (monitor.gavagai.se) Summarization and topic detection

37 Compress and refine (monitor.gavagai.se) Summarization and topic detection

38 Insights Identify and extract items (e.g. entities and events) Find relations (e.g. synonyms and associations) Compress and refine the information (e.g. summarization and topic detection) Measure things (e.g. attitudes and opinions)

39 Insights Identify and extract items (e.g. entities and events) Find relations (e.g. synonyms and associations) Compress and refine the information (e.g. summarization and topic detection) Measure things (e.g. attitudes and opinions)

40 Insights Identify and extract items (e.g. entities and events) Find relations (e.g. synonyms and associations) Compress and refine the information (e.g. summarization and topic detection) Measure things (e.g. attitudes and opinions)

41 Measure Sentiment analysis

42 Measure Sentiment analysis Positivity vs negativity wrt the global economy in English online media

43 Measure Sentiment analysis Worry wrt the global economy in English online media

44 Measure Sentiment analysis Negativity towards China in English online media

45 Measure Sentiment analysis Attitude towards Sweden in Russian online media

46 Measure Predict

47 Measure Predict Rönnqvist & Sarlin (2015): Detect & Describe: deep learning of bank stress in the news

How To Make Sense Of Data With Altilia

How To Make Sense Of Data With Altilia HOW TO MAKE SENSE OF BIG DATA TO BETTER DRIVE BUSINESS PROCESSES, IMPROVE DECISION-MAKING, AND SUCCESSFULLY COMPETE IN TODAY S MARKETS. ALTILIA turns Big Data into Smart Data and enables businesses to

More information

TEXT ANALYTICS INTEGRATION

TEXT ANALYTICS INTEGRATION TEXT ANALYTICS INTEGRATION A TELECOMMUNICATIONS BEST PRACTICES CASE STUDY VISION COMMON ANALYTICAL ENVIRONMENT Structured Unstructured Analytical Mining Text Discovery Text Categorization Text Sentiment

More information

Text Mining - Scope and Applications

Text Mining - Scope and Applications Journal of Computer Science and Applications. ISSN 2231-1270 Volume 5, Number 2 (2013), pp. 51-55 International Research Publication House http://www.irphouse.com Text Mining - Scope and Applications Miss

More information

Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing

Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing Introduction to Data Mining and Machine Learning Techniques Iza Moise, Evangelos Pournaras, Dirk Helbing Iza Moise, Evangelos Pournaras, Dirk Helbing 1 Overview Main principles of data mining Definition

More information

Computer-Based Text- and Data Analysis Technologies and Applications. Mark Cieliebak 9.6.2015

Computer-Based Text- and Data Analysis Technologies and Applications. Mark Cieliebak 9.6.2015 Computer-Based Text- and Data Analysis Technologies and Applications Mark Cieliebak 9.6.2015 Data Scientist analyze Data Library use 2 About Me Mark Cieliebak + Software Engineer & Data Scientist + PhD

More information

Data Mining for Customer Service Support. Senioritis Seminar Presentation Megan Boice Jay Carter Nick Linke KC Tobin

Data Mining for Customer Service Support. Senioritis Seminar Presentation Megan Boice Jay Carter Nick Linke KC Tobin Data Mining for Customer Service Support Senioritis Seminar Presentation Megan Boice Jay Carter Nick Linke KC Tobin Traditional Hotline Services Problem Traditional Customer Service Support (manufacturing)

More information

Sample Reporting. Analytics and Evaluation

Sample Reporting. Analytics and Evaluation Sample Reporting Analytics and Evaluation This sample publication is provided with the understanding that company names and related example reporting are solely illustrative and the content does not constitute

More information

Data, Measurements, Features

Data, Measurements, Features Data, Measurements, Features Middle East Technical University Dep. of Computer Engineering 2009 compiled by V. Atalay What do you think of when someone says Data? We might abstract the idea that data are

More information

Survey Results: Requirements and Use Cases for Linguistic Linked Data

Survey Results: Requirements and Use Cases for Linguistic Linked Data Survey Results: Requirements and Use Cases for Linguistic Linked Data 1 Introduction This survey was conducted by the FP7 Project LIDER (http://www.lider-project.eu/) as input into the W3C Community Group

More information

STAR WARS AND THE ART OF DATA SCIENCE

STAR WARS AND THE ART OF DATA SCIENCE STAR WARS AND THE ART OF DATA SCIENCE MELODIE RUSH, SENIOR ANALYTICAL ENGINEER CUSTOMER LOYALTY Original Presentation Created And Presented By Mary Osborne, Business Visualization Manager At 2014 SAS Global

More information

Chapter ML:XI. XI. Cluster Analysis

Chapter ML:XI. XI. Cluster Analysis Chapter ML:XI XI. Cluster Analysis Data Mining Overview Cluster Analysis Basics Hierarchical Cluster Analysis Iterative Cluster Analysis Density-Based Cluster Analysis Cluster Evaluation Constrained Cluster

More information

Reinventing Business Intelligence through Big Data

Reinventing Business Intelligence through Big Data Reinventing Business Intelligence through Big Data Dr. Flavio Villanustre VP, Technology and lead of the Open Source HPCC Systems initiative LexisNexis Risk Solutions Reed Elsevier LEXISNEXIS From RISK

More information

Conquering the Astronomical Data Flood through Machine

Conquering the Astronomical Data Flood through Machine Conquering the Astronomical Data Flood through Machine Learning and Citizen Science Kirk Borne George Mason University School of Physics, Astronomy, & Computational Sciences http://spacs.gmu.edu/ The Problem:

More information

Voice. listen, understand and respond. enherent. wish, choice, or opinion. openly or formally expressed. May 2010. - Merriam Webster. www.enherent.

Voice. listen, understand and respond. enherent. wish, choice, or opinion. openly or formally expressed. May 2010. - Merriam Webster. www.enherent. Voice wish, choice, or opinion openly or formally expressed - Merriam Webster listen, understand and respond May 2010 2010 Corp. All rights reserved. www..com Overwhelming Dialog Consumers are leading

More information

The Business Accelerator. Analyse your competitors, gain insights, take actions and accelerate your sales now.

The Business Accelerator. Analyse your competitors, gain insights, take actions and accelerate your sales now. The Business Accelerator Analyse your competitors, gain insights, take actions and accelerate your sales now. What if you could take an in-depth look at what your competitors are doing in their digital

More information

Sentiment Analysis on Big Data

Sentiment Analysis on Big Data SPAN White Paper!? Sentiment Analysis on Big Data Machine Learning Approach Several sources on the web provide deep insight about people s opinions on the products and services of various companies. Social

More information

Introduction to IR Systems: Supporting Boolean Text Search. Information Retrieval. IR vs. DBMS. Chapter 27, Part A

Introduction to IR Systems: Supporting Boolean Text Search. Information Retrieval. IR vs. DBMS. Chapter 27, Part A Introduction to IR Systems: Supporting Boolean Text Search Chapter 27, Part A Database Management Systems, R. Ramakrishnan 1 Information Retrieval A research field traditionally separate from Databases

More information

Overview, Goals, & Introductions

Overview, Goals, & Introductions Improving the Retail Experience with Predictive Analytics www.spss.com/perspectives Overview, Goals, & Introductions Goal: To present the Retail Business Maturity Model Equip you with a plan of attack

More information

Going Global With Social Media Analytics

Going Global With Social Media Analytics Going Global With Social Media Analytics Iraklis Varlamis Assistant Professor Harokopio University of Athens, Dept. of Informatics & Telematics [email protected] Athens 2015 Thinking of going global? Going

More information

Scalable Machine Learning - or what to do with all that Big Data infrastructure

Scalable Machine Learning - or what to do with all that Big Data infrastructure - or what to do with all that Big Data infrastructure TU Berlin blog.mikiobraun.de Strata+Hadoop World London, 2015 1 Complex Data Analysis at Scale Click-through prediction Personalized Spam Detection

More information

Impelsys: Your Partner for Digital Product Development & Commercialization

Impelsys: Your Partner for Digital Product Development & Commercialization Impelsys: Your Partner for Digital Product Development & Commercialization Impelsys is your strategic partner through your workflow process from production to delivery and revenue generation. Publishing

More information

Big Data and Natural Language: Extracting Insight From Text

Big Data and Natural Language: Extracting Insight From Text An Oracle White Paper October 2012 Big Data and Natural Language: Extracting Insight From Text Table of Contents Executive Overview... 3 Introduction... 3 Oracle Big Data Appliance... 4 Synthesys... 5

More information

IBM Content Analytics with Enterprise Search, Version 3.0

IBM Content Analytics with Enterprise Search, Version 3.0 IBM Content Analytics with Enterprise Search, Version 3.0 Highlights Enables greater accuracy and control over information with sophisticated natural language processing capabilities to deliver the right

More information

HOW TO DO A SMART DATA PROJECT

HOW TO DO A SMART DATA PROJECT April 2014 Smart Data Strategies HOW TO DO A SMART DATA PROJECT Guideline www.altiliagroup.com Summary ALTILIA s approach to Smart Data PROJECTS 3 1. BUSINESS USE CASE DEFINITION 4 2. PROJECT PLANNING

More information

Processing big data with natural semantics and natural language understanding using brain-like approach

Processing big data with natural semantics and natural language understanding using brain-like approach Processing big data with natural semantics and natural language understanding using brain-like approach Emdad Khan Abstract We propose semantics and associated Natural Language Understanding (NLU) based

More information

Ngram Search Engine with Patterns Combining Token, POS, Chunk and NE Information

Ngram Search Engine with Patterns Combining Token, POS, Chunk and NE Information Ngram Search Engine with Patterns Combining Token, POS, Chunk and NE Information Satoshi Sekine Computer Science Department New York University [email protected] Kapil Dalwani Computer Science Department

More information

How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning

How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning How to use Big Data in Industry 4.0 implementations LAURI ILISON, PhD Head of Big Data and Machine Learning Big Data definition? Big Data is about structured vs unstructured data Big Data is about Volume

More information

Real-Time Analytics: Integrating Social Media Insights with Traditional Data

Real-Time Analytics: Integrating Social Media Insights with Traditional Data SAP Brief SAP Rapid Deployment s SAP HANA Sentiment Intelligence Rapid-Deployment Objectives Real-Time Analytics: Integrating Social Media Insights with Traditional Data Capturing customer sentiment from

More information

DATA SCIENCE CURRICULUM WEEK 1 ONLINE PRE-WORK INSTALLING PACKAGES COMMAND LINE CODE EDITOR PYTHON STATISTICS PROJECT O5 PROJECT O3 PROJECT O2

DATA SCIENCE CURRICULUM WEEK 1 ONLINE PRE-WORK INSTALLING PACKAGES COMMAND LINE CODE EDITOR PYTHON STATISTICS PROJECT O5 PROJECT O3 PROJECT O2 DATA SCIENCE CURRICULUM Before class even begins, students start an at-home pre-work phase. When they convene in class, students spend the first eight weeks doing iterative, project-centered skill acquisition.

More information

Data Mining Part 5. Prediction

Data Mining Part 5. Prediction Data Mining Part 5. Prediction 5.1 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Classification vs. Numeric Prediction Prediction Process Data Preparation Comparing Prediction Methods References Classification

More information

Text Analytics The three-minute guide

Text Analytics The three-minute guide Text Analytics The three-minute guide Text Analytics The three-minute guide 1 What is text analytics? Detecting hidden signals There s a good chance that your organization is awash in unstructured, text-rich

More information

Big Data for the Rest of Us Technical White Paper

Big Data for the Rest of Us Technical White Paper Big Data for the Rest of Us Technical White Paper Treasure Data - Big Data for the Rest of Us 1 Introduction The importance of data warehousing and analytics has increased as companies seek to gain competitive

More information

Discovery of Electronically Stored Information ECBA conference Tallinn October 2012

Discovery of Electronically Stored Information ECBA conference Tallinn October 2012 Discovery of Electronically Stored Information ECBA conference Tallinn October 2012 Jan Balatka, Deloitte Czech Republic, Analytic & Forensic Technology unit Agenda Introduction ediscovery investigation

More information

Predicting stocks returns correlations based on unstructured data sources

Predicting stocks returns correlations based on unstructured data sources Predicting stocks returns correlations based on unstructured data sources Mateusz Radzimski, José Luis Sánchez-Cervantes, José Luis López Cuadrado, Ángel García-Crespo Departamento de Informática Universidad

More information

Anonymizing Unstructured Data to Enable Healthcare Analytics Chris Wright, Vice President Marketing, Privacy Analytics

Anonymizing Unstructured Data to Enable Healthcare Analytics Chris Wright, Vice President Marketing, Privacy Analytics Anonymizing Unstructured Data to Enable Healthcare Analytics Chris Wright, Vice President Marketing, Privacy Analytics Privacy Analytics - Overview For organizations that want to safeguard and enable their

More information

BIG. Big Data Analysis John Domingue (STI International and The Open University) Big Data Public Private Forum

BIG. Big Data Analysis John Domingue (STI International and The Open University) Big Data Public Private Forum Big Data Analysis John Domingue (STI International and The Open University) Project co-funded by the European Commission within the 7th Framework Program (Grant Agreement No. 257943) 1 The Data landscape

More information

Module Design & Enhancement. Assessment Types

Module Design & Enhancement. Assessment Types Module Design & Enhancement Assessment Types Author: Feargal Murphy Email: [email protected] Date: March 2009 Assessment One of the most important drivers of student learning is how that learning is

More information

What do Big Data & HAVEn mean? Robert Lejnert HP Autonomy

What do Big Data & HAVEn mean? Robert Lejnert HP Autonomy What do Big Data & HAVEn mean? Robert Lejnert HP Autonomy Much higher Volumes. Processed with more Velocity. With much more Variety. Is Big Data so big? Big Data Smart Data Project HAVEn: Adaptive Intelligence

More information

Big Data in Subsea Solutions

Big Data in Subsea Solutions Big Data in Subsea Solutions Subsea Valley Conference 2014 Telenor Arena, Fornebu, April 2-3 Roar Fjellheim, Computas AS Computas AS - Brief company profile Norwegian IT consulting company providing services

More information

Auto-Classification for Document Archiving and Records Declaration

Auto-Classification for Document Archiving and Records Declaration Auto-Classification for Document Archiving and Records Declaration Josemina Magdalen, Architect, IBM November 15, 2013 Agenda IBM / ECM/ Content Classification for Document Archiving and Records Management

More information

W H I T E P A P E R. Deriving Intelligence from Large Data Using Hadoop and Applying Analytics. Abstract

W H I T E P A P E R. Deriving Intelligence from Large Data Using Hadoop and Applying Analytics. Abstract W H I T E P A P E R Deriving Intelligence from Large Data Using Hadoop and Applying Analytics Abstract This white paper is focused on discussing the challenges facing large scale data processing and the

More information

Introduction to Text Mining and Semantics. Seth Grimes -- President, Alta Plana

Introduction to Text Mining and Semantics. Seth Grimes -- President, Alta Plana Introduction to Text Mining and Semantics Seth Grimes -- President, Alta Plana New York Times October 9, 1958 Text expresses a vast, rich range of information, but encodes this information in a form that

More information

Big Data Text Mining and Visualization. Anton Heijs

Big Data Text Mining and Visualization. Anton Heijs Copyright 2007 by Treparel Information Solutions BV. This report nor any part of it may be copied, circulated, quoted without prior written approval from Treparel7 Treparel Information Solutions BV Delftechpark

More information

Computational Linguistics and Learning from Big Data. Gabriel Doyle UCSD Linguistics

Computational Linguistics and Learning from Big Data. Gabriel Doyle UCSD Linguistics Computational Linguistics and Learning from Big Data Gabriel Doyle UCSD Linguistics From not enough data to too much Finding people: 90s, 700 datapoints, 7 years People finding you: 00s, 30000 datapoints,

More information

The Importance of Analytics

The Importance of Analytics CIPHER Briefing The Importance of Analytics July 2014 Renting 1 machine for 1,000 hours will be nearly equivalent to renting 1,000 machines for 1 hour in the cloud. This will enable users and organizations

More information

CAPTURING THE VALUE OF UNSTRUCTURED DATA: INTRODUCTION TO TEXT MINING

CAPTURING THE VALUE OF UNSTRUCTURED DATA: INTRODUCTION TO TEXT MINING CAPTURING THE VALUE OF UNSTRUCTURED DATA: INTRODUCTION TO TEXT MINING Mary-Elizabeth ( M-E ) Eddlestone Principal Systems Engineer, Analytics SAS Customer Loyalty, SAS Institute, Inc. Is there valuable

More information

5 Keys to Unlocking the Big Data Analytics Puzzle. Anurag Tandon Director, Product Marketing March 26, 2014

5 Keys to Unlocking the Big Data Analytics Puzzle. Anurag Tandon Director, Product Marketing March 26, 2014 5 Keys to Unlocking the Big Data Analytics Puzzle Anurag Tandon Director, Product Marketing March 26, 2014 1 A Little About Us A global footprint. A proven innovator. A leader in enterprise analytics for

More information

TIETS34 Seminar: Data Mining on Biometric identification

TIETS34 Seminar: Data Mining on Biometric identification TIETS34 Seminar: Data Mining on Biometric identification Youming Zhang Computer Science, School of Information Sciences, 33014 University of Tampere, Finland [email protected] Course Description Content

More information

Big Data: Rethinking Text Visualization

Big Data: Rethinking Text Visualization Big Data: Rethinking Text Visualization Dr. Anton Heijs [email protected] Treparel April 8, 2013 Abstract In this white paper we discuss text visualization approaches and how these are important

More information

Clustering Technique in Data Mining for Text Documents

Clustering Technique in Data Mining for Text Documents Clustering Technique in Data Mining for Text Documents Ms.J.Sathya Priya Assistant Professor Dept Of Information Technology. Velammal Engineering College. Chennai. Ms.S.Priyadharshini Assistant Professor

More information

Search and Information Retrieval

Search and Information Retrieval Search and Information Retrieval Search on the Web 1 is a daily activity for many people throughout the world Search and communication are most popular uses of the computer Applications involving search

More information

Big Data & Security. Aljosa Pasic 12/02/2015

Big Data & Security. Aljosa Pasic 12/02/2015 Big Data & Security Aljosa Pasic 12/02/2015 Welcome to Madrid!!! Big Data AND security: what is there on our minds? Big Data tools and technologies Big Data T&T chain and security/privacy concern mappings

More information

ANALYTICS IN BIG DATA ERA

ANALYTICS IN BIG DATA ERA ANALYTICS IN BIG DATA ERA ANALYTICS TECHNOLOGY AND ARCHITECTURE TO MANAGE VELOCITY AND VARIETY, DISCOVER RELATIONSHIPS AND CLASSIFY HUGE AMOUNT OF DATA MAURIZIO SALUSTI SAS Copyr i g ht 2012, SAS Ins titut

More information

Modeling coherence in ESOL learner texts

Modeling coherence in ESOL learner texts University of Cambridge Computer Lab Building Educational Applications NAACL 2012 Outline 1 2 3 4 The Task: Automated Text Scoring (ATS) ATS systems Discourse coherence & cohesion The Task: Automated Text

More information

Business Process Services. White Paper. Predictive Analytics in HR: A Primer

Business Process Services. White Paper. Predictive Analytics in HR: A Primer Business Process Services White Paper Predictive Analytics in HR: A Primer About the Authors Tuhin Subhra Dey Tuhin is a member of the Analytics and Insights team at Tata Consultancy Services (TCS), where

More information

Doctoral Consortium 2013 Dept. Lenguajes y Sistemas Informáticos UNED

Doctoral Consortium 2013 Dept. Lenguajes y Sistemas Informáticos UNED Doctoral Consortium 2013 Dept. Lenguajes y Sistemas Informáticos UNED 17 19 June 2013 Monday 17 June Salón de Actos, Facultad de Psicología, UNED 15.00-16.30: Invited talk Eneko Agirre (Euskal Herriko

More information

The Big Data Paradigm Shift. Insight Through Automation

The Big Data Paradigm Shift. Insight Through Automation The Big Data Paradigm Shift Insight Through Automation Agenda The Problem Emcien s Solution: Algorithms solve data related business problems How Does the Technology Work? Case Studies 2013 Emcien, Inc.

More information

Data Mining on Social Networks. Dionysios Sotiropoulos Ph.D.

Data Mining on Social Networks. Dionysios Sotiropoulos Ph.D. Data Mining on Social Networks Dionysios Sotiropoulos Ph.D. 1 Contents What are Social Media? Mathematical Representation of Social Networks Fundamental Data Mining Concepts Data Mining Tasks on Digital

More information

Analyzing Huge Data Sets in Forensic Investigations

Analyzing Huge Data Sets in Forensic Investigations Analyzing Huge Data Sets in Forensic Investigations Kasun De Zoysa Yasantha Hettiarachi Department of Communication and Media Technologies University of Colombo School of Computing Colombo, Sri Lanka Centre

More information

Management Decision Making. Hadi Hosseini CS 330 David R. Cheriton School of Computer Science University of Waterloo July 14, 2011

Management Decision Making. Hadi Hosseini CS 330 David R. Cheriton School of Computer Science University of Waterloo July 14, 2011 Management Decision Making Hadi Hosseini CS 330 David R. Cheriton School of Computer Science University of Waterloo July 14, 2011 Management decision making Decision making Spreadsheet exercise Data visualization,

More information

Machine Learning for Data Science (CS4786) Lecture 1

Machine Learning for Data Science (CS4786) Lecture 1 Machine Learning for Data Science (CS4786) Lecture 1 Tu-Th 10:10 to 11:25 AM Hollister B14 Instructors : Lillian Lee and Karthik Sridharan ROUGH DETAILS ABOUT THE COURSE Diagnostic assignment 0 is out:

More information

Predictive Analytics Techniques: What to Use For Your Big Data. March 26, 2014 Fern Halper, PhD

Predictive Analytics Techniques: What to Use For Your Big Data. March 26, 2014 Fern Halper, PhD Predictive Analytics Techniques: What to Use For Your Big Data March 26, 2014 Fern Halper, PhD Presenter Proven Performance Since 1995 TDWI helps business and IT professionals gain insight about data warehousing,

More information

ONLINE RESUME PARSING SYSTEM USING TEXT ANALYTICS

ONLINE RESUME PARSING SYSTEM USING TEXT ANALYTICS ONLINE RESUME PARSING SYSTEM USING TEXT ANALYTICS Divyanshu Chandola 1, Aditya Garg 2, Ankit Maurya 3, Amit Kushwaha 4 1 Student, Department of Information Technology, ABES Engineering College, Uttar Pradesh,

More information

Spend Enrichment: Making better decisions starts with accurate data

Spend Enrichment: Making better decisions starts with accurate data IBM Software Industry Solutions Industry/Product Identifier Spend Enrichment: Making better decisions starts with accurate data Spend Enrichment: Making better decisions starts with accurate data Contents

More information

Modern Data Architecture for Predictive Analytics

Modern Data Architecture for Predictive Analytics Modern Data Architecture for Predictive Analytics David Smith VP Marketing and Community - Revolution Analytics John Kreisa VP Strategic Marketing- Hortonworks Hortonworks Inc. 2013 Page 1 Your Presenters

More information

Pattern Insight Clone Detection

Pattern Insight Clone Detection Pattern Insight Clone Detection TM The fastest, most effective way to discover all similar code segments What is Clone Detection? Pattern Insight Clone Detection is a powerful pattern discovery technology

More information

Big Data. Lyle Ungar, University of Pennsylvania

Big Data. Lyle Ungar, University of Pennsylvania Big Data Big data will become a key basis of competition, underpinning new waves of productivity growth, innovation, and consumer surplus. McKinsey Data Scientist: The Sexiest Job of the 21st Century -

More information

Data Science and Business Analytics Certificate Data Science and Business Intelligence Certificate

Data Science and Business Analytics Certificate Data Science and Business Intelligence Certificate Data Science and Business Analytics Certificate Data Science and Business Intelligence Certificate Description The Helzberg School of Management has launched two graduate-level certificates: one in Data

More information

Voice of the Customer: How to Move Beyond Listening to Action Merging Text Analytics with Data Mining and Predictive Analytics

Voice of the Customer: How to Move Beyond Listening to Action Merging Text Analytics with Data Mining and Predictive Analytics WHITEPAPER Voice of the Customer: How to Move Beyond Listening to Action Merging Text Analytics with Data Mining and Predictive Analytics Successful companies today both listen and understand what customers

More information

New Frontiers of Automated Content Analysis in the Social Sciences

New Frontiers of Automated Content Analysis in the Social Sciences Symposium on the New Frontiers of Automated Content Analysis in the Social Sciences University of Zurich July 1-3, 2015 www.aca-zurich-2015.org Abstract Automated Content Analysis (ACA) is one of the key

More information

Statistics 215b 11/20/03 D.R. Brillinger. A field in search of a definition a vague concept

Statistics 215b 11/20/03 D.R. Brillinger. A field in search of a definition a vague concept Statistics 215b 11/20/03 D.R. Brillinger Data mining A field in search of a definition a vague concept D. Hand, H. Mannila and P. Smyth (2001). Principles of Data Mining. MIT Press, Cambridge. Some definitions/descriptions

More information

Augmented Search for Web Applications. New frontier in big log data analysis and application intelligence

Augmented Search for Web Applications. New frontier in big log data analysis and application intelligence Augmented Search for Web Applications New frontier in big log data analysis and application intelligence Business white paper May 2015 Web applications are the most common business applications today.

More information

Sentiment Analysis. D. Skrepetos 1. University of Waterloo. NLP Presenation, 06/17/2015

Sentiment Analysis. D. Skrepetos 1. University of Waterloo. NLP Presenation, 06/17/2015 Sentiment Analysis D. Skrepetos 1 1 Department of Computer Science University of Waterloo NLP Presenation, 06/17/2015 D. Skrepetos (University of Waterloo) Sentiment Analysis NLP Presenation, 06/17/2015

More information

Turning Big Data into a Big Opportunity

Turning Big Data into a Big Opportunity Customer-Centricity in a World of Data: Turning Big Data into a Big Opportunity Richard Maraschi Business Analytics Solutions Leader IBM Global Media & Entertainment Joe Wikert General Manager & Publisher

More information

Text Mining with R. Rob Zinkov. October 19th, 2010. Rob Zinkov () Text Mining with R October 19th, 2010 1 / 38

Text Mining with R. Rob Zinkov. October 19th, 2010. Rob Zinkov () Text Mining with R October 19th, 2010 1 / 38 Text Mining with R Rob Zinkov October 19th, 2010 Rob Zinkov () Text Mining with R October 19th, 2010 1 / 38 Outline 1 Introduction 2 Readability 3 Summarization 4 Topic Modeling 5 Sentiment Analysis 6

More information

VTrak G1100 Application and Performance Notes

VTrak G1100 Application and Performance Notes VTrak G1100 Application and Performance Notes Version 1.0 Date: 11/5/2014 Copyright 2014, Promise Technology, Inc. All Rights Reserved Revision History Revision Date Author Description 0.69 10/20/14 Gary

More information

Text Analytics Software Choosing the Right Fit

Text Analytics Software Choosing the Right Fit Text Analytics Software Choosing the Right Fit Tom Reamy Chief Knowledge Architect KAPS Group http://www.kapsgroup.com Text Analytics World San Francisco, 2013 Agenda Introduction Text Analytics Basics

More information

Project Management Framework for the Guidelines for the Compilation of Water Accounts and Statistics

Project Management Framework for the Guidelines for the Compilation of Water Accounts and Statistics Project Management Framework for the Guidelines for the Compilation of Water Accounts and Statistics A. Introduction Prepared by UNSD 1. At its 38th session in 2007, the United Nations Statistical Commission

More information

Big Data. What is Big Data? Over the past years. Big Data. Big Data: Introduction and Applications

Big Data. What is Big Data? Over the past years. Big Data. Big Data: Introduction and Applications Big Data Big Data: Introduction and Applications August 20, 2015 HKU-HKJC ExCEL3 Seminar Michael Chau, Associate Professor School of Business, The University of Hong Kong Ample opportunities for business

More information

Online Content Optimization Using Hadoop. Jyoti Ahuja Dec 20 2011

Online Content Optimization Using Hadoop. Jyoti Ahuja Dec 20 2011 Online Content Optimization Using Hadoop Jyoti Ahuja Dec 20 2011 What do we do? Deliver right CONTENT to the right USER at the right TIME o Effectively and pro-actively learn from user interactions with

More information

Big Data and Market Surveillance. April 28, 2014

Big Data and Market Surveillance. April 28, 2014 Big Data and Market Surveillance April 28, 2014 Copyright 2014 Scila AB. All rights reserved. Scila AB reserves the right to make changes to the information contained herein without prior notice. No part

More information

Bridging CAQDAS with text mining: Text analyst s toolbox for Big Data: Science in the Media Project

Bridging CAQDAS with text mining: Text analyst s toolbox for Big Data: Science in the Media Project Bridging CAQDAS with text mining: Text analyst s toolbox for Big Data: Science in the Media Project Ahmet Suerdem Istanbul Bilgi University; LSE Methodology Dept. Science in the media project is funded

More information

Cutting Through The Hype: What You Need To Know About Big Data

Cutting Through The Hype: What You Need To Know About Big Data Cutting Through The Hype: What You Need To Know About Big Data Bill Franks Chief Analytics Officer, Global Alliances, Teradata [email protected] @BillFranksGA www.bill-franks.com www.linkedin.com/in/billfranksga

More information

01219211 Software Development Training Camp 1 (0-3) Prerequisite : 01204214 Program development skill enhancement camp, at least 48 person-hours.

01219211 Software Development Training Camp 1 (0-3) Prerequisite : 01204214 Program development skill enhancement camp, at least 48 person-hours. (International Program) 01219141 Object-Oriented Modeling and Programming 3 (3-0) Object concepts, object-oriented design and analysis, object-oriented analysis relating to developing conceptual models

More information

HSD. W Business Analytics (M.Sc.) IT in Business Analytics. IT Applications in Business Analytics SS2016 / 01 Introduction Thomas Zeutschler

HSD. W Business Analytics (M.Sc.) IT in Business Analytics. IT Applications in Business Analytics SS2016 / 01 Introduction Thomas Zeutschler Hochschule Düsseldorf University of Applied Scienses Fachbereich Wirtschaftswissenschaften W Business Analytics (M.Sc.) IT in Business Analytics IT Applications in Business Analytics SS2016 / 01 Introduction

More information